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Figure 1: Diminishing the highlighted (red mask) object in indoor spherical panorama images. White lines annotate the

scene’s layout in panorama and perspective views. Left to right: i) masked object to remove, ii) pure inpainting result of

state-of-the-art methods (top row: RFR [18], bottom row: PICNet [46]), iii) perspective view of inpainted region by these

methods better shows that they do not necessarily respect the scene’s structural layout, iv) our panorama inpainting that takes

a step towards preserving the structural reality, v) perspective view of inpainted region by our model, showing superior results

both in texture generation and layout preservation. The results in this figure depict cases where RFR and PICNet provide

reasonable structural coherency and aim at showcasing our model’s finer-grained accuracy. Figure 4 presents more qualitative

examples where the structural in-coherency of RFR and PICNet is more evident.

Abstract

The rising availability of commercial 360o cameras that

democratize indoor scanning, has increased the interest for

novel applications, such as interior space re-design. Dimin-

ished Reality (DR) fulfills the requirement of such applica-

tions, to remove existing objects in the scene, essentially

translating this to a counterfactual inpainting task. While

recent advances in data-driven inpainting have shown sig-

nificant progress in generating realistic samples, they are

not constrained to produce results with reality mapped

structures. To preserve the ‘reality’ in indoor (re-)planning

applications, the scene’s structure preservation is crucial.

To ensure structure-aware counterfactual inpainting, we

propose a model that initially predicts the structure of a in-

door scene and then uses it to guide the reconstruction of

an empty – background only – representation of the same

scene. We train and compare against other state-of-the-art

methods on a version of the Structured3D dataset [47] mod-

ified for DR, showing superior results in both quantitative

metrics and qualitative results, but more interestingly, our

approach exhibits a much faster convergence rate. Code

and models are available at github.com/VCL3D/PanoDR/

1. Introduction

The advances in omnidirectional imaging are increas-

ing their adoption in various sectors. The introduction of

consumer-grade spherical cameras, or mobile applications

stitching moving camera videos into spherical panoramas,

can enable new user experiences driven by the holistic cap-

ture capacity of 360o cameras. One growing field driven by

this holistic imaging property is indoor scene understand-

ing as prominently demonstrated in the pioneering work of

PanoContext [45].

PanoContext used a spherical panorama to estimate a

room’s layout, and has been recently succeeded by a large

body of data-driven methods [39, 34, 53, 54] to infer gen-

eralized indoor scene layouts from a single monocular 360o

image. Indoor layouts represent a coarse geometry repre-

sentation which can nonetheless be used to reconstruct en-

tire buildings from overlapping captures [30, 29, 31]. In

addition, the recent availability of real-world [52, 51, 13]

or synthetic [15, 47] spherical depth datasets has enabled

finer-grained geometry estimation from panoramas.

Apart from the structural understanding of indoor

scenes, 360o images also offer a holistic contextual repre-

sentation of a scene. Be it either for the detection [6] or

segmentation [43] of objects, the combination of contex-
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tual and structural understanding can drive next-generation

applications offering new forms of interaction. One such

application is the Augmented Reality (AR) aided planning

of interior spaces, in the context of refurnishing, redecorat-

ing or retail, which relies on the simultaneous availability

of both structural (layout, geometry) and contextual (object

related) information. However, an important shortcoming

of AR in such a setting is its limitation to only enhance the

real world with virtual elements via visual overlay. Yet in

the context of interior (re-)design, the removal of objects is

also very relevant, which can be achieved through Dimin-

ished Reality (DR). The latter can act either in a comple-

mentary manner to AR, allowing it to “replace” objects by

first removing (DR), and then overlaying (AR), or by purely

erasing them from the scene.

DR is an important technology which has been over-

looked for 360o content. It is very closely related to image

and/or video inpainting which seeks to reconstruct miss-

ing image regions and has achieved impressive results us-

ing modern data-driven models. Nevertheless, it also takes

a step beyond traditional inpainting as it needs to respect

the surrounding context in stricter ways, moving towards

realistic reconstructions instead of plausible ones. Indeed,

image inpainting state-of-the-art currently focuses solely on

photorealism [24], and even the richness of the plausible in-

paints [46], foregoing constraints about the alignment of the

hallucinated content with the actual scene.

