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Figure 1. Illustration: Our OmniLayout can predict both non-cuboid layout as well as cuboid layout from the input RGB panorama.

Abstract

Given a single RGB panorama, the goal of 3D layout

reconstruction is to estimate the room layout by predict-

ing the corners, floor boundary, and ceiling boundary. A

common approach has been to use standard convolutional

networks to predict the corners and boundaries, followed

by post-processing to generate the 3D layout. However,

the space-varying distortions in panoramic images are not

compatible with the translational equivariance property of

standard convolutions, thus degrading performance. In-

stead, we propose to use spherical convolutions. The re-

sulting network, which we call OmniLayout performs con-

volutions directly on the sphere surface, sampling accord-

ing to inverse equirectangular projection and hence invari-

ant to equirectangular distortions. Using a new evaluation

metric, we show that our network reduces the error in the

heavily distorted regions (near the poles) by ≈ 25% when

compared to standard convolutional networks. Experimen-

tal results show that OmniLayout outperforms the state-

of-the-art by ≈4% on two different benchmark datasets

(PanoContext and Stanford 2D-3D). Code is available at

https://github.com/rshivansh/OmniLayout.

1. Introduction

Estimating the 3-dimensional layout of the room from

a single RGB image has received considerable attention in

*equal contribution

the last decade. Layout estimation can present useful in-

formation (height, corner positions, and orientation of the

room) for holistic scene understanding applications such as

robotics and augmented/virtual reality [27, 10]. Most of the

previous works [26, 30, 34] tackle room layout estimation

problem by using artificial neural networks (ANNs). They

capture the salient features from the image while consider-

ing the manhattan room layout [7]. These approaches have

shown impressive results not just in terms of the quanti-

tative evaluation but also qualitatively by generating both

cuboid-shaped room layouts as well as non-cuboid-shaped

general layouts. Since conventional cameras have a limited

field of view leading to several ambiguities, existing litera-

ture [26, 30, 34, 11] directly operates on 360◦ panoramas,

exploiting the wider field of view.

Although existing work are heavily dependent on stan-

dard convolution layers, showing impressive results on few

panoramic benchmarks [26, 30, 34]. We believe standard

convolution often fail to capture features in panoramic im-

ages, thus leading to sub-optimal representation. Prior

works also argue that standard convolutions are not well

suited for processing panoramic images [6, 9]. This is

because equirectangular images, which are considered a

common example for spherical image representation, have

heavy distortions in them (especially towards the poles)

which cannot be addressed by standard convolutions [6, 9].

Thus leading to bottleneck in all the prior approaches

while dealing with room layout estimation. To address

this problem and towards building robust representation for
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panoramic image we present OmniLayout: a deep neural

network that estimates the room layout while accounting

for these common distortions pattern. Inspired from [6],

our model tackles the distortions in the given equirectangu-

lar image by changing where the convolutional kernel sam-

ples from the image in a location-dependent manner. In-

stead of performing the convolution operation on the reg-

ular image domain, our network performs convolutions on

the sphere surface where the omnidirectional images can

be represented without any distortions. We show that our

methodology significantly boosts the performance in the

complex regions of the images (i.e., the polar regions con-

taining most of the distortions) while maintaining equal or

better performance in the least complex regions of the im-

ages (near the equator).

While Coors et al. [6] uses gnomic projection to map

the sphere onto a tangent plane, we argue that this is not an

accurate projection for equirectangular images. Instead, we

perform sampling using inverse equirectangular projection

which leads to better representation across wide variety of

networks, as shown in later section. Our main idea is to use

more principled approach and replace the standard convo-

lutions with spherical convolutions, which we believe are

well-suited for the task of room layout estimation from a

panorama. We build our network on top of HorizonNet [26]

and replace standard convolution operation with spherical

convolution for enhanced representation and reduce compu-

tational complexity by replacing Bi-LSTM with Bi-GRU.

We validate our hypothesis by conducting several experi-

ments across two large-scale benchmarks [32, 1]. Finally,

we conduct an ablation study across each model component

to highlight their significance and contribution resulting in

better estimation over panoramic images.

