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Abstract

Planar low-rank regions commonly found in man-made

environments, can be used to estimate a rectifying homog-

raphy that provides valuable information about the cam-

era and the 3D plane they observe. Methods to recover

such a homography exist, but detection of low-rank regions

is largely unsolved, especially for omnidirectional cameras

where significant distortions make the problem even more

challenging. In this paper we address this problem as fol-

lows. First we propose a method to generate a low-rank

probability map on an omnidirectional image and use it to

build a training set in a self-supervised manner to train deep

models to predict low-rank likelihood maps for omnidirec-

tional images. Second, we propose to adapt regular CNN

operators to equirectangular images and to combine them

seamlessly into a network where each layer preserves the

properties of the equirectangular representation. Finally,

on the new KITTI360 dataset, we show that the rectifying

homography of detected low-rank regions in such predicted

maps allows to factorize out the camera-plane pose up to

certain ambiguities that can be easily overcome.

1. Introduction

Omnidirectional or panoramic cameras offer a wide field

of view which can be very useful in many applications

such as autonomous driving [79, 27, 74, 77], SLAM and

indoor robot navigation [59, 52, 7, 51, 34], virtual real-

ity [26, 15, 45], and monitoring systems [9, 25]. This

advantage over classical perspective cameras comes with

the drawback that the major part of the computer vision

literature, addressing the challenges of these applications,

was written for perspective cameras. This applies for both,

geometric approaches and even more for deep neural net-

works. Nonetheless, given the advantages of a large field
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of view of these cameras [81], there is an obvious inter-

est in the computer vision community for models that are

designed for this kind of data. In this paper, we are par-

ticularly interested in applications such as visual localiza-

tion [58, 56, 55] or structure-from-motion (SFM) [62, 41]

where precise camera pose estimation between two cameras

or one camera and physical structure is crucial. Geometry

based approaches often critically rely on local keypoint de-

tection and matching [13, 63, 5], which is often challenged

by textureless areas, distortions, occlusions, strong illumi-

nation changes, and repetitive pattern. Furthermore, if the

environment changed between reference image and query

image acquisition, even the best feature extractors will have

difficulties to find enough relevant correspondences. As an

alternative approach, [65, 80, 44] show that by rectifying a

so called planar low-rank region, it is possible to estimate

the camera pose relative to the corresponding plane in the

3D world. This was further extended in [54, 18, 46] to es-

timate the relative pose of a complete camera network to

a 3D plane. The main idea is to make use of the intrin-

sic structure of such low-rank textures which can be com-

monly found in urban environments, e.g. on planar building

facades (bricks, ornaments, windows, etc.), in order to re-

cover a low-rank matrix and a sparse error matrix where the

first one is a canonical view of the region obtained via a

rectifying homography.

These methods mentioned were designed for perspec-

tive cameras and applying them to spherical images is not

straightforward. Therefore, as a first contribution, we ex-

tend these methods, and in particular TILT [80], to omnidi-

rectional cameras.

While TILT provides a solid mathematical optimization

framework to estimate the low-rank matrices for given re-

gions, it does not detect low-rank regions. In [14], TILT was

used to generate a low-rank likelihood map for an entire im-

age by low-rank decomposition of image patches extracted

at multiple scales. Then these maps were used to train a

convolutional neural network (CNN) to predict such maps

for new images. Their deep network, relying on standard
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convolutions, was designed for perspective cameras and as

shown in [28, 33, 78, 76, 10, 31, 76, 10] applying standard

CNNs or adapting them to omnidirectional images is not

trivial. The challenges are caused by distortions on planar

representations of a sphere which violate the requirement

that the convolution kernel and the signal should be uni-

formly discretized. In this paper, as a second contribution,

and taking inspiration from [11, 70, 16], we adapt the low-

rank detection network proposed in [14] to equirectangular

images. To train our model, called SphSegNet, we rely on

a set of low-rank likelihood maps computed for omnidirec-

tional images by applying the adapted TILT algorithm on

sliding spherical windows at multiple scales.

Finally, as a third contribution, we show on the new

KITT360 dataset that the rectifying homography of detected

low-rank regions in such predicted likelihood maps allows

to factorize out the camera-plane pose up to certain ambi-

guities that can be easily overcome.