In this work, we focus on 360o DR in the context of in-

terior (re-)design applications, relying on image inpainting

and recently available datasets to reconstruct foreground oc-

cluded areas faithfully. The contextual realism required to

move beyond plausible inpaints in this case is reliant on the

scene’s structure, a very important cue for indoor space re-

planning and/or refurnishing that needs to be respected. In

summary our contributions are the following:

• We present the first, to the authors’ knowledge, method

for DR-oriented inpainting in 360o images using re-

cently available panorama datasets with paired full and

empty scenes (Figure 2).

• To preserve the structural reality when diminishing

scenes we bridge image-to-image translation with gen-

erative inpainting, conditioning the inpainting results

on the underlying scene structure.

• A DR model with fast convergence rate, significantly

faster than state-of-the-art inpainting techniques, out-

performing them in both photorealism and structural

coherency.

2. Related Work

Data-driven Inpainting. Context Encoders [28], one of

the first data-driven methods designed for image inpainting,

combined an autoencoder with an adversarial loss in order

to generate sharper images. Similarly, Iizuka et al. [9] used

two discriminators, one global and one local, to enforce

photo-consistency, while also increasing the model’s recep-

tive field using dilated convolutions. These early methods

conditioned their predictions on both valid and masked in-

puts, leading to visual artifacts such as color discrepancy

and blurriness. To overcome such limitations, Liu et al. [20]

introduced partial convolutions for image inpainting to pre-

vent the accumulation of zeros in the encoded representa-

tions. Yu et al. [41] extended this idea by proposing gated

convolutions to learn the mask automatically which, com-

bined with SN-PatchGAN [23, 16], achieved higher quality

inpainting results.

Zeng et al. [42] showed that a pyramid-context encoder

exploiting the information of different scales, improved the

image completion result. The pyramid-context encoder pro-

gressively learned region affinity by attention from a high-

level semantic feature map, transferring the learned atten-

tion to the low-level feature maps. Another work relying on

multi-scale feature fusion was the mutual encoder-decoder

work of Liu et al. [21]. CNN features from shallow and deep

layers were used to represent the textures and structures

of the input image, respectively. Splitting these semanti-

cally different but complementary representations into two

branches and jointly exploiting them to inpaint in multiple

scales produces high quality results. Li et.al [18] propose a

recurrent (i.e. iterative) inpainting method inspired by how

humans inpaint from the outer regions towards the inner

ones. They progressively reduce the size of the hole by

exploiting the correlation between neighboring pixels and

strengthen the constraints for estimating deeper pixels. A

Knowledge Consistent Attention module is further utilized

that recurrently estimates at each step the attention score

for the hole by taking into account the score at the previous

step.

As mentioned earlier though, the inpainting task focuses

on plausibility and not necessarily the restoration of the real

content. This was the main focus of the work of Zheng et

al. [46] where a probabilistically principled framework was

designed to generate multiple plausible results with reason-

able content for each masked input. To achieve that, it com-

bined both generative and variation synthesis approaches.

Two generators with shared weights were utilized, with the

first taking the masked image as input and sampling the en-

coding vector from a learned probability distribution, which

is subsequently decoded to produce the output image. The

second one, used only during training, jointly leverages the

masked regions and the feature maps of the first decoder to

generate the inpainted result.

Taking into consideration the inherent ambiguity of the

image inpainting task, generating plausible realistic images

based only on reconstruction losses at pixel (L1 loss) or at

feature level [11, 5] is not feasible. In cases where novel



contents are missing from the input image, the goal is to

generate visual plausible textures, coherent with surround-

ing known regions while in parallel maintaining the global

semantic structure of the image. In order to hallucinate such

contents, the generative models’ contribution is crucial. The

established zero-sum game between the generator and dis-

criminator enforces the former to synthesize crisp images

that cannot be distinguished from the natural image distri-

bution. Yet this is accomplished in a pure learning frame-

work, with no additional constraints or guarantees of struc-

tural alignment.

Boundary Preserving Inpainting. One important com-

ponent of photorealism is the preservation of boundaries. In

[17] the partial convolution was revisited and used jointly

with visual structure reconstruction layers which incorpo-

rate structural information in the reconstructed feature map.

This resulted in a progressive joint reconstruction of the vi-

sual structure (edges) and features in a progressive manner.