2. Related Work

Room layout estimation from a single RGB image has

been an active area of research in the last decade. The ex-

isting literature differs in mainly two different aspects: 1)

input image type, and 2) proposed methodology. In this

section, we review several lines of related work falling in

each of the categories.

In terms of input image type, prior work differ on the

basis of the field of view (FoV), ranging from the normal

perspective images to 360◦ panorama images. Delage et al.

[8], Hedau et al. [14] and Lee et al. [18] operate only on the

perspective images, while Zhang et al. [32] estimates the

room layout directly from a single 360◦ panorama and pro-

poses the PanoContext dataset. Xu et al. [29] combines sur-

face normal estimates, 2D object detection, and 3D object

pose estimation to estimate the room layout and 3D pose of

the object. There are some other works that use more in-

formation than just a single image, such as using multiple

images [3] or using the depth information as well (RGB-D

data) [19, 12, 31].

Most of the recently proposed methodologies incline to-

wards adopting deep neural networks to improve layout es-

timation. These approaches use dense models to predict the

semantic label of each pixel. Some of these approaches

[20, 24, 33] operate on the perspective images. Mallya et

al. [20] learns to predict informative edge probability maps

whereas Zhao et al. and Ren et al. [33, 24] predict for

the boundary classes. Since the recent increase in omnidi-

rectional sensors, there have been a few deep learning ap-

proaches that directly operate on panoramas. Zou et al. [34]

presents a method that can generate both cuboid layout and

general layout directly from the given panorama. Yang et al.

[30] uses two different projections of the panorama at the

same time (front-view panorama and top-view perspective)

showing the advantages of additional information from the

ceiling-view image. Sun et al. [26] presents a new approach

by representing the room layout as a 1D representation.

Although existing works show impressive performance

for both cuboid as well as non-cuboid layouts [26, 30, 34],

none of them considers the distortions that the equirectan-

gular images contain. There is an incongruence between the

panoramic images and standard convolutional networks. A

few recent approaches have proposed to overcome the dis-

tortions by using spherical convolutions. Su et al. [25] pro-

poses to increase the kernel size of the standard convolu-

tion filters towards the polar regions. However, this results

in a significant increase in the model parameters, since the

weights now can only be shared along each row. Cohen et

al. [5] proposes to use spherical CNNs that encodes full

rotational invariance. However, assuming that the camera

is not tilted while capturing 360◦ images, full rotational in-

variance is an undesired property for our task and reduces

the discriminative power of the model. In concurrent work,

Coors et al. [6] addresses the issue by capturing rotational

invariance only in one dominant orientation and is compat-

ible with modern CNN architectures. Additionally, it al-

lows the transfer of pre-trained object detectors to omnidi-

rectional inputs. Results show that SphereNet [6] performs

better than the other methods that handle omnidirectional

inputs on benchmark datasets Omni-MNIST and Flying-

Cars [6].

To our knowledge, none of the previous work in room

layout estimation deal with the shortcoming that standard

convolutions have in terms of panoramic images, except the

work in [11]. While Clara et al. [11] has attempted to re-

duce the distortions in the equirectangular representation,

it considers the convolutional kernel as a tangent plane to a

sphere making use of the inverse gnomic projection which is

not the accurate projection type for equirectangular images.

In our work, we use the inverse equirectangular projection

which we believe is the accurate projection type to eliminate

the existing distortions in equirectangular images.
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Figure 2. OmniLayout architecture: Our model is built on ResNet followed by Bi-Directional GRU that predicts the positions of corners

of the room. We have replaced the standard convolution from each block of ResNet with the sphere convolution (inverse equirectangular

projection). The output of the network is a 1D representation map of shape 3 × 1 × 1024. Since the width of the panorama is 1024 the

output map has 3 values per column: yc (ceiling-wall), yf (floor-wall) and yw (wall-wall / corners).

3. Approach

In this section, we describe our end-to-end network

for generating the 3D room layout from a single RGB

panorama. We first give a brief overview of our architecture

(Sec. 3.1), followed by the description of inverse equirect-

angular projection for spherical convolutions (Sec. 3.2).

