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Abstract

In this paper we present a unified formulation for a large

class of relative pose problems with radial distortion and

varying calibration. For minimal cases, we show that one

can eliminate the number of parameters down to one to

three. The relative pose can then be expressed using vary-

ing calibration constraints on the fundamental matrix, with

entries that are polynomial in the parameters. We can then

apply standard techniques based on the action matrix and

Sturm sequences to construct our solvers. This enables effi-

cient solvers for a large class of relative pose problems with

radial distortion, using a common framework. We evaluate

a number of these solvers for robust two-view inlier and

epipolar geometry estimation, used as minimal solvers in

RANSAC.

1. Overview and motivation

We will in this paper present a framework for handling

a large class of relative pose problems. Specifically, we

will look at problems where at least one of the cameras

has unknown radial distortion. Our own motivation comes

from the need for bootstrapping solvers in robust feature

matching. In most standard Structure-from-motion (Sfm)

pipelines – based on unordered images – a very expen-

sive and time-consuming part is the feature matching across

views. This is due to the combinatorial explosion of possi-

ble matches over all frames [1, 32, 33]. In order to alleviate

this, one can devise various heuristics. One such, is the use

of a number of keyframes, where the matching is only done

from all images to these keyframes. In Figure 1 part of such

a scenario is depicted, where we want to match the two bot-

tom frames to the top frame. For the keyframe scenario to

work, we need to be able to match a large number of images

to each keyframe. For this reason, the keyframes should ide-

ally cover a large field-of-view. One way of accomplishing

this is to use a lens with large radial distortion. However,

this also complicates the camera model, and in turn gives

more complicated relative pose problems. Depending on

Figure 1: A structure from motion scenario; Top shows a keyframe

with heavy radial distortion, and bottom shows two example

frames that we want to match to the keyframe. The lines show

found inliers matches using our proposed solvers.

the knowledge of partial or full calibration of the cameras,

we will encounter different relative pose formulations. Our

goal in this paper is to try to formulate a large number of

such problems using the same basic language. This will

enable us to solve the problems in a more systematic way

than has been previously done. We will throughout the pa-

per use the division model as described by Fitzgibbon [9],

where he used it to formulate a linear method for constant

radial distortion estimation. There are of course more in-

volved models for radial distortion, but our main goal here

is to use the solvers for robust inlier estimation, and hence

we prioritize simplicity over accuracy.

The constant radial distortion relative problem was also



solved in [26], based on a hidden variable formulation, but

no calibration constraints on the fundamental matrix were

enforced in these formulations. The method was later ex-

tended to fisheye cameras [28]. Minimal solutions for the

same problem were then developed in [19, 21]. A non-

minimal solution to the same problem, but with varying ra-

dial distortion, was proposed in [3] . The solution was based

on using an extended 4×4 fundamental matrix, and the lin-

ear solution then needed at least 15 point correspondences.

The corresponding minimal problem was solved in [20] but

used exact arithmetic to solve it. A Gröbner based method

was presented in [4]. A number of other minimal problems

have been formulated and solved over the years [14–16]

and also improved on using more recent methods for au-

tomatic solving of polynomial equations [18, 22, 25]. An

overview of the current state-of-the-art solvers is given in

Table 1. Solvers for radial distortion models have also been

developed for other problems than relative pose, such as e.g.

stitching [31] and absolute pose [17, 24, 30].

The main contribution of this paper is a common frame-

work that can be used for a large class of radial distortion

relative pose problems. Using the division model, we show

in Section 3 how one can systematically reduce the number

of parameters of the given problem. In Section 4 a sys-

tematic overview of solvers to all possible minimal cases is

given. We show how the reduced number of parameters can

be used to construct Sturm sequence solvers based on the

action matrix method. These solvers can all be constructed

using the same basic principles, and gives us the means to

easily produce solvers to a number of unsolved cases, as

well as producing competitive solvers in terms of execu-

tion speed. The Matlab-Mex implementations are publicly

available1.