Also, EdgeConnect [25] introduced an edge generator to

hallucinate edges in the missing regions which afterward

act as structural guidance for the inpainting task. Likewise,

StructureFlow [8] utilize a two-stage network which con-

sists of a structure reconstructor based on [38] and a texture

generator. The former produces a smooth image with pre-

served strong edges, while the latter employs appearance

flow [48] to deliver realistic texture. Nevertheless, the edge

generator in EdgeConnect discards useful information such

as image color whilst StructureFlow uses the input image

structure only in the first layer, with no guarantees of struc-

tural alignment in the deeper layers.

Image-to-image Translation. Similar to DR inpainting,

structure and boundary preservation is very important in the

context of image-to-image translation [10], a related syn-

thesis task. Isola et al. [10] introduced pix2pix, which uti-

lized an image-conditional GAN for multiple applications

such as transforming semantic label to photos, sketches

to shoes and Google maps to satellite views. One spe-

cific application, reconstructing images from semantic la-

bels [3, 4, 12], especially focuses on preserving the bound-

aries between different classes. As a result, even the ear-

lier attempts [3] reused the boundary highlighting semantic

map in multiple stages within their architectures. Recently,

the SPADE blocks [26] employed them within a spatially-

adaptive normalization layer to propagate the semantic in-

formation throughout the network. Specifically, the activa-

tions in normalization layers are modulated by the seman-

tic segmentation map through a spatially adaptive learned

transformation. Contrary to pix2pix, the proposed method

does not normalize the input semantic segmentation mask,

thus semantic information is better preserved. Neverthe-

less, SPADE uses just one style code to control the style

of the image without inserting style information through-

out the network but only at the beginning. To overcome

this limitation, SEAN [49] embeds one style reference for

each semantic class and consequently, leverages the style

information in the form of spatially-varying normalization

parameters.

In our work, we bring the best of both worlds (photore-

alism and boundary preservation) in a DR-oriented inpaint-

ing task. We exploit the photorealistic generation capacity

of generative models in combination with the boundary pre-

serving properties of image-to-image translation task, to re-

place parts of a 360o image with the occluded background.

By integrating layout estimation, our goal is to synthesize

content that is conditioned on it, therefore preserving the

actual scene’s structure, taking a step away from plausibil-

ity towards realism.

3. Approach

Our goal is to remove (i.e. diminish) objects in spheri-

cal panoramas of indoor scenes. On the one hand, the re-

gional nature of our problem is similar to image inpainting,

as part of the content needs to be photorealistically hallu-

cinated. On the other hand, its context necessitates coun-

terfactual predictions, specifically to hallucinate occluded

areas, drawing away from image inpainting, towards image-

to-image translation, where only specific traits/parts of the

original image need to be preserved, and others need to be

adapted to another domain. More specifically, for indoors

DR we consider the task of translating a scene filled with

objects/foreground to an empty, background only, scene. At

the same time, another requirement imposed by the down-

stream applications related to interior (re-)planning, is the

preservation of reality, which, apart from the appearance

of the scene, also corresponds to the structure of the scene

which needs to be respected when planning changes, as it

is largely unchangeable. To address this particular prob-

lem, we follow a hybrid approach that will be described in

this section, to photorealistically hallucinate occluded con-

tent from masked regions, while respecting the underlying

scene structure. First, in Section 3.1 we describe the data we

use, then in Section 3.2 we provide the details of our hybrid

structure-preserving counterfactual generative approach for

360o DR, and, finally, in Section 3.3 we present the model’s

supervision scheme.

3.1. 360o Diminished Reality Dataset

While there exists a variety of datasets of indoor scenes

like Matterport3D [2] and Stanford2D3D [1], also including

spherical panoramas, they are not suitable for DR. The task

that we tackle in this work is fundamentally different from

all the previously explored methods for the simple reason

that removing an object from an image must be supervised

with the occluded content.

