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1. Derivation of polynomial constraints
Given three corresponding intensity measurements

{(v1, v′1), (v2, v′2), (v3, v′3)} we would like to find a third-
degree polynomial pabc going through the origin so that

D(pabc, (vi, v
′
i)) = εv, i = 1, 2, 3. (1)

The distance from a point (v1, v′1) is given by

D(pabc, (vi, v
′
i)) =

|pabc(vi)− v′i|√
1 + (dpabc

dx (vi))2
. (2)

Combining these equations gives for each i

D(pabc, (vi, v
′
i)) = εv ⇔ (3)

|pabc(vi)− v′i|√
1 + (dpabc

dx (vi))2
= εv ⇔ (4)

|pabc(vi)− v′i| = εv

√
1 + (

dpabc
dx

(vi))2 ⇔ (5)

(pabc(vi)− v′i)2 − ε2v(1 + (
dpabc
dx

(vi))
2) = 0. (6)

Inserting the expression of pabc gives us our second degree
polynomial in the unknown parameters (a, b, c)

gi = (av3i + bv
2
i + cvi− v′i)2− ε2v(1+(3av2i +2bvi+ c)

2).
(7)

2. Transformation modelling
We have compared using different numbers of feature

points, and different transformation models on the synthetic
dataset [12]. We used a fixed number of 50 features and
compared it to using all the extracted features as well as us-
ing all pixel values. We varied the transformation models
as well. In this experiment we assume that there are no out-
liers and only want to test the fidelity of different models.
We have tested four different transformations, the Monge-
Kantorovitch linear model, a 3D affine model, a 2D projec-
tive model, and a second degree polynomial model in 3D.

The least squares estimates of these transformations can all
be estimated directly from the data. The results for various
cases are shown in Table 1. We have run hypothesis tests
on that the differences in mean are significant or not. On a
5% level, there is no significant difference on using 50, all
features or all pixels for any of the tested transformations,
for both PSNR and SSIM means. On the transformation
level we get for the PSNR means that the projective model
is significantly worse than the others, and that the polyno-
mial model is significantly better. For the SSIM means, the
only significant is that the projective is worse that the oth-
ers. Significantly better results on a 5% level are marked
with bold, and significantly worse results are marked with
italics, in the table. We did not test the projective model for
all pixels since the estimation then involves taking the SVD
of a very large matrix. In our method we model and handle
non-linearities in the intensity transformation, and hence we
have chosen to use the affine model as the post-processing
transformation on the inlier set, in order to combine model
fidelity with robustness in a balanced way. The polynomial
model is prone to give artifacts in the presence of also very
little amounts of incorrect matches.

3. Benchmark tests
Distributions of PSNR and SSIM values for different

inlier levels (and different methods) on the INTEL-TUT
dataset [2] are shown in Fig. 1. More output from the bench-
mark tests can be seen in Fig. 2 and 3.

4. Background/foreground estimation
We will start to look at background/foreground segmen-

tation. We assume that we have an estimate of a background
image, and using this we want to detect parts in an input
image, that differ from the background. In Fig. 4 an ex-
ample is shown. Here we have a fixed camera viewing a
traffic intersection, so the images are geometrically aligned.
The objective is to detect the vehicles, and we have esti-
mated a background image, by median filtering a number of
frames. Due to lighting changes over time, the input image
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Table 1. Synthetic model fidelity results using different number of correspondences and different transformation models.

Transformation MKL Affine Projective Polynomial
Parameters 9 12 8 30

Points 50 all all 50 all all 50 all 50 all all
features features pixels features features pixels features features features features pixels

PSNR 36.71 36.98 37.05 37.15 37.61 37.77 26.05 28.33 39.55 41.65 41.98
SSIM 0.968 0.969 0.969 0.971 0.971 0.972 0.875 0.926 0.971 0.977 0.978

Time (ms) 68 71 14 68 69 19 81 93 71 74 45
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Figure 1. Distribution of PSNR (top) SSIM (bottom) values on the INTEL-TUT dataset [2], for varying outlier levels.

will not have the same color distribution as the estimated
background image. We would like to transform the back-
ground image to the correct color space, but due to large
extent of foreground objects we need a robust approach.
We start with extracting feature points in the background
image, and calculate the corresponding descriptors in the
background and input image respectively. We then use our
robust color matching to transform the background image.
In Fig. 4 a number of input images are shown to the left. The
next two columns show the transformed background image
using [9] and the proposed method respectively. Fourth and
fifth columns show the segmented output, based on the two
difference images. The mask is constructed by threshold-
ing the difference images, with an additional morphological
opening with a structuring disk with a radius of three pixels.

