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Figure 1: Supplementary comparison with DIP (1) on JPG artifact removal. We can observe that our method achieves
competitive results, with for example sharper lines around the eyes.

A. Summary of Changes

The CVPR reviewers appreciated the potential of the
work despite the experimental sections that did not consider
a sufficiently large variety of works in the comparisons. Our
submission to NTIRE2021 doesn’t include changes as we
believe the workshop is the ideal venue to discuss such ideas
at an early stage. We would like to emphasize that Normal-
izing Flows (NF) exhibit advantageous properties and there
is a growing interest in extending their usage. We are aware
that our model has limitations compared to approaches lever-
aging more established models such as GANs. However, to
demonstrate that research in this new direction is interesting
even in its early stage, we think our focused comparison to
”Deep Image Prior” as a baseline is justified.

B. Additional Comparison with DIP (1)

We provide an additional comparison with Deep Image
Prior for the task of compression artifact removal. We can
observe that our method achieves competitive results, with
for example sharper lines around the eyes (Figure 1).

C. MNIST
For MNIST the network architecture is kept simple, only

consisting of a single level. We use K = 16 steps in our
model. As coupling transform we use the one depicted in
Figure 2 with two blocks (N = 2) and 128 intermediate
channels (Cinter = 128). Finally, we choose a Gaussian
with unit variance as our base distribution. The Gaussian’s
mean is set to a trainable parameter. All other parameters
are listed in Table 1.

Parameter Value
# levels 1
# flow blocks per level Nf 16
Affine coupling Cinter 128
Base distribution p(u0) N (µ, 1)
Optimizer Adam
learning rate 10−4

batch size 50
# steps 105

max gradient value 105

max gradient L2-norm 104

Table 1: Details of architecture and training for the MNIST
experiments
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Figure 2: Details of the affine coupling transform. 3 × 3
Conv2D and 1×1 Conv2D refer to standard 2D convolutions
using a kernel size of 3x3 and 1x1 respectively. The ” + ” at
the end of the block is an element wise addition.

D. Sprites

Each image in the Sprites dataset consists of a figure
performing some pose in front of a random background.
Figures are centered in the image and have varying color for
hair and clothing. Each image is of size 64x64. Dataset will
be made available upon acceptance.

Architecture. For this experiment, the number of levels
is set to L = 3 and each level has K = 8 steps. The
distributions p(u1|h1) and p(u2|h2) depend on a function
which computes mean µ(hl) and variance σ(hl). We call
this function the context encoder. A single 2D convolution
with kernel size 3 × 3 and twice the number of output di-
mension as input dimensions is used as the context encoder.
The context encoder’s output is then split in half along the
channel dimension. One half is used as µ(hl), the other
as σ(hl). The convolutions weight and bias are initialized
to zero for stability reasons. The other parameters for the
Sprites dataset are listed in Table 2.

E. DIV2K

The number of levels in the architecture is set to L = 3
with K = 4 steps per level. The number of intermediate
channels in the coupling transforms is 256. The context
encoder architecture is deepened from 1 to 5 convolutional
layer as is illustrated in Figure 3 and a dropout layer is added
to the beginning. All the architecture parameters are listed
in Table 3.

Patch-wise Reconstruction. A full image of arbitrary size
can be reconstructed by reconstructing each patch individu-
ally. To avoid boundary artifacts between patches a margin
is used as illustrated in Figure 4. The margin causes overlap
between adjacent patches yielding more consistent results in
boundary regions.

Parameter Value
# levels (L) 3
# flow steps per level (K) 8
Affine coupling Cinter 128
Base distribution p(u1|h1), p(u2|h2) N (µ(hl), σ(hl))
Base distribution p(u0) N (µ, σ)

Context Encoder p(u1|h1), p(u2|h2)
Conv2D (zero init),
kernel size 3x3

Optimizer Adam
learning rate 10−4

batch size 20
# steps 105

max gradient value 105

max gradient L2-norm 104

latent noise magnitude ±0.5
latent noise loss (βln) 100
autoencoder loss (βae) 1

Table 2: Sprites training specification.

Figure 3: Architecture of the context encoder used for the
DIV2K example. A dropout layer with p = 0.2 is used as
the first layer to prevent overfitting. The last convolution’s
weight and bias are initialized to zero for stability reasons.

Parameter Value
# levels (L) 3
# flow steps per level (K) 4
Affine coupling Cinter 256
Base distribution p(u1|h1), p(u2|h2) N (µ(hl), σ(hl))
Base distribution p(u0) N (µ, σ)
Context Encoder p(u1|h1), p(u2|h2) N = 5
Optimizer Adam
learning rate 10−4

batch size 15
# steps 205

max gradient value 105

max gradient L2-norm 104

latent noise magnitude ±0.5
latent noise loss (βln) 100
autoencoder loss (βae) 1
image noise loss (βin) 100
image noise magnitude ±10

Table 3: DIV2K training specification.
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Figure 4: Illustrations of the tiles used for patch-wise re-
construction. H and W refer to the patches height and with
respectively. M refers to the margin. Neighboring patches
overlap in a region of width 2 ·M . Analogously the same
pattern extends in the vertical direction. In our work we use
H =W = 64 and M = 4.
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