Therefore, we employ the Structured3D dataset [47],

which provides, among others, photo-realistic spherical
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Figure 2: (a) original sample with highlighted object mask, (b) empty room, (c) full room with empty supervision, (d)

augmented room with objects, (e) augmented room with empty supervision

panoramas of indoor scenes with 3 different configurations

(empty, simple, and full room), accompanied by layout and

semantic label annotations, making it highly suitable for

DR object removal. Considering a normalized indoor scene

color image If ∈ R
W×H×3 | 0 ≤ If (p) ≤ 1, with p ∈ Ω,

and Ω being the image domain of width W and height

H = W
2

, which corresponds to either the simple or full

configuration of Structured3D, we seek to remove a fore-

ground object by replacing its appearance with the occluded

background. The latter corresponds to the matching scene

empty image Ib, which contains a minimal, structure only,

WCF (wall–ceiling–floor) representation of the same scene.

In addition, Structured3D offers the scene layout’s junc-

tion positions, which after projecting the connected wire-

frame reconstruction on the panorama, provide a dense lay-

out WCF segmentation S ∈ N
W×H of the If/b scene, with

S(p) ∈ {1, 2, 3}.

To learn the removal of objects, we additionally exploit

the semantic labeling of each scene. We randomly pick the

largest connected component of one of the available fore-

ground classes as the input object mask M denoting the re-

gion to be diminished. The mask M is a binary mask with

ones in the diminished region and zeros elsewhere, while

M̄ is its binary inverse mask. Since the masks are pixel

perfect, we calculate their convex to simulate a generic, con-

vex polygon region selection. This way, we can supervise

the DR task for the diminishing of an input image If at

the region denoted by M, using the background image Ib.

However, this straightforward way fails in practice because

of conflicting supervision signals. Structured3D is pho-

torealistically rendered using physically based ray-tracing.

As a result, the inclusion of foreground introduces light

ray bounces, and more importantly, the lights themselves,

which are added into the scene as new foreground objects

participate into the new image formation process, creating

a photo-inconsistency between If and Ib. To overcome

this issue, we perform reverse compositing of selected fore-

ground object classes (i.e. excluding lights) into the back-

ground. While this is not a perfect solution as incident shad-

ows are lost, it allows for proper training that is not hindered

by irregular supervision across the training samples. An il-

lustrative example of this process and the defects it solves

is presented in Figure 2.

3.2. StructureDisentangled DR Model

The DR task blurs the line between image inpaint-

ing/completion and image-to-image translation. While im-

age completion is among the top trends in the computer

vision research, its standard approach is well formulated.

More precisely, either pre-defined shape masks (e.g. boxes)

are used, or free form ones, to corrupt the image, and then

supervise learning with the original image. Apart from the

minor mask shape difference, DR predictions are counter-

factual as they seek to reconstruct occluded areas, but simi-

lar to inpainting, it needs to exploit the context of the scene

to diminish it.

Image-to-image translation on the other hand adapts the

entire context of an image by translating it to another do-

main, like photo-to-sketch, or labels-to-image [22, 36].

Usually, only part of the context needs to be preserved,

most usually the dominant structure. For our DR case, the

masked region needs to be infilled with the occluded con-

text. While this can be considered as another domain, it

is nonetheless closer to the original domain that traditional

image-to-image translation tasks, which means that it can

be partly inferred from its surrounding context, compared

to a translated one.

Approach. We employ a hybrid approach taking the

masked image Im = If ⊙ M̄ + 1 ⊙ M as input, with

⊙ denoting element-wise multiplication and 1 ∈ Ω is an
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Figure 3: The PanoDR model that preserves the structural reality of the scene while counterfactually inpainting it. The

input masked image is encoded twice, once densely by the structure UNet encoder outputing a layout segmentation map,

and once by the surrounding context encoder, capturing the scene’s context while taking the mask into account via series

gated convolutions. These are then combined by the structure-aware decoder with a set of per layout component style

codes that are extracted by the complete input image. Two SEAN residual blocks ensure the structural alignment of the

reconstructed background image that is supervised by low- and high-level losses, as well as an adversarial loss driven by the

background image discriminator. The final diminished result is created via compositing the predicted and input images using

the diminishing mask.

all-ones matrix. Our model generates an output image Îe

that with is the empty representation of the original input

room. The final diminished image Îd is then composited as

Îd = If ⊙ M̄ + Îe ⊙M.