2. Problem description

We will use upper case letters to denote matrices, and

lower case bold to denote vectors. The general radial dis-

tortion relative pose problem can be formulated in the fol-

lowing way,

Problem 1 (Radial Distortion Relative Pose). Given a

number of two-dimensional image point correspondences

(xi,x
′

i) for i = 1, . . . , n, find the fundamental matrix F

and the radial distortion parameters λ and λ′, such that

g(x′

i, λ
′)TFg(xi, λ) = 0, i = 1, . . . n, (1)

F ∈ P, (2)

where P defines the calibration-manifold of possible F , and

g defines the homogeneous radial coefficients using the di-

1The code for all presented solvers is publicly available at

https://github.com/hamburgerlady/fast-radial-solvers

vision model [9],

g(x, λ) =

[

x

1

]

+





0
0

λ‖x‖2



 . (3)

We are especially interested in minimal cases where

Problem 1 has a finite number (larger than zero) of solu-

tions. For such cases we need the number of point con-

straints to equal the number of degrees of freedom of P
plus the number of radial distortion parameters, i.e. n =
dim(P) + #λ, where we let #λ denote the number of ra-

dial distortion parameters.

The fully calibrated fundamental matrix—the essential

matrix—is traditionally denoted E. For this reason we will,

when we speak in general terms, denote the fundamental

matrix F (with entries fij), but when we address the fully

calibrated case denote it E (with entries eij). For a thorough

investigation of different calibration cases, and how they are

related please see e.g. [12]. We are mainly interested in four

different calibration cases involving different knowledge of

the focal lengths of the two cameras, namely

PE Fully calibrated essential matrix.

PfE One-sided unknown focal length.

PfEf Two-sided unknown constant focal length.

Pf ′Ef Two unknown focal lengths.

The 3 × 3 fundamental matrix is determined up to an

arbitrary non-zero scale factor. All the different calibration

cases can be described using a set of additional polynomial

constraints in the entries of F . For the calibrated case, these

are the well-known trace constraints [7, 27, 34]

PE = {E ∈ P
3×3| detE = 0, 2EETE−tr(EET )E = 0}.

(4)

The case with two unknown focal lengths is equivalent to

the general projective case, i.e.

Pf ′Ef = PF = {F ∈ P
3×3| detF = 0}. (5)

In [18] the constraints for PfE and PfEf were given. Note

that due to the symmetry in (1) the constraints for PfE are

essentially the same as for PEf . The manifold for PfE is

defined by three quartics in addition to the determinant con-

straint. The manifold for PfEf is defined by a quintic poly-

nomial and the determinant constraint. For the remainder of

the paper, we assume that any known calibration parameter

is set to its canonical value, i.e. f = 1, λ = 0.

Depending on the knowledge of the radial distortion pa-

rameters, we end up with a large number of different possi-

ble calibration cases. We denote the different cases by the



unknown calibration parameters, e.g. if we have unknown

radial distortion in the second camera, and a constant focal

length we denote this by λfEf . This example and other

combinations might seem exotic, but many combinations

may occur in practice. However, we believe that there is

a merit in enumerating all possible combinations for com-

pleteness. All possible combinations are summarized in Ta-

ble 1.

We will now describe some important properties of our

approach on a given example problem. It follows several

previous approaches for solving radial distortion problems

[4, 14].

Example 1 (One-sided radial distortion calibrated). Let’s

assume that we have two images taken by cameras with

known calibration, but where camera one has an unknown

radial distortion, i.e. the case Eλ. This means that in

our case a point correspondence (xi,x
′

i) should fulfill the

epipolar constraint

g(x′

i, 0)
TEg(xi, λ) = 0. (6)

Since each point correspondence gives one constraint, and

E has five degrees of freedom and we have an additional

parameter λ we would minimally need six point correspon-

dences to solve for E and λ. The constraints in (6) are

non-linear if we consider all variables, but we can still write

these equations as an under-determined linear system in the

variable monomials,

C6×12(x,x
′)
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= 0, (7)

where we have purposefully ordered the monomials in a

special way. Since we have six equations, we can linearly

express the first six of the monomials in terms of the last six,

by means of Gauss-elimination operations on C. This gives

us a parametrization of E in only the last six monomials

of (7). If we in addition set e33 = 1 to fixate the scale we

end up with only three unknown parameters (e13, e23, λ).
We further know that a valid essential matrix should fulfill

a number of non-linear polynomial constraints, namely

PE = {detE = 0, 2EETE − tr(EET )E = 0}. (8)