2. Related work

Repetitive and low-rank structures. Popular methods

detecting repetitive structures are based on local feature

grouping [61, 47, 71] or on the assumption of a single pat-

tern repeated on a 2D (deformed) lattice [22, 43]. Such pat-

terns were used, e.g., for single view facade rectification [8],

camera pose estimation [61], or single-view 3D reconstruc-

tion [72]. In particular, low-rank patterns were addressed

in [44, 80] where an optimal transformations of an image

region is iteratively found that can be decomposed into a

low-rank matrix and a sparse error matrix. These methods,

implicitly assuming perspective images, cannot be directly

applied to omnidirectional images as the patterns are not

anymore repetitive or low-rank due to the nonlinear distor-

tion of such cameras.

Geometry of omnidirectional images. The geometric for-

mulation of omnidirectional systems was extensively stud-

ied [42, 3, 20, 39, 60, 50]. The internal calibration of such

cameras depends on these geometric models, which can be

solved in a controlled environment, using special calibra-

tion pattern [60, 29, 38, 50]. When the camera is calibrated,

which is typically the case in practical applications, image

points can be lifted to the surface of a unit sphere providing

a unified model independent of the inner, non-linear projec-

tion of the camera. Unlike the projective case, homography

is estimated using these spherical points [37, 6, 19]. A clas-

sical solution is to establish a set of point matches and then

to estimate the homography based on those. Unfortunately,

big variations in shape, resolution, and non-linear distor-

tion, challenges keypoint detectors as well as the extraction

of invariant descriptors, which are key components of reli-

able point matching. For example, proper handling of scale-

invariant feature extraction requires special considerations

in case of omnidirectional sensors, yielding mathematically

elegant but complex algorithms [49]. In [21], a new compu-

tation of descriptor patches was introduced for catadioptric

omnidirectional cameras which also aims to reach rotation

and scale invariance. In [36], a correspondence-less algo-

rithm is proposed to recover relative camera motion.

Deep models on omnidirectional images. Applying CNNs

to omnidirectional images is not trivial as any planar rep-

resentation of a sphere necessarily contains some degree

of content deformation which violates the requirement that

the convolution kernel and the signal should be uniformly

discretized. Therefore, only a few deep neural network ar-

chitectures were specifically designed to operate on omni-

directional images. These methods in general rely either

on icosahedral [28, 33, 78] or equirectangular representa-

tions [76, 10, 30, 31] of the omnidirectional images.

In the case of icosahedral representation, the sphere is

subdivided into icosahedron at multiple level to mitigate

spherical distortion and hence allow standard CNN oper-

ations to be applied either on the mesh or on the unfolded

icosahedral. Early methods [40, 53] project the sphere onto

the six faces of a cube and then apply classical CNN on

them. More recent methods consider more complex multi

level icosahedron representations and handle the discretiza-

tion and orientation challenges on the icosahedral mani-

fold [28, 33, 78]. They reparameterize the convolutional

kernel as a linear combination of differential operators [28],

define orientation-dependent kernels to sample from the tri-

angular faces [33], or use hexagonal filters to address ori-

entation on the unfolded icosahedron mesh [78]. In [17]

inverse gnomonic projections are used to render a spherical

image to a set of distortion-mitigated, locally-planar image

grids that are tangent to a subdivided icosahedron.

Equirectangular projections preserve the spatial relation-

ship of the content, but introduce heavy distortions not

suitable for traditional CNNs. [30, 31] proposes to use

graph convolutional network where features are inherently

invariant to isometric transformations. [68, 69] process

equirectangular images with regular convolutions by in-

creasing the kernel size towards the polar regions. Spher-

ical CNNs [10] encode rotation equivariance into the net-

work through spherical convolutions requiring specialized

kernels and [76] applied them to detect objects in panoramic

images. [11, 70] addresses distortions by warping the pla-

nar convolution kernel in a location-dependent manner. [16]

proposes mapped convolutions, a more generic solution al-

lowing to perform convolutions on any graph or mesh. The

proposed SphSegNet gets inspiration from these methods.

3. Geometry on omnidirectional cameras

A unified model for central omnidirectional cameras was

proposed by Geyer and Daniilidis [20]. It represents central
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panoramic cameras as a projection onto the surface of a unit

sphere S , where the camera coordinate system C has its ori-

gin in the center of S , the z axis is the optical axis pointing

towards the viewing direction of the camera and the x and y
axes are parallel to that of the omnidirectional image’s coor-

dinate system (I) axes. The projection of 3D world points

X ∈ W can be performed in two steps: 1) the 3D point

X is projected onto the unit sphere S , obtaining the spheri-

cal point xS expressed in C; 2) which is then mapped onto

the image plane I through the camera’s internal projection

function Φ yielding the image x ∈ I of X ∈ W . The

relation between X ∈ C and its image x ∈ I in the omnidi-

rectional camera is then given by Φ−1(x) = xS = X

‖X‖ .