To preserve the structural reality, our approach disen-

tangles the structure in an explicit manner, as well as the

style, which gets further disentangled per structural ele-

ment. These are then re-entangled when generating the fi-

nal background image Îe, in order to preserve the structure

as faithfully as possible, and to generate the appearance of

each structural element distinctly. For image inpainting this

is usually done implicitly within the network, even in more

recent works [25] that seek to respect the content’s struc-

ture. For image-to-image translation, boundary information

is more important, but the assumption is that the entire im-

age is translated, and that there are no invalid regions like

holes that need to be completed.

Structure Encoding. We explicitly encode the scene’s

structure by predicting a dense layout segmentation map

Ŝ ∈ Ω splitting the panorama into 3 structured regions. For

this we use a well established UNet segmentation architec-

ture [32], essentially converting structure encoding into a

dense classification task. The input to the network is Im,

and it consists of 4 down-sampling and up-sampling con-

volutional modules joined by skip connections, and uses

batch normalization and ReLU activations. The choice of

the UNet, with skip connections and 1×1 prediction layers

offers finer segmentation results which are very important

as they allow for pixel level structure decoupling.

Surrounding Context Encoding. To encode the sur-

rounding context we use an image inpainting derived ar-

chitecture, which, specifically, is adapted from [41]. Its

detailed architecture is depicted in Figure 3, and relies on

Gated Convolutions, which are a generalization of partial

convolutions [20] that integrates a learnable gating tech-

nique when selecting features. In addition, instance nor-

malization [35] and ReLU activations are used. Taking into

account the spherical nature of our inputs, we circularly pad

[34] in the horizontal image direction all convolution in-

puts to overcome the longitudinal boundary discontinuity,

and use reflection padding to simulate the singularities at

the poles [50]. For the bottleneck we rely on repeated di-

lations [40] to capture the global context more efficiently

by expanding the receptive field, avoiding additional pa-

rameters and preventing immoderate information loss. This

inpainting-derived encoder extracts the content excluding

the hole and outputs features fe.

Structure-aware Decoding. The decoder uses a cascade

of SEAN residual blocks [49], gated convolutions and up-

sample layers. The inputs to the decoder are the predicted

structure map Ŝ , the global context features fe as encoded

by the surrounding context encoder, and the original – un-

masked – image If . The latter offers a set of style codes

f is for each structural element i ∈ {wall, ceiling, floor}
as learned by a shallow “bottleneck” convolutional autoen-

coder with a label-wise average pooling output layer. Com-

pared to the global context fe, these style codes encode local

features, corresponding to texture-like details. Through the

use of SEAN blocks, we re-entangle the dense global struc-

ture Ŝ , the global surrounding context fe, and the local style



of each structural element f is. This way, we condition our

decoder to respect the global structure while completing the

translated image, and modulate the inpainted region’s style

with the style codes extracted for each structural element.

Background Discriminator. We use a discriminator

to adaptively learn the differences between the translated

empty images and the corresponding ground truth ones.

More specifically, we use a global PatchGAN [10] discrim-

inator with spectral normalization [23]. Its input is either

the decoded output Îe or the empty background image Ie

concatenated with the mask M and classifies each patch of

the input image as real or fake. Its output d is a score map

rather than a single score, where each value corresponds to

a local region of the input sample covered by its receptive

field.

3.3. Supervision

The structure encoding model is supervised with binary

cross-entropy, as it is formulated as a dense classification

task. For the final inferred background image we use a com-

bination of different domain losses to ensure the photoreal-

istic quality of the predictions:

L = Llow + Lhigh + Ladv. (1)

A low level reconstruction loss Llow, a high level synthesis

loss Lhigh, and an adaptive adversarial loss Ladv .

Low-level Reconstruction Loss. This pixel-based loss

focuses on the reconstruction of low frequency components

of the predicted image Îe:

Llow = λL1

1

N

Ω∑

p

A|Ie− Îe|+λtvM(|∇xÎe|+ |∇y Îe|),

(2)

where N is the total number of pixels, and A(p) ∈ R
W×H

is the spherical attention mask used in [51] that accounts

for equirectangular distortion. Apart from the spherically

weighted L1 loss, a total variation smoothness prior is used

for the diminished area specifically to counter the high fre-

quency artifacts usually seen in the early training stages of

generative models.

