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1. Introduction
This document includes supplementary information,

which will be published as a PDF linked to the primary ar-
ticle. This supplementary document presents the following
information that would be beneficial for the readers:

1. The extended visual comparisons,

2. implementation details,

3. ablation studies:

(a) the proposed SR kernel estimation algorithm’s
stress test, which is the robustness analysis
against additive noise,

(b) the stability analysis of the proposed modular
neural network structure against different gradi-
ent estimation modules,

(c) the experimental analysis that shows the impor-
tance of the extended kernel pool.

2. Kernel Estimation in Synthetic Data
Realistic SR kernel pool: The preparation of the realis-

tic SR kernel pool is summarized in Section 5.1 of the pri-
mary article. Two sub-set from the Huawei P20 dataset [16]
were arbitrarily partitioned. The first subset was used to es-
timate realistic SR kernels, and the second subset was used
as the test set for blind SR. In order to create an SR kernel
pool, 512 × 512 patches were extracted from the center of
the images in the first sub-set. Then, from these patches,
SR kernels were estimated by using both KernelGAN and
model-based approach. In addition to these estimated ker-
nels, anisotropic and isotropic Gaussian kernels were also
generated and added to the SR kernel pool. The variances
of Gaussian kernels were chosen in accordance with the es-
timated SR kernels.

For Scale 2, we had a total of 1368 training kernels
from the model-based solution (600), KernelGAN estima-
tion (280), different anisotropic (340), and isotropic Gaus-
sian kernels (148) with standard deviations randomly drawn

from the interval
[√

2 ∗ 1.2,
√
2 ∗ 2

]
. The test set of SR

kernel pools is composed of 368 kernels with model-based
estimations (148), KernelGAN estimations (64), differ-
ent anisotropic (80), and isotropic Gaussian kernels (56)
with standard deviations randomly drawn from the interval[√

2 ∗ 1.2,
√
2 ∗ 2

]
.

For scale 3, instead of 512 × 512 patches, 510 × 510
patches were used as 510 is divisible to 3. Moreover, as
KernelGAN is not optimized for odd scale factors like 3, the
estimated kernels using KernelGAN for scale factor 3 were
self-convolved to obtain approximate SR kernels for scale
factor 3. In numbers, we had 749 SR kernels in the train-
ing set. From them, 215 kernels are estimated via model-
based 347 are self-convolved sf = 2 KernelGAN estima-
tions, 201 are anisotropic, and 76 are isotropic Gaussian
with the standard deviation randomly drawn from the inter-
val

[√
2 ∗ 1.2,

√
2 ∗ 2

]
. For the test set, we had 134 SR

kernels composed of model-based estimations (30), Ker-
nelGAN estimations for Scale 2 were self-convolved (60),
anisotropic (31), and isotropic Gaussian Kernels (13).

For scale 4, the training set of SR kernel pool con-
sists of 638 SR kernels, including model-based estima-
tions (47), KernelGAN estimations and KernelGAN esti-
mations (for sf = 2) 2 times self-convolved (347), differ-
ent anisotropic Gaussian kernels (149), and isotropic Gaus-
sian kernels (100) with the standard deviation randomly
drawn from the interval [2.5, 3.5]. The test kernel set has
129 SR kernels which are model-based estimations (12),
KernelGAN estimations, and KernelGAN estimations (for
sf = 2) 2 times self-convolved (63), different anisotropic
Gaussian kernels (33), and isotropic Gaussian kernels (21).

Synthetic Data: Synthetic Dataset (training and test im-
age sets) were produced using DIV2K training images and
test images. These HR images were degraded using the
SR degradation model with SR kernels from our SR ker-
nel pools. The training procedure is explained in Section 4
of the primary article in detail.

For the synthetic test set, 100 1024 × 1024 patches are
randomly extracted from the images in DIV2K dataset.
Then, these patches were degraded by the SR degradation



Figure 1. Visual comparison of estimated kernels by different SR kernel estimators for 6 different examples.

model in Equation 1 of the primary article. The SR kernels
are randomly chosen from the SR kernel pool (test pool).

Comparison of SR Kernel Estimations: We added a vi-
sual comparison of estimated kernels by different SR kernel
estimators, which was not presented in the primary article.
The visual comparison is given in Figure 1.

More visual comparison on the synthetic dataset: We
also give more visual examples from the outputs of com-
peting blind SR methods for both scale factor 2 (Figure 2)
and scale factor 3 (Figure 3).

3. Visual Comparison on Real Images

Compared to the primary article, we present more visual
examples in Figure 4 and Figure 5 for Scale 2 and Scale
3. Moreover, for scale 4, state-of-the-art GAN-based blind
SR algorithms are also included, and more visual examples
from the real dataset are given in Figure 6.