Although various models for the internal projection

function Φ have been proposed [39, 48, 59, 67], know-

ing Φ (i.e. having a calibrated omnidirectional camera) al-

ways provides this equivalent spherical image by back-

projecting the omnidirectional image onto S . Given the

[R|t] : W → C pose of the camera, the image in the camera

of any 3D point X ∈ W can be obtained as follows

xS =
RX+ t

‖RX+ t‖
≡

[R|t]XW

‖[R|t]XW‖
. (1)

Given a scene plane π, let us denote its normal and dis-

tance to the origin by n and d, respectively. Assuming

the 3D coordinate system P attached to π such that its

z axis is defined by the plane normal n, i.e. Z = 0 for

π, a plane point X ∈ π has homogeneous coordinates in

P : XP = [X,Y, 0, 1]⊤. The rotation S and translation v

denote the plane pose [66], which maps P → W such as

XW = [S|v]P→WXP Thus for X ∈ π, (1) becomes

xS
∼= [R|t]XW = [R|t][S|v]XP = [RS|Rv+t]XP (2)

Note that [RS|Rv + t] ≡ [RP→C |tP→C ] in (2) defines

the plane-camera relative pose acting from the plane co-

ordinate frame P to the camera coordinate frame, i.e.

[RP→C |tP→C ] : P → C.

Planar homographies. The mapping of plane points Xπ ∈
π to the camera sphere S is governed by (2). Hence it is

bijective, unless π is going through the camera center, in

which case π is invisible. Because of the single viewpoint,

planar homographies stay valid for omnidirectional cameras

too [37, 19]. The standard planar homography H is com-

posed up to a scale factor as

H ∝ R+
1

d
tn⊤. (3)

The homography transforms the rays as xS ∝ HX, hence

the planar homography between the spherical points and

plane points is bijective. Using (2), (3), and Z = 0, the

homography acting between the spherical points xS ∈ C
and the plane points is obtained as:

HP∗→C ∼=
[
(RS̄)1 (RS̄)2 (Rv + t)

]
(4)

where S̄ denotes the submatrix of S consisting of its first

two columns, and P∗ denotes the 2D X − Y within-plane

coordinate system obtained from P .

Rectifying homography. Let us now assume, that our cam-

era sees a 3D plane π with a low-rank texture. Considering

a 2D texture as a function I0, it is low-rank if the family

of one-dimensional functions {I0(x, y0) | y0 ∈ R} span

a finite low-dimensional linear subspace [80]. In practice,

only the transformed version I of I0 is available, which is

related by a planar homography H such that H(I0) = I .

Note however that the image I is not a perfectly transformed

versions of the pattern I0 due to occlusion and noise. Fol-

lowing [80], we model this error with a sparse matrix E,

such as H−1(I) = I0+E, where I0 is the discrete (matrix)

representation of I0. Note that I0 is the canonical view of I ,

i.e. the frontal view of plane π, while H−1 is the rectifying

homography1. which produces this frontal view from the

distorted observation I . To estimate H, I0 and E, Zhang

et al. [80], propose the TILT algorithm that relying on the

Augmented Lagrange Multipliers (ALM) solves the follow-

ing robust rank minimization problem:

min
I0,E,H

rank(I0) + γ‖E‖0

s. t. H−1(I) = I0 +E.
(5)

Plane-camera relative pose. Given a low-rank texture I0,

obviously its rank is invariant under any scaling of the func-

tion, as well as scaling or translation in the x and y coor-

dinates [80] From a geometric point of view, that means

an ambiguity up to a 2D scaling and translation, which

can be written as I0(x, y) ∼ aI0(sxx + tx, syy + ty),
where sx, sy > 0. Thus the rectifying homographies of

a particular image I form an equivalence class H{I} ={
∀A′ : HA′ | H−1(I) = I0 +E