High-level Synthesis Loss. Apart from encouraging

Îe and Ie to have the same representation at the pixel

level with Llow, we additionally employ a data-driven loss

Lhigh. This enforces them to have a similar representation

in the feature space as computed by a CNN model Φ, which

in our case, is a pre-trained VGG-19 [33]. Let Φj(I) be the

activations of the jth layer of the network Φ, for the given

image I , Ωj its feature element domain, and Nj the total

number of feature elements of the j feature map. Then the

loss is formulated as a combination of the perceptual and

style losses:

Lhigh = λpercLperc + λstyleLstyle (3)

Lperc =

Pj∑

j

1

Nj

Ωj∑

ρ

|Φj(Ie)− ˆΦj(Ie)| (4)

Lstyle =

Sj∑

j

1

Nj

Ωj∑

ρ

1

Nj
|G(Φj(Ie))− G(Φj(Îe))|, (5)

where Pj and Sj are the set of features used for the per-

ceptual and style [5, 11] losses, and G(M) = MMT is the

Gram matrix function. Both losses are derived in a high di-

mensional data-driven feature space, with the former (per-

ceptual) operating on a global level, and the latter (style)

operating on global and local levels.

Adaptive Adversarial Loss. To adaptively improve the

quality of the generated background images Îe we addition-

ally employ a discriminator-based loss that is learned dur-

ing training. Since we use a PatchGAN disciminator, we

formulate our combined adversarial loss as a combination

of a hinge loss on the final real/fake predictions [19], and a

feature matching loss using the discriminator’s intermediate

features:

Ladv = λDLD + λFMLFM (6)

LD =
1

Nd

Ωd∑

p

r(1− de) +
1

Nd

Ωd∑

p

r(1 + dê) (7)

LFM =

Di∑

i

1

N i
d

Ω
i
d∑

p

|di
e − di

ê|, (8)

where de and dê are the discriminator outputs for the real

and predicted background images, Ωd is the pixel domain

of the discriminator’s output, Nd the total count of its spa-

tial elements, and the i denotes intermediate discrimina-

tor feature maps. The spatial discriminator hinge loss and

the feature matching loss are weighted by their respective

weights. Feature matching enforces the generator to min-

imize the statistical difference between the features of the

ground truth images and the generated images, which helps

further stabilize the training and improve the quality of the

generated content.

4. Results

Implementation Details. We implement our model us-

ing Pytorch [27] with all experiments conducted on a Nvidia

GeForce RTX 3090 GPU. Our generative models are opti-

mized using Adam [14], with b1 = 0.5 and b2 = 0.999,

a learning rate of 0.0002 and a batch size of 6. The seg-

mentation UNet is optimized with a default parameterized

Adam using a learning rate of 0.0001 and a batch size of 4.



Figure 4: Qualitative results for diminishing objects from scenes in our test set. From left to right: Input image with the

diminished area masked with transparent red, RFR, PICNet and ours.

The input and output panorama resolutions are 512 × 256.

The weights of the UNet are initialized with [7] and for the

other sub-models from a zero-centered Normal distribution

with σ = 0.02. We empirically set λL1 = 4.0, λTV = 1.0,

λperc = 0.15, λstyle = 40.0, λD = 0.2 and λFM = 20.0.

Table 1: Quantitative results assessing photorealism

(LPIPS, PSNR, SSIM, MAE) and structural preservation

(mIoU) on the S3D test set.

Method LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ mIoU ↑

RFR [18] 0.0510 31.0114 0.9528 0.0067 0.8583

PICNet [46] 0.0533 32.3072 0.9557 0.0070 0.8502

Ours 0.0398 33.6611 0.9620 0.0058 0.8768

Experiments. We compare our approach with the fol-

lowing state-of-the-art inpainting methods, PICNet [46] and

RFR [18]. We use their official implementations to train

both models on our adapted S3D dataset till convergence

using the same empty groundtruth images. For our test set

we use 569 images containing objects from the official S3D

split, with the diminished regions masked as described in

Section 3.1.