Inserting our newly parametrized E into PE gives ten poly-

nomial constraints with total degrees of five and six in the

three unknowns. Previous approaches [15, 25] use action-

matrix methods to solve this set of equations. Typically, the

most time consuming part of action-matrix based solvers

is solving the elimination template, and hence the size of

the template often reflects the complexity of the solver. The

state-of-the-art solver in terms of speed was reported in

[25] with a template of size 14× 40.

In this paper we propose to solve these types of rela-

tive pose problems by reformulating the elimination stage

in order to reduce the number of parameters in a system-

atic and optimal way. The previous example is arguably

one of the simpler of the cases, and it is maybe clear how

to do the elimination in the best way. However, for many

of the more complicated cases there are different possible

ways of ordering the monomials that lead to very different

parametrizations.

For this example there are in general 26 solutions. Many

of these solutions are often complex, but we’re usually not

interested in those. For most of the relative pose problems

that we investigate in this paper, we have a rather large num-

ber of possible solutions. For this reason, we throughout

base our solvers on Sturm sequences, and only search for

real solutions.

3. Parameter elimination

We will now show how the process in the previous ex-

ample can be formulated in a more general way. The key

idea is to separate the unknowns of the problem into radial

distortion parameters and fundamental matrix parameters.

We start by noting that we can reformulate Problem 1 in the

following way

Problem 2 (Bilinear Formulation). Given a number of two-

dimensional image point correspondences (xi,x
′

i) for i =
1, . . . , n, find F , λ and λ′ such that

ΛTXif , i = 1, . . . n, (9)

F ∈ P, (10)

where P defines the calibration-manifold of possible F , and

f contains the column stacked entries of F ,

f =
[

f11 f21 · · · f23 f33
]T

. (11)

The radial distortion parameters are contained in

Λ =
[

1 λ λ′ λλ′
]T

, (12)

and Xi only depends on the point correspondence (xi,x
′

i).

For each point correspondence (xi,x
′

i), Λ
TXi is a 1× 9

vector. If we stack these vectors, for all correspondences,

we get an n× 9 matrix A(λ, λ′), so that

A(λ, λ′)f = 0. (13)



Table 1: Overview of all minimal radial distortion relative pose problems and solvers. First column shows the number of point correspon-

dences for the minimal case. The next three columns denote the names of the problems, with symmetric cases in the middle. Then comes

the number of solutions for the minimal problem, the previous state-of-the-art solver template size and the execution time, respectively.

The four last columns show our contribution, in terms of the number of parameters that the problem can be formulated in, using (14), the

new number of solutions, the new template size and the execution time.

# Pts Name of problem # Sol. SOTA template t (ms) # Var. # Sol. New template t (ms)

6 λE Eλ 26 14× 40 [25] 0.20 3 26 14× 40 0.050

6 λEλ 52 53× 115 [25] 1.18 3 ∞ - -

7 λfE Efλ 19 24× 43 [25] 0.11 2 27 8× 35 0.033

7 λEf fEλ 23 - 2 32 13× 45 0.045

7 λfEf fEfλ 37 - 2 52 28× 80 0.14

7 λfEλ λEfλ 42 - 2 66 19× 85 0.215

7 λfEfλ 68 581× 658 [22] 19.2 2 113 51× 164 1.01

7 λ′Eλ 76 - 3 76 851× 927 47.3

8 λf ′Ef f ′Efλ 8 7× 16 [25] 0.024 1 8 1× 9 0.0033

8 λF Fλ 8 7× 16 [25] 0.024 1 8 1× 9 0.0033

8 λf ′Efλ 16 32× 48 [22] 0.080 1 16 1× 17 0.0055

8 λFλ 16 32× 48 [22] 0.080 1 16 1× 17 0.0055

8 λ′fEλ λ′Efλ 56 - 2 128 26× 154 3.20

8 λ′fEfλ 104 - 2 224 102× 326 11.3

9 λ′f ′Efλ 24 84× 117 [25] 0.30 2 48 51× 99 0.21

9 λ′Fλ 24 84× 117 [25] 0.30 2 48 51× 99 0.21

By performing row-operations (i.e. Gauss elimination) on

(13) we can eliminate a number of unknowns in f . In this

way we can use as many as possible of the point constraints

to eliminate unknowns. This gives a new system, equivalent

to (13),

B(λ, λ′)f = 0, (14)