}
. TILT will find one

of these equivalent homographies when run on a particu-

lar region, from which one can factorize the camera-plane

relative pose using (3). However, this relative pose is act-

ing from a homography induced coordinate system P̃ on π
to the camera coordinate frame C. Indeed, H is obtained

from intrinsic visual features of I without explicit corre-

spondences between π and I , thus the recovered relative

pose is given as P̃ → C and not as P → C. To get this,

one needs to recover the P → P̃ map too (e.g. via explicit

correspondences between the image coordinate frame I and

the plane coordinate frame P). Since both P̃ and P have the

z-axis equal to the plane normal n and a translation along

that common z axis is equivalent to a within plane isotropic

scaling, only the transformation P∗ → P̃∗ need to be deter-

mined. It consists of a 2D rotation θ within π aligning the

x and y axes of P̃ and P , and the inherent ambiguity in H

1Note that for simplicity, we refer to H as rectifying homography, but

strictly speaking the rectification of I is obtained via H
−1 and not H!
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yielding the special affine transformation A : P∗ → P̃∗

A =



sx cos θ −sx sin θ tx
sy sin θ sy cos θ ty

0 0 1


 (6)

Thus the plane-camera relative pose w.r.t. a particular ref-

erence plane coordinate system P can only be obtained by

factorizing (HA), for which the knowledge of A is also

needed! However, in practical applications, one often wants

to localize a camera w.r.t. a predefined coordinate frame.

How to disambiguate H then? The orientation of the cam-

era R is well defined only in terms of the z-axis (i.e. the an-

gle between the plane normal and the camera optical axis),

therefore one can only get a viewing angle of the camera

w.r.t. the plane. What remains is a rotation around the z-axis

in R, which could be fixed by knowing one more direction.

Note that the gravity vector provided by an IMU is widely

used for such purpose [1, 23, 32]. Assuming the vertical di-

rection in the plane coordinate system P is known, we can

fix the orientation of the axes of P̃ and P (i.e. they corre-

spond up to a translation and scaling), and hence recover

the full rotation R : P → C.

To calculate a relative translation t, we need one corre-

spondence between P∗ and P̃∗, and with a single 2D-3D

point correspondence, the absolute translation t can be re-

covered too, which provides the full plane-camera pose.

Note that in [75] a monocular sparse localization method

is proposed, which uses regular 3D points and homogra-

phies defined by surfels (small planar patches around such

points) to define the camera pose within a world coordi-

nate frame. The proposed low-rank rectifying homography

could also be used in such an application, replacing the sur-

fels’ generated homography.

4. Spherical low-rank probability map

We have seen that for a region B we can obtain the rec-

tifying homography H and its decomposition into the low-

rank B0 (i.e. its canonical view) and the sparse error E ma-

trices by running TILT [80] on it. However, TILT works

only on perspective images so to be able to apply it we need

to generate a perspective equivalent of the low-rank spher-

ical region. This can be done by a perspective projection

of a spherical region from the centre of the sphere S onto a

tangent plane τ by using gnomonic projections.

Gnomonic projections. They allow to define an implicit

coordinate system on the tangent plane τ as follows: the

origin is in the tangent point xτ
S = (φ0, θ0), the x axis is

the projection of the great circle corresponding to the lati-

tude coordinate φ0, and the y axis is that of the longitude

coordinate θ0. Obviously, these projections are perpendic-

ular lines on τ . Let p = (xp, yp) denote a point on the

tangent plane τ , (φp, θp) are the longitude and latitude co-

ordinate of a spherical point xS represented in polar coor-

dinates, and (φ0, θ0) are the tangent point xτ
S coordinates.

The gnomonic projection of a spherical point xS onto the

tangent plane τ is defined by

xp =
cosφp sin(θp − θ0)

sinφ0 sinφp − cosφ0 cosφp cos(θp − θ0)
,

yp =
cosφ0 sinφp − sinφ0 cosφp cos(θp − θ0)

sinφ0 sinφp − cosφ0 cosφp cos(θp − θ0)
.

(7)

The projection from the tangent plane back to the sphere S
is

φp = sin−1

(
cosψ sinφ0

yp sinψ cosφ0
ρ

)
,

θp = θ0 + tan−1

(
xp sinψ

ρ cosφ0 cosψ − sinφ0 sinψ

) (8)

with ρ =
√
x2p + y2p, and ψ = tan−1 ρ

The scale of this implicit coordinate system is governed

by the Jacobian J of the transformation, hence it is a func-

tion of the position xτ
S . In order to obtain am×m sized per-

spective image on τ , the scaled size of the spherical region

will be J(xτ
S)m, and spherical points projected inside will

then be used to generate the pixels of the m ×m perspec-

tive image via natural neighbor interpolation, which uses

an area-weighting technique to determine a value for every

raster cell from scattered and irregularly spaced data [64].