Then we describe our model’s architecture (Sec. 3.3, 3.4).

Finally, we describe the post-processing details for generat-

ing the 3D room layout from the model’s predictions (Sec.

3.5).

3.1. Network Architecture

An overview of OmniLayout is illustrated in Fig. 2. The

proposed architecture consists of a ResNet-50 [13] encoder

with proposed spherical convolutions. We remove the fi-

nal fully-connected layer and concatenate the features from

different levels and pass it to a Bi-Directional Gated Recur-

rent Unit (Bi-GRU) [4] that predicts the layout floor-wall

boundary (yf ), ceiling-wall boundary (yc), and wall-wall

boundary (yw).

3.2. Convolution for Panoramic Images

Omnidirectional sensors have gained huge popularity in

the last few years due to their wider field of view with sev-

eral applications in virtual/augmented reality and robotics.

Due to an increase in omnidirectional sensors, spherical im-

agery is receiving increased attention as well. The most

common representation of spherical images is the equirect-

angular projection in which the longitude and latitude of a

spherical image are mapped to vertical and horizontal coor-

dinates. However, this mapping comes with heavy distor-

tions, especially near the poles. Standard convolutions are

not a good choice for such images. From Fig. 3 we can ob-

serve how the proposed kernel deforms itself near the poles

in order to account for the distortions.

One of the simplest examples of a covariant neural net-

work one can consider are traditional s+ 1 layers CNN

used for image recognition and other vision-related tasks.

Traditionally neurons in each layer of CNN are arranged in

a rectangular grid. Let us consider a network with a sin-

gle channel, then the activation of layer s can be regarded

as a function fs : Z2 → R, with f0 being the input image

[5, 16]. We now adopt notations and definitions proposed

in prior work [16] and define the overall flow for spherical

CNNs. As noted earlier the neurons in our network com-

pute fs by taking the cross-correlation of the previous hid-

den layer’s output fs−1 with a learnable filter or kernel hs

as follows:

(hs ⋆ fs−1)(x) =
∑
y

hs(y − x) fs−1(y), (1)

then we apply nonlinear activation function σ, such as

the ReLU or other variants operator 1:

fs(x) = σ(hs ⋆ fs−1)(x). (2)

Defining Tx(h
s)(y) = hs(y − x), which is nothing but

hs translated by x, allows us to equivalently write Eq.

1 as follows:

(hs ⋆ fs−1)(x) = fs−1, Tx(h
s), (3)

1Better results can be obtained by using variants of ReLU or other func-

tions such as SELU which might lead to better gradient flow across model.
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Figure 3. Spherical Convolution on panoramic images: We

show two different kernel positions, one at the center of the im-

age (blue) and one toward the poles (red). Equirectangular images

usually has more distortions near the poles. The proposed kernel

deforms itself near the poles accounting for the distortions in that

region when compared to the region near the equator.

where the inner product is

fs−1, Tx(h
s) =

∑
y f

s−1(y)Tx(h
s)(y). This formula-

tion as noted in prior works indicates that each layer in

CNN are doing some kind of pattern matching: fs(x) is an

indicatior of how well the part of fs−1 around x matches

the filter or kernel hs. Equation 3 is the natural starting

point for generalizing convolution to the unit sphere, S2.

A number of authors have addressed the issue of dis-

cretizing S2 by a regular arrangement of points, which is

often convenient when dealing with planes [2, 25]. Instead

of following the aforementioned approaches, similarly to

recent work on manifold CNNs [21, 22], one can simply

treat each fs and the corresponding filter hs as continuous

functions on the sphere [16], fs(θ, φ) and hs(θ, φ), where θ

and φ are the polar and azimuthal angles. Thus, we perform

the convolutions operations directly on the sphere surface

instead of the image domain, giving use advantage when

compared with competitors. We allow both functions to be

complex-valued which is argued to provide better general-

ization [16].