where the entries of B(λ, λ′) are rational polynomials in

(λ, λ′). Since F is only determined up to scale, we can

multiply F with the greatest common divisor of B(λ, λ′)
(assuming this is non-zero) ending up with a polynomial

expression in (λ, λ′). The polynomial degree in (λ, λ′) will

depend both on the addressed problem and how we order

the entries. In order to have as low degree as possible,

we want to order the columns in A in increasing powers

of (λ, λ′) from left to right. After elimination we have in-

creased the degree in the radial distortion parameters, going

from A(λ, λ′) to B(λ, λ′). However, (14) will still be lin-

ear in F . For a minimal case we have n = dim(P) + #λ

constraints in (13). This means that we can linearly elimi-

nate up to dim(P) + #λ parameters from the initial eight

parameters of F , using (14). In addition to the remaining

parameters of F we have a number of radial distortion pa-

rameters #λ. We have now used all the linear constraints,

and the only constraints left are the calibration constraints

defined by P . This gives us the following

Theorem 1. A minimal Problem 1 can be written using the

constraints of P(F ), where the entries of F are polynomials

in

k = #λ+max(0, 8− dim(P)−#λ)

parameters, given by (14).

These results give us tools for finding low parametric

formulations in a systematic way for radial relative pose

problems. The number of parameters k varies between one

and three, depending on the specific problem. The different

numbers of parameters are given in Table 1.

We will now show how to use the proposed approach on

a given example.

Example 2 (One sided radial distortion uncalibrated Fλ).

A solution to this case was given in [15] and later im-

proved upon using the technique of [25]. Now, according

to Theorem 1, we should be able to directly express this

problem using k = #λ + max(0, 8 − dim(P) − #λ) =
1 + max(0, 8− 7− 1) = 1 parameter. This means that we

should be able to write the problem as a univariate polyno-

mial in the radial distortion parameter λ. In this minimal

case we need eight point correspondences. We have only

one radial distortion parameter, so Λ = [1 λ]T , and A(λ)
is an 8 × 9−matrix. Due to the special structure of X in

Problem 2, we can re-order the columns of the matrix A so

that it can be written as

A = A1 + λ
[

08×6 A2

]

. (15)



After row operations we get

B =











1 0 . . . 0 b1
0
...

. . .

0 1 b8











, (16)

where each

bi =
pi(λ)

q(λ)
, (17)

and where the different pi are third and second degree poly-

nomials in λ. The denominator q is of degree two. Note that

the denominator is the same for all rows. Using B we can

express eight of the entries of F in terms of the last entry of

F . We fix the scale of F by setting f33 = 1. This means

that after multiplication with q, the entries of F can all be

written as third or second degree polynomials in λ. We can

now find λ by inserting our F into PF , i.e. det(F ) = 0,

which directly gives an eight-degree polynomial in λ. The

fundamental matrix F can then be linearly extracted using

the solution of λ. If we are considering the unknown cali-

brated case f ′Efλ, then f and f ′ can be extracted from F

using the technique described in Appendix A.

A similar approach can be used for all possible relative

pose problems with unknown radial distortion. We will in

the next section show how we apply our technique to the dif-

ferent cases. There is one issue with the approach, namely

the denominator q in (17). When we multiply with q we

may introduce spurious solutions, corresponding to q = 0..

The severity of the introduced extra solutions varies with the

problem – for some only a small number of extra solutions

are introduced but for others an infinite number is added.

The total number of possible solutions (including both spu-

rious and complex) is given in Table 1. We will address this

issue in the next section.