In order to have a sufficiently detailed m × m perspective

image, we need approximately m2 pixels of the omnidirec-

tional camera image that maps inside it.

Building the TILT map. Above we have seen how to gen-

erate a local perspective equivalent of the neighborhood of a

particular pixel of the omnidirectional image. Algorithm 1

summarizes the steps of generation the perspective region2

for a given tangent point on a sphere.

Running TILT3 on such a local perspective image pro-

vides us the rectifying homography H, a sparse error ma-

trix E, and a low-rank matrix I0 (see details in Section

3). Therefore we can follow [14] and generate a low-rank

likelihood map by considering overlapping sliding spheri-

cal windows at multiple scales and predefined steps for an

entire omnidirectional image using equirectangular repre-

sentation. We considered fixed window sizes l × l, with

l ∈ {50, 100, 150}, and a step size of l/2 between neigh-

boring windows. Due to the varying resolution of the omni-

directional image, the actual size of a window at a position

xS is J(xS)l, and the stepsize changes according to where

2Note that, the gnomonic projections yields increased distortion for

pixels away from the tangent point xτ

S
, but our purpose is to have a lo-

cal mapping only, providing a perspective image region of size m×m of

a spherical low-rank region, hence the distortion remains negligible.
3We used the MATLAB code available from https://people.

eecs.berkeley.edu/˜yima/matrix-rank/tilt.html.
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Algorithm 1 TILT on spherical regions.

Input: The spherical coordinates c ∈ S of a point on the sphere

and the desired size m×m for the perspective region.

Output: The low-rank decomposition of a spherical region cen-

tered in c, i.e. rectifying homography H, a sparse error matrix

E and a low-rank matrix I0.

1: Calculate the effective size mτ of the perspective region such

that it contains ≈ m2 pixels from the omnidirectional image:

mτ = J(c)m.

2: Calculate the polar coordinates cτ = (φ0, θ0), and of the

points xs = (φs, θs) in the spherical region centered in c.

3: Get the gnomonic projection ps of xs on the tangent plane τ

using (7).

4: Generate the perspective image I using the pixels ps that are

inside the mτ ×mτ region on τ .

5: Run TILT [80] on I to get H, I0, and E.

the window is moving on the surface of S , along longitudes

and latitudes (see Figure 1).

To compute the ”low-rankness” of a particular window

wl
i as a strictly non-negative error (or energy) we follow

[14]. Accordingly, eli = max(0, 34 (r
l
i+s

l
i+f

l
i −1)), where

rli = rank(I0
l
i)/l, s

l
i = ‖El

i‖1, and f li is the residual of

the factorization in (5). This score is then used to define a

standard exponential distribution P l
i = exp(−eli).

Note that a homogeneous region is low-rank (providing

a low eli value) but they are useless to estimate a well-

defined rectifying homography, therefore, we want to im-

pose P l
i = 0 for homogeneous regions. Homogeneity hli

of a window wl
i is characterized as the percentage of the

edge pixels in the window [14]. These discrete probabilities

are then propagated over the entire image using wKDE with

Gaussian kernels [14]:

Pl =
1

N l

∑

il=N l

exp(−eli)δ(h
l
i > τ)G(wl

i, σ
l) (9)

where δ() is the Kronecker delta and the homogeneity

threshold τ is set to τ = 0.04. N l denotes the number of

windows in an image at level l, wl
i the sliding windows and

σl is function of the window size l. Finally, the probability

maps obtained at different levels are averaged to obtain the

final low-rank likelihood map P (see examples in Figure 4).

5. Spherical low-rankness detection network

Obtaining the probability map as described in Section 4,

that we will call TILT map, is very costly4 because for ev-

ery sliding pattern on the sphere at each scale we need to

first project the region on the tangent plane and then run

a computationally costly optimization (TILT) on the pro-

jected region.

4Multi-scale, sliding-window TILT on MATLAB takes about 15-20

minutes per image.

Figure 1. Spherical sliding windows (left); projecting the spherical

neighborhood to the tangent plane (middle); and the corresponding

locations in the equirectangular image (right).