Finally the correct way to generalize cross-correlations

on a sphere while considering the rotation around a third

axis [16] can be established by defining h ⋆ f as a function,

that is represented as follows:

(h⋆f)(R) = 4π

∫
2π

0

∫ π

−π

hR(θ, φ)
∗

f(θ, φ) cos θ dθ dφR(3),

(4)

where hR is h rotated by R. Further we can express these

terms as follows:

hR(x) = h(R−1x), (5)

with x being the point on the sphere at position (θ, φ) .

This formulation offers one key advantage by efficiently

encoding equirectangular projection into the kernel’s sam-

pling function, thus allowing better estimation over the

spherical surface as opposed to standard convolutions. We

formulate the kernel over a cylindrical patch available in the

spherical surface and then sample the equirectangular pro-

Figure 4. Gnomic projections are azimuthal projection (left) that

project sphere to tangent planes, and Equirectangular projections

are cylindrical projection (right) that project sphere to a cylinder.

jection. The positions of the kernel locations on the cylin-

drical patch are calculated similarly to [6], while ensuring

that we use equirectangular projection instead of gnomic

projection. The equirectangular projection is described as

follows:

θ = v0 +∆v(i,j),

φ = u0 +∆u(i,j) sec θ,
(6)

where the sphere is parameterized in terms of its polar (θ) and

azimuthal angles (φ).u0 and v0 represents the center of the kernel,

∆u(i,j) and ∆v(i,j) represents the angular distance at index (i,j)

from the kernel center in the x and y direction respectively. The

approach proposed by Clara et al. [11] and Coors et al. [6] instead

utilizes the inverse gnomic projection which maps the sphere to

a tangent plane (See Fig. 4). Since equirectangular images are

cylindrical projections that project sphere to a cylinder, the distor-

tions produced by them are different which can not be handled by

the gnomic projections.

3.3. Encoder

To be comparable with current state-of-the-art model, we adopt

the same feature extractor - ResNet [13] as the HorizonNet [26].

The input panorama is of shape 3× 512× 1024. ResNet initially

has a convolution layer of 7 × 7 kernel with stride 2 and padding

3. This is followed by four blocks, each block consists of a se-

quence of convolution layers reducing the channels and height by

a factor of 8 (i.e. for first block 256 / 8 = 32) and 16 (i.e. for first

block 128 / 16 = 8) respectively. Precisely, there are three convolu-

tion layers in each block. The features from different blocks help

to capture both low-level, as well as high-level information [17]

from the given panorama. The output feature from each block is

reshaped to 256×1×256 tensors and concatenated to form a single

tensor of shape 1024×1×256. In the base architecture of ResNet,

we convert all the standard convolutions to spherical convolutions

with inverse equirectangular projections (see section 3.2). In the

ablation study (see section 4.4), we show that the spherical convo-

lution shows improvement across the entire family of ResNet and

is not restricted to ResNet-50.

3.4. Recurrent Neural Network

Due to the geometry of a room, a corner can be approximately

predicted from the position of other corners of the room. Assum-
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Encoder Output
1024 x 1 x 256

GRU GRUGRUGRU

3 x 4 3 x 4 3 x 4 3 x 4

3 x 4 x 256

1024 1024 1024 1024

Figure 5. Illustration of Bi-GRU used for predicting corners, floor

boundary and ceiling boundary.

ing this we feed the concatenated feature map from encoder as the

input sequence to a recurrent neural network (RNN), more specif-

ically to a bi-directional gated recurrent unit (Bi- GRU). RNN’s

are stateful models better known for capturing long-range depen-

dencies. Non-local neural networks [23, 28] are another alterna-

tive and are faster in comparison to RNN’s, however we leave

this for future investigation 2. The input sequence is of shape

1024 × 1 × 256 and the Bi-GRU produces the output sequence

of shape 3× 4× 256 which is later reshaped to 3× 1× 1024 (see

Fig. 2 and Fig. 5). Thus the room layout is represented as three

1D predictions similar to [26]. This formulation leads to compu-

tational efficiency model while training.

We set Bi-GRU sequence length equal to the width of the im-

age (1024) and predicts three values for each column of the image

(yc, yf , and yw). To reduce the computational time