Quantitative Comparison. Table 1 compares the pho-

torealistic performance of our model compared to PICNet

and RFR. Standard metrics are used, the Mean Absolute

Error (MAE), the Peak Signal-to-Noise Ratio (PSNR), the

Structural Similarity Index (SSIM) [37], and the Learned

Perceptual Image Patch Similarity (LPIPS) [44]. LPIPS is

a metric that has been shown to better assess the perceptual

similarity between two images. It measures the distance

between the target and generated images using features ex-

tracted from a pre-trained VGG-16 model. Given the gen-

erative nature of our task which aims at natural diminish-

ing/counterfactual inpainting, thus generating plausible and

photo-realistic content, LPIPS is considered as an impor-

tant metric for our evaluation. Nonetheless, our goal is to

preserve reality as well, therefore full reference objective

measures are also important indicators. We observe that our

approach generates content that is perceptually closer to the



(a) (b) (c) (d) (e)

Figure 5: A demonstration of our method, which levitates AR/DR applications. (a) original panorama (b) augmented reality

without diminished reality (c) highlighted object for removal (d) our inpainting method result (e) augmented reality with

diminished reality, the result is much more natural.

natural image distribution as shown by the LPIPS metric

and the close to 25% performance gain compared to both

PICNet and RFR. Furthermore, our method is likely to gen-

erate smoother results, which are reflected through the per-

pixel and pixel neighborhood based objective metrics.

Moreover, in the DR context, the structural boundary

preservation is also of interest. To assess performance with

respect to that, we train a layout segmentation model with-

out holes, but with the same training setup as the struc-

ture encoder (Section 3.2), and use it to measure the mean

intersection-over-union (mIoU) between the groundtruth

and the diminished/inpainted results from each respective

model. The evaluation is focused on the segmentation re-

sults inside the mask M. As indicated in Table 1 our model

preserves the structural boundary more consistently than

PICNet and RFR alike.

Convergence Analysis. It should also be noted that

our approach exhibits significantly faster convergence. The

results for PICNet and RFR are trained for 160 and 190
epochs respectively, while our model is only trained for

60 epochs. This is attributed to the interaction between

the structure preserving SEAN blocks and the discrimina-

tor. Longer trains are directly related to the discriminator’s

performance and added benefits. The adaptive nature of a

learnable adversarial loss helps continuously improve re-

sults. This adaptation is phased, first focusing on coarse

structure, and progressively adapting to finer details as the

generative models learns to consistently output coherent

structures. However, with our explicit structure reasoning

and integration in the decoder, our adversarial loss – sup-

ported by the other low and high level losses – can quickly

start discriminating details, allowing the model to converge

faster to high quality results.

Qualitative Comparison. Figure 4 presents a set of

qualitative results depicting the hallucinated content from

our method compared to PICNet and RFR. Our result ex-

hibit photo-realistic textures and structures which are coher-

ent with the background of the images. More specifically,

the composite photorealism loss allows our method to gen-

erates plausible textures. Further, it is evident in both Fig-

ure 1 (where it is highlighted) and Figure 4 that the explicit

SEAN blocks guided by the layout segmentation results bet-

ter preserve each scene’s structural boundaries when coun-

terfactually completing it. In contrast, the compared meth-

ods exhibit some flaws, especially at surfaces’ boundaries

due to the absence of structural guidance. Unsurprisingly,

in cases where compared methods generate such artifacts,

our method can synthesize realistic textures with plausible

structures, driven by the disentangling of the structure, and

each structural components style as provided by the struc-

ture and style encoders and the SEAN blocks.

DR-enhanced AR. Indoor DR technology is important

for supporting AR planning applications. While AR can

support the addition of new objects into the scene, it fails to

achieve its goal of enhancing the planning experience when

seeking to replace objects. For such cases, DR can first be

applied on the content that is to be replaced, and then AR

can composite the new virtual objects. Figure 5 shows this

specific use case where DR technology is highly relevant.

For these indoor planning use cases, preserving the scene’s

structure is very important as it allows for productive inter-

activity without losing the important context.

5. Conclusion

Diminishing reality is a very challenging task as the hal-

lucination of reality in counterfactual settings is hard to con-

strain. We show that when considering reality in specific

contexts, like indoor planning, sufficient preservation of re-

ality is possible. We combine recent advances in two syn-

thesis tasks and a novel dataset to demonstrate increased

performance for spherical panorama based DR. Our ap-

proach relies on the segmentation results, which is a lim-

itation given that the fragility of one sub-model is heavily

inter-twinned with the resulting diminishing performance.

One line of research forward for this task would be complete

full-to-empty image translation, which would, nonetheless,

require an end-to-end model that would be able to separate

the foreground from the background.
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