4. Ablation Studies
4.1. Robustness to additive noise

In order to make a stress test of competing SR kernel es-
timators, we corrupted the observation (LR image), y, with
Additive White Gaussian Noise (AWGN) with standard de-
viations, 25, 50, and 75. The performance comparison is
given in Table 4.1. From the results, we can claim that the
proposed SR kernel estimation network, KernelNet, is per-
forming similary with the other competing algorithms while
its computational complexity is less. It remains state-of-the
SR kernel estimators for realistic noise levels, e.g., standard
variance in the interval 1-50.

4.2. Different Structures for Sharp Gradient Esti-
mation Module

Inspired by [38], our Sharp Gradient Estimation Module
consists of six convolutional layers. The five hidden layers
have 128 neurons, and we use ReLu activation functions for
these layers. For the output layer, Tanh is used. The kernel
sizes are, 9 × 9, 1 × 1, 3 × 3, 5 × 5, 1 × 1 and 3 × 3, re-
spectively. We chose this structure because it gives slightly
better performance on SR kernel estimation problem com-



Figure 2. (Scale 2) Visual comparison of SR algorithms. Examples from Synthetic Test Data.

Table 1. The performance comparision in noisy enviroment
Noise Level Methods Kernel Estimation Error PSNR SSIM

25.0/255.0
Model Based 0.429 25.21 0.837
KernelGAN 0.437 25.73 0.832
KernelNet 0.461 26.37 0.838

50.0/255.0
Model Based 0.429 24.96 0.84
KernelGAN 0.497 25.59 0.837
KernelNet 0.458 26.75 0.849

75.0/255.0
Model Based 0.495 25.35 0.833
KernelGAN 0.437 25.82 0.834
KernelNet 0.457 26.37



Figure 3. (Scale 3) Visual comparison of SR algorithms. Examples from Synthetic Test Data.

pared to alternative approaches.

Fortunately, our KernelNet does not heavily depend on
the structure of the Sharp Gradient Estimation Module.
Namely, a proper alternative can also be replaced with it.
In order to show it, we designed the following experiments:
We replace the current module with three alternative sharp
gradient estimators. In [1], the authors proposed convolu-
tional support estimator networks (CSEN1- CSEN2) that
can estimate sharp image gradients from the corrupted im-
ages. Although their corruption is compressive sensing,
which can be defined as a related type of inverse problem,
the networks can be alternative chooses in our experimental

setup. In addition, we also design a simple CNN structure,
as we call it ordinary, a simple CNN mapping (OSC). OSC
consists of 3 hidden layers. The layers have 48, 24, 24 neu-
rons, and the ReLu activation function is used for hidden
layers. For the output layer, Tanh is used. The kernel sizes
are, 3 × 3, 2 × 2, 3 × 3, 3 × 3, respectively. After the first
layer, a Max-pool layer with stride two was used.

The performance comparison of different KernelNet
structures with different Sharp Gradient Estimation Mod-
ules is given in Table 2. The current module gives slightly
better performance but the network still stably works with
alternative modules.



Figure 4. (Scale 2) Visual comparison of SR algorithms on real images. Examples from Huawei P20 Test Data.

Table 2. Different gradient estimation networks.
Networks Kernel Error PSNR SSIM
Current Network 0.224 28.82 0.905
CSEN II 0.2476 28.68 0.901
OSC 0.2328 27.46 0.894
CSEN I 0.2357 27.82 0.896

4.3. Importance of Extended Kernel Pool

The recent works [17, 44] have proposed to estimate the
realistic SR kernels from a specific camera dataset to create
an SR kernel pool. Then, they used these kernel pools to de-

grade HR images in order to obtain a training set consisting
of realistic LR-HR image pairs. In that way, they increased
their CNN based SR solutions’ generalization capabilities.
From them, the study [44] used a model-based solution ex-
plained in Section 2a and [17] used KernelGAN.

As explained in Section 2c, the existing SR kernel esti-
mation solutions have limited performances, which causes
the kernel mismatch problem. In this study, we proposed to
use an extended SR kernel pool. To illustrate the importance
of the proposed solution for SR kernel pool generation, we
designed the following experiments: To train KernelNet, we
used only estimated kernels using KernelGAN as it is done
in [17]. However, for the test SR kernel pool, we take the



Figure 5. (Scale 3) visual comparison of SR algorithms on real images. Examples from Huawei P20 Test Data.

Figure 6. (Scale 4) visual comparison of SR algorithms on real images. Examples from Huawei P20 Test Data.



estimated kernels using the model-based solution. The per-
formance drops from error 0.224 to 0.40. Although Kernel-
Net still performs better than KernelGAN, the performance
drops drastically. The reason is that the current SR kernel
estimators are not accurate enough; they produce different
kernel estimations that can even yield different types of ker-
nel pools.
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