5. Image stitching
The proposed method can be used for image stitching.

Misalignments and moving objects make robust methods
desirable. We will describe the approach using two im-

ages, but it readily generalizes to larger image sets. We use
standard methods for the geometric alignment, i.e. extract-
ing SIFT features, matching using RANSAC and fitting a
homography. Mapping the image using the found homog-
raphy we have the two images in the same geometric co-
ordinate system. We then run our feature detector on the
overlapping region, and extract our color descriptor from
the two images. We run our robust color matching, and use
the estimated transform on the whole image. This gives us
our two images now also hopefully in the same color co-
ordinate system. Often some form of blending function is
used to avoid borders between images in the stitching, but
here we don’t use any blending. For overlapping pixels, we
simply choose the pixel-wise max. The result on examples
can be seen in Fig. 7. To the left is the stitched images with-
out the estimated color transform, and to the right using the
estimated color transform. One can clearly see that we in
this case get a very seamless stitching result.
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Figure 2. Some examples from the synthetic test. From left to right: Altered image, original image, proposed approach with 20% outliers,
proposed approach with 60% outliers.
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Figure 3. Example results on the INTEL-TUT dataset [2], with 20% added outliers. Top row shows the RAW input images, second row
shows the target JPG images. Third row shows the output of our proposed method. Then follows the transformed images using the
compared methods [8, 9, 5, 4].
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Figure 4. Example images for background foreground segmenta-
tion. Left: Input images. Second column: Transformed back-
ground image using [9]. Third column: The same using proposed
method. Fourth and fifth columns: Segmented output based on the
two methods. See also supplemental material.

6. HDR estimation from multiple exposure
LDR brackets

Figure 5. Middle shows the three input LDR input images [1].
Bottom shows to the left and right the the corresponding input
images transformed to the color space of the middle image. Bot-
tom middle shows the confidence measure choice for each pixel.
Top shows the final tone mapped output after using the proposed
method.

Our final example application is how to estimate a high
dynamic range (HDR) image from several low dynamic
range (LDR) images. A standard way of constructing HDR
images in this way is to take several LDR images with vary-
ing exposure settings. One can then transform the LDR im-
ages into the same color coordinate system by mapping the
different images to the same intensity range. After this step
the different mapped LDR images are combined in some

way to produce an HDR result, [11, 3, 6]. To view the HDR
image on an LDR display or print it, some form of tone
mapping algorithm is then used to transform the HDR im-
age to an LDR image, see e.g. [10].

There are several substeps that can be, and that have been
solved in a number of different ways, and each of the steps
have their own difficulties that have to be addressed. We
will now show how our robust color transformation method
can be applied to the step of mapping the differently ex-
posed LDR images to the same color coordinate system.
In some cases, the exposure settings for the different im-
ages are known, and then this information can be used to
transform the images. In many cases however the exposure
settings are unknown, and even if it is known, for many
cameras the exposure process is not linear. This motivates
the use of an automatic process for finding the mappings.
Typically, there is some motion between the images taken,
and the process starts with image alignment. We will have
the same problems with misalignment and moving objects
as we have in image stitching applications, so this moti-
vates the need for robust methods. In addition to this, we
will in this case also need to handle severely over and under
exposed parts of the images, that will give rise to outliers
in our color matching. We choose one image as reference
image (typically the middle-exposed image). We then map
all other LDR images to the reference image using our pro-
posed method. This gives all the images in the same color
reference system. An example can be seen in Fig. 5 where
the reference and mapped images are shown. In each input
image we put a confidence value at each pixel depending
how over- or undersaturated the pixel is. We then com-
bine the transformed images, by choosing for each pixel the
value from the most trusted transformed images based on
the confidence measure. This gives an HDR image, which
we then tone map in order to display it. We have used the
global (non-parametric) method of [7]. Results can be seen
in Fig. 6.
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