4. A comprehensive list of radial distortion rel-

ative pose problems

In the previous section we saw that we can write the

equations of all considered relative pose problems in a small

number of variables (ranging from one to three). One way

of solving these problems would be to use these set of equa-

tions in an automatic generator such as [16, 22]. The typi-

cal way of extracting the solutions is to construct the action

matrix and then solve the corresponding Eigenvalue prob-

lem. This will also find all complex solutions. For prob-

lems with many solutions, and where many of the solutions

are complex a non-negligible time is spent on finding (un-

interesting) complex solutions. This fact is exacerbated in

our approach where we have additional spurious solutions

(indeed if the number of spurious solutions is infinite we

cannot directly use the action matrix method at all).

We have investigated two approaches for constructing

our solvers based on the proposed new parametrizations.

4.1. Resultant based solvers

The low number of variables makes it possible to use

elimination techniques to reduce the problems to univari-

ate polynomials. Here, the extra solutions can be handled

efficiently at runtime.

For the simple case of two variables, there is a direct for-

mula for eliminating one variable, based on resultant the-

ory [5]. The theory of resultants can be generalized to more

variables, but it directly becomes much more complicated.

Note that for our problems we need to eliminate at most

two variables for all cases. The final univariate polynomial

is given by some determinant of a matrix with entries that

are polynomials in the hidden variable. Although we can

readily describe this determinant, it can be difficult to actu-

ally compute. In many cases it is much faster to compute the

determinant at runtime based on the input data, and not in

closed form. One such approach is described in [11]. Here

the authors used it to formulate hidden variable solutions

to five point relative calibrated pose and six point relative

pose with an unknown focal length. The determinant is cal-

culated at runtime (based on methods described in [2, 6]),

and then the univariate polynomial is solved using Sturm

sequences.

4.2. Action matrix based solvers

Instead of using resultant theory to do elimination we

can also base our solvers on action matrix methods. To this

end we use an automatic generator [22] to construct a solver

that estimates the action matrix from our new parametrized

problem. In order to make the estimation fast (i.e. us-

ing small elimination templates) we use the basis selection

methodology described in [25]. Then, instead of directly

solving the Eigenvalue problem corresponding to the action

matrix, we use numerical methods to estimate the charac-

teristic polynomials from the action matrix. We use the

method of Danilevsky [8] based on similar matrices, but

there are also other possible approaches such as Krylov’s

method [13]. The real roots of the characteristic polynomial

can then be found using Sturm Sequences.

4.3. Overview of solvers

We will now list the possible minimal relative pose prob-

lems that may arise, for different combinations of radial dis-

tortion and calibration on the two cameras. The different

calibrations that we will consider are fully calibrated cam-

eras, constant unknown focal length, one-sided unknown

focal length and two unknown focal lengths. The differ-

ent radial distortions that we will consider are: constant

unknown distortion, one-sided unknown distortion and two

unknown distortions. In total this will give 24 different



Table 2: Parametrizations for the different relative pose cases

Problems Parameters

λE, Eλ λ, e31, e32
λEλ λ, e31, e32
λfE, Efλ λ, f32
λEf , fEλ λ, f32
λfEf , fEfλ λ, f32
λfEλ, λEfλ λ, f32
λfEfλ λ, f32
λ′Eλ λ, λ′, e32
λf ′Ef , f ′Efλ, λF , Fλ λ

λf ′Efλ, λFλ λ

λ′fEλ, λ′Efλ λ, λ′

λ′fEfλ λ, λ′

λ′f ′Efλ, λ′Fλ λ, λ′

cases, but due to the symmetry in cameras we only need to

consider 16 problems. An overview of the different prob-

lems can be seen in Table 1. Since Pf ′Ef = PF we fur-

ther can reduce the number of unique problems to 13. We

have previously described our approach applied to Eλ and

λE (Example 1), f ′Efλ, λf ′Ef , Fλ and λF (Example

2) and λEλ (Example 3). An overview of the different

parametrization for all cases is given in Table 2. From these

parametrizations we construct the final solvers. We found

that the approach described in Section 4.2 for all cases gave

much faster solvers than the approach in Section 4.1. So,

our proposed solvers, (as described in Table 1) are all based

on the method in Section 4.2. For two cases we end up with

an infinite number of solutions for the given parametriza-

tions. In these two cases the spurious solutions lead to

that we can not directly use the standard methods. We

can handle this by applying the saturation technique pro-

posed in [23]. This will in general lead to larger elimina-

tion templates, and for the previously solved case λEλ our

parametrization does not lead to a solver that is faster than

the current state-of-the-art.