Therefore, similarly to [14] we propose to use a set

of TILT maps to train a network for predicting such low-

rankness probability maps. While these maps are only ap-

proximated probability distributions of the low-rankness in

the spherical image and cannot be considered as perfect

ground truth, we rely on the generalization power of the

deep network to learn to recognize the implicit structure of

low-rank non-homogeneous regions on the spherical image.

One option would be to train a standard CNN network

as in [14] with the equirectangular images/TILT maps with-

out modification (see Section 6). However, such model is

geometrically incorrect as the regular CNN grid does not

take the discontinuities and distortions at the polar regions

into account. To address the distortions in the equirectan-

gular images, inspired by [11, 70, 16], we proposes to lift

local CNN operations (e.g. convolution, pooling) from the

equirectangular image to the sphere where the image is rep-

resented without distortions (illustrated in Figure 1).

In particular, we extends the pytorch implementation

of [24], where the SphereNet convolution is implemented

using an intermediate image, that we refer to as pivot im-

age on which regular 2D convolutions are applied (see Fig-

ure 2). The mapping from the input equirectangular image

to the pivot image, we refer to as grid, similarly to the map-

ping function in [11, 70, 16], defines where the k×k neigh-

borhood on the sphere should be sampled in the equirect-

angular image on which the convolution is applied. More

precisely, each anchor pixel in the equirectangular image

(green dot in Figure 1) is lifted first on the sphere with in-

verse gnomonic projections (8) and its k×k neighbourhood

(red dots) are project to the equirectangular image, by pass-

ing through the tangent image, with gnomonic projections

(7). The pivot image is the collection of these values stored

as image blocks on which we perform the regular CNN op-

erations. Note that by construction, the output of this oper-

ation is also an equirectangular image (see Figure 2).

The combined layer of generating the intermediate pivot

image and the final equirectangular output we call Sph-

Conv2D, SphAvgPool2D or SphMaxPool2D, according to

the CNN operation applied on the pivot image. While these

operators are sufficient for equirectangular image classifi-

cation (as in [24]), the extension of the low-rankness de-

tector [14], requires also upscaling operators. These oper-
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Figure 2. SphConv2D/SphAvgPool2D operators for kernel size

k = 3 and strides 1 and 3 showing the grids to be filled to generate

the pivot image on which the standard CNN filter is applied.

ations cannot be solved in the same manner as convolution

or pooling. especially max-unpooling since it requires re-

taining the positions where the maximum values were col-

lected, which in our case correspond to positions in the pivot

image. Therefore, we define SphMaxUnPool2D and Sph-

MaxPool2D layers, where first the conventional CNN un-

pooling/upscaling is applied to the input layer to obtain a

pivot image and then the inverse of the grid is used to get an

equirectangular output. These operations can be interpreted

as inverting the arrows in Figure 2.

With these operators we propose SphSegNet, an adap-

tion of the model SegNet [2] used in [14] for predicting

low-rankness for an omnidirectional image. We made two

major modifications: we used less downscaling/upscaling

blocks (3 instead of 5), and more importantly we replaced

the regular CNN operators by the ones defined above. Fig-

ure 3 illustrates the proposed architecture. Note that the

most costly operation in the network is the computation of

the sampling locations to build the grid. Fortunately, the

grid mapping is uniquely defined by (7) and (8) for a given

input size k an s. Therefore, these grids (7 in total) can be

pre-computed and stored beforehand. The inversion of the

grid is low cost operation performed online.

Training. Our aim is to obtain the output feature map F of

the network to be similar to P (TILT map) in a probabilistic

closeness sense that we measure by the Kullback-Leibler

(KL) divergence (as in [14])

D(P||F) =
∑

(i,j)∈I

P̂(i, j) log
P̂(i, j)

F̂(i, j)
, (10)

where P̂ and F̂ are normalized likelihood maps such that

Figure 3. SphSegNet. SphConv2D, SphMaxPool2D, SphMaxUn-

pool2D, and SphUpscale2D are using the intermediate pivot layer.

Here we show them as a single block (that contains both the map-

ping to the pivot layer and the classical CNN operation on the pivot

layer as shown in Figure 2). Numbers in the parenthesis refer to

the kernel size. Norm[0-1] refers to normalizing the value of the

output layer between 0 and 1 (probability map).

the sum of all values is 1, making the maps equivalent to

probability distributions conditioned on the given image.

However, we observed that using the mean-square loss be-

tween F and P helps, in particular at the beginning of the

training. Therefore, in contrast to [14], to train the net-

work, we use a weighted combination of the KL-divergence

loss (10) and the MSE loss with a dynamic weight pair

(1 − w,w), were w ∈ [0, 1] is higher for MSE at the be-

ginning and progressively decreasing, while the weight for

the KL-loss increasing.

6. Experimental results

Datasets. We used the SILDA [4] dataset, containing omni-

directional images captured with wide-angle fisheye lenses

as training set and KITTI360 [73], large scale urban dataset

containing rich sensory information and full annotations,

as test set5 In particular, KITTI360 contains a Lidar point

cloud and omnidirectional images which allows us – to-

gether with the ground truth camera poses – to evaluate the

camera-plane relative poses computed from detected low-

rank regions in an omnidirectional dataset. To generate the

TILT maps, as described in Section 4, color images were

first transformed into grayscale, second, into equirectangu-

lar representation using gnomonic projections (7) (see ex-

amples in Figure 4).

Low-rank predicted maps. We used the SILDA images

(3500 random samples) and the corresponding TILT maps

to train both the proposed SphSegNet denoted as SphSN-

S, and a corresponding ablative model, SegNet, denoted as

SN-S that was obtained by replacing the spherical operators

by classical ones. Both models were tested on the equirect-

5Due to the high cost of generating TILT maps, we selected a random

subset of 3500 images from SILDA and 450 images from KITTI360.
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Omni Equirect TILT SphSN-S SN-A SN-CS SN-S
Figure 4. Example result probability maps on the KITTI360 omni dataset. Here we show the original omni image, the equirectangular

representation, the TILT probability map, and the predictions obtained with the four deep networks.

angular KITTI360 images (second column in Figure 4).

We selected 700 random frames for which we also com-

puted the TILT maps. In addition, for comparison, we also

considered two standard CNN models obtained by training

SegNet6 on Aachen dataset [57] used also in [14] and on

Cityscapes [12] which is a autonomous driving dataset sim-

ilar to KITTI360 and SILDA. The two last models referred

to as SN-A and SN-CS respectively, were trained with

perspective images and corresponding TILT maps, while

SphSN-S and SN-S were trained with the equirectangular

SILDA images and TILT maps obtained with the spherical

representation described in Section 4.

In Figure 4 (last 4 rows) we show the results for the

above mentioned four models tested on the equirectangular

images of KITTI360 (second column). For a first quanti-

tative evaluation, we computed KL divergence between the

predicted maps and the corresponding TILT maps (third col-

umn). The average KL values for each model are shown in

Table 1 (first row). We observe lower KL values for the Seg-

Net models (SN-*) compared to SphSN-S, probably due to

the fact that similarly to the TILT map they are smoother

than the latter. Note however that this score shows how

close the predicted map is to the TILT map, which is not a

ground truth. Furthermore, we might obtain a large KL also

if we have a good predicted map, but a poor TILT map7.

Therefore, we propose a better evaluation protocol for

these maps, where we factorize relative plane-camera poses

from low-rank regions detected at local maxima in the map

and compare them with GT poses deduced from the known

camera pose and the 3D plane position.

Detecting low-rank region. To obtain low-rank regions

from the predicted maps, we search for local maxima at

different scales such that the average probability in the cor-

responding spherical window is higher than 0.5. The sec-

ond row in Table 1 shows the average number of detected

6Where we kept the more complex architecture, i.e. 5 downscal-

ing/upscaling blocks as in [14] instead of 3 used in SN-S.
7As in [14], we also observed such cases for KITTI360.

SphSN-S SN-S SN-A SN-CS TILT

KL div 0.54 0.36 0.19 0.31 -

Nb reg. 6.96 5.33 4.84 6.17 7.94

Rot err 9.85 10.51 14.87 13.12 11.10

Tr err 9.29 9.73 11.69 10.55 10.01
Table 1. First row: We show the average KL divergence between

the TILT map and the predicted maps obtained for the 700 images

of the KITTI360 dataset. Second row: The average number of

detected low-rank regions with local maxima search in the corre-

sponding prediction map with the average value within the region

being above 0.5. Third and fourth row: The median over the test

set of the rotation (ǫR) and translation (ǫt) errors obtained with

the best regions detected in each image considering the different

low-rankness maps.

regions per image for each of the methods, including the

TILT maps. Note that some of these maxima are on edges

between two quasi-homogeneous regions (see e.g. in Fig-

ure 6), which indeed is a low-rank region but not suitable

for pose estimation as the corresponding region is not pla-

nar. These maxima can be eliminated by e.g. a plane detec-

tor method8 such as PlaneNet [35].

Homography estimation examples. For each detected

spherical regions we run TILT on the corresponding tangent

region obtained as described in Section 4 and in particular

in Algorithm 1 to obtain the rectifying homography and the

canonical view. In Figure 6 we show an example of the de-

tected low-rank spherical region, the corresponding tangent

region which is a perspective image, the canonical view

obtained with the rectifying homography. We also show

in comparison the canonical view obtained via the ground

truth homography composed from the GT camera pose and

the 3D plane parameters as in (3).

Pose estimation results. Using the estimated rectifying ho-

mography, we can factorize the plane-camera pose [66] as

described in Section 3. Of course, the ambiguities in the

8Which in our case should be first adapted to omnidirectional images

using for example the framework we proposed in this paper.
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Figure 5. Percentages of images with both the rotation (ǫt) and

translation (ǫt) error below a given threshold, varying the threshold

from 1◦ to 30◦.

factorized pose have to be solved in order to be able to

directly measure the error in the estimated pose w.r.t. the

GT pose. For this purpose, we make use of the 3D point

cloud provided in the KITTI360 dataset and determine the

3D plane parameters. This allows us to fix the ambiguity

in (6) such that our estimated pose and the GT pose are di-

rectly comparable. We then measure the rotation error as

ǫR = ∠R̂R⊤ with R̂ being the rotation factorized from the

estimated rectifying homography while R is the GT rota-

tion. As for the translation, one can only get a unit length

translation from the homography factorization as discussed

in Section 3 and [66]. Hence the translation error ǫt is ex-

pressed in terms of the unit translation vector’s angle, i.e.

ǫt = arccos t̂t⊤ with t̂ being the factorized unit translation

and t the GT unit translation vector.

For each local maxima in the predicted maps, we con-

sider regions at 5 different scales, run TILT on the cor-

responding tangent regions, factorize the rectifying homo-

graph to obtain (R̂, t̂) and compute the rotation (ǫR) and

translation (ǫt) errors. Note that our goal is to compare

different low-rankness maps, therefore we only retain the

best factorized pose for each images9. In the last two rows

of Table 1, we show the median of these errors over the

KITTI360 test set for each method. For comparison we

also considered the TILT maps and proceeded the same. In

addition in Figure 5 we plot the percentage of images for

which both the rotation (ǫR) respectively the translation (ǫt)
error is below a certain degree up given a threshold from

1◦ to 30◦. We can observe that best results are found with

the SphSN-S model, which even outperformed the factor-

ized poses accuracy obtained with the regions detected on

the TILT map (except very high accuracies). In Figure 6

we show an example pose estimation factorized from such

a rectifying homography.

9TILT is rather unstable, therefore, considering regions at multiple

scales (5) at the selected local maxima positions (see e.g. Figure 6), and

selecting the best pose gives for each model equal chances to get a good

pose factorization. Obviously deployment in real applications would re-

quire to select the best region or to robustly combine several detections.

This is out of the scope of this paper and is subject of future research.

Figure 6. Top: 1) The predicted low-rankness probability map, 2)

the centers of the detected local maxima regions and the low-rank

spherical region yielding the best relative-pose. Middle: The de-

tected low-rank spherical region used for TILT: 1) zoom on the

region on the spherical image (as red spherical rectangle), 2) the

projected square region on the tangent plane, 3) the rectified region

with TILT, 4) the ground truth rectification. Bottom: Pose factor-

ized from the rectifying homography: The GT camera is shown as

a green half-sphere, the estimated camera as a red one from where

the color omnidirectional region is backprojected to the 3D point

cloud. The rotation error of the estimated pose is ǫR = 6.8◦, the

translation error is ǫt = 6.7◦.

7. Conclusion

We proposed a method to detect low-rank regions in

equirectangular representation of omnidirectional images

taking into account explicitly the spherical distortion in-

duced by this representation. To achieve this, we first

adapted the perspective-only TILT algorithm and generated

low-rankness likelihood maps. Then, we used these maps

to train SphSegNet, a deep network with layers adapted to

equirectangular format, to predict a low-rankness likelihood

map for omnidirectional images. Finally, we show that from

the rectifying homography obtained with TILT on low-rank

regions detected at local maxima of these maps we can fac-

torize out the camera-plane pose up to certain ambiguities.
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