5. Evaluation of solvers

We will in this section give results on a number of radial

distortion solvers. We will show some numerical properties

in the next subsection. Then, in the subsection after that,

we will show how the solvers can be used for robust inlier

estimation, based on real images. The investigated solvers

were implemented in Matlab, with some coefficient manip-

ulation, action matrix generation and the Sturm sequence

solver implemented as Mex C++ code.The average execu-

tion time of the full solvers are based on a 2,5 GHz Intel

Core i7 Macbook Pro, and given in Table 1.

5.1. Numerical accuracy

In order to test the numerical accuracy of our solvers we

generate random problem instances, run our solvers, and

evaluate the results. We generate random minimal point

sets, and run the solvers.

We evaluate how well we can estimate the ground truth

(random) radial distortion parameter. In Figure 2 his-

tograms over the logarithm of the absolute relative error in

λ is shown. One can see that we get a large spread in error.

One reason for this is that for many instances the separa-

tion between focal length and radial distortion is ill-posed,

and inherent to the problem. If our main goal is to use the

solvers for inlier estimation this is not any major problem,

but if we actually want to extract calibration statistics one

would in many cases need further non-linear refinement or

preprocessing of input data to the solvers. This is an area

for further research.

5.2. RANSAC test on real images

In order to perform a somewhat controlled proof of con-

cept experiment using real images, we did the following.

We used ten images of the San Marco square in Venice,

taken by a camera with known calibration, and negligible

radial distortion. In addition to this we have one image

(taken at a different time) with large radial distortion. We

extracted features and descriptors using the learned affine

regions of [29]. We then matched features using a similar-

ity threshold of 20% and a ratio for ambiguous matches of

0.8. Note that finding good initial feature matches in the

presence of radial distortion is in itself a difficult problem,

and the end results will of course depend on the quality of

the initial matches. The number of initial matches is given

in Table 3. In order to have a baseline we used the known

calibration (f = 2396) of the first images, and the exif tag

of the radial distortion image as an estimate of the second

focal length (f ′ = 2032). We also manually estimated a

division model radial distortion coefficient for the second

image (λ = −0.37). Using this information, we calibrated

both image feature correspondences, and ran an inlier es-

timation using RANSAC (1 000 iterations, epipolar inlier

bound 0.002 in normalized coordinates, used throughout the

experiments). The resulting number of inliers is shown in

Table 3. In many cases we do not have access to full cali-

bration information, or it is unreliable. In Table 3 we show

the result of running our solvers with varying degrees of

known calibration. Numbers in bold indicate estimated val-

ues. These are estimated purely based on the results from

the minimal solvers, and no additional refinement or bundle

adjustment was performed. One can see that we get more

or less the same number of inliers for the varying cases, in-

dicating the stability of the solvers. Examples of inlier set

is shown in Figure 3, when we have used the λEf -solver.

From the minimal solvers we directly get estimates of
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Figure 2: Histograms over residuals (x-axis shows log10 of absolute residuals between estimated and ground truth λ) for 10 000 synthetic

random problem instances.

Figure 3: Example results on robust feature matching using the

proposed minimal solvers in RANSAC. Figure shows inliers for

the λEf -case, for two example corresponding images.

the radial distortion parameter, and one can see that these

estimates are quite stable and accurate for these cases. We

can also extract the various unknown focal lengths from

the estimated fundamental matrices, using the technique de-

scribed in Appendix A. These are somewhat more unstable,

and particularly the case of extracting two different focal

lengths from a fundamental matrix is known to be an ill-

posed problem.

6. Conclusion

We have in this paper presented a unifying framework

for relative pose problems, where at least one camera suf-

fers from radial distortion. Using this framework we can

systematically describe the different problems that one can

formulate. Some of these problems may seem exotic but

most of them are actually realistic scenarios. Our formula-

tion also gives us tools to eliminate variables, and formulate

the problems as systems of polynomial equations, in at most

three unknown parameters. This enables the ability to use

efficient Sturm sequence solvers. We have enumerated all

minimal relative pose problems based on partial unknown

focal lengths and radial distortion. We have also shown

how solvers to such problems can be used as components

for robust inlier estimation.

A. Extracting unknown focal lengths from the

fundamental matrix

In this section we will describe how we can find the two

unknown focal lengths from a given fundamental matrix F .

This means that we would like to find a valid essential ma-

trix E and two focal lengths f and f ′ such that





f ′ 0 0
0 f ′ 0
0 0 1



F





f 0 0
0 f 0
0 0 1



 = E. (18)



Table 3: RANSAC experiment on real data. The Table shows inlier estimates for various setups, using the same initial matches in each

case, but with varying knowledge of the calibration. Bold entries indicate estimated entities based purely on the tested minimal solvers.

Images Median

#match 1265 1526 1592 1386 1268 1241 1388 1499 1466 1526 1427

E

#inl. 927 1144 1186 1034 961 914 1014 1080 1087 1159 1057

f 2396 2396 2396 2396 2396 2396 2396 2396 2396 2396 2396

f ’ 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032

λ -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37

λE

#inl. 920 1135 1171 1021 941 910 988 1062 1075 1135 1042

f 2396 2396 2396 2396 2396 2396 2396 2396 2396 2396 2396

f ’ 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032

λ -0.46 -0.39 -0.35 -0.34 -0.32 -0.34 -0.56 -0.32 -0.43 -0.35 -0.35

λfE

#inl. 920 1138 1178 1015 965 926 1007 1063 1076 1147 1039

f 2396 2396 2396 2396 2396 2396 2396 2396 2396 2396 2396

f ’ 1695 2172 1930 2257 3566 6313 1937 2821 2337 1774 2214

λ -0.41 -0.40 -0.35 -0.26 -0.38 -0.37 -0.35 -0.35 -0.33 -0.30 -0.35

λEf

#inl. 852 1103 1140 992 891 866 940 1027 1051 1114 1010

f 2508 2173 2009 2259 2613 2220 1560 2588 2447 1918 2240

f ’ 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032

λ -0.32 -0.33 -0.32 -0.32 -0.30 -0.31 -0.26 -0.30 -0.31 -0.35 -0.31

λf ′Ef

#inl. 869 1117 1149 995 947 884 978 1029 1062 1121 1013

f 1116 1251 1376 1031 2992 1223 3344 1362 1327 899 1289

f ’ 4089 3541 3887 2777 3874 3900 30000 4416 4745 2047 3894

λ -0.33 -0.29 -0.36 -0.32 -0.31 -0.35 -0.25 -0.28 -0.30 -0.38 -0.31

There exists a method by Hartley [10] to solve this prob-

lem. For each F we get two solutions, but the solutions

differ only in sign, so since we know that the focal lengths

should be positive, we essentially have a unique solution to

the problem. The method due to Hartley involves a number

of quite involved manipulations of the epipolar geometry in

order to extract the focal lengths. We will here describe a

simpler method based on using the trace constraints (8) di-

rectly on the left hand side of (18). These constraints can be

simplified by parametrizing in a = f2 and b = f ′2. Using

this parametrization, the constraints only contain the four

monomials (ab, a, b, 1). If we express PE(a, b) as

M









ab

a

b

1









= 0, (19)

then we find the solution by taking the null-space of M , and

normalizing with the last entry. We then extract a and b and

find f =
√
a and f ′ =

√
b. Note that M will always be

rank deficient due to the construction, but if our F doesn’t

follow the assumption that it can be written as (18), the solu-

tion for a and b might be negative, and we can’t extract real

focal lengths. This is a general issue for the formulation,

and without additional regularization constraints any alge-

braic solution will inherently have this problem. We can

use the same method for extracting one-sided focal lengths

or constant focal length by setting b = 1 respectively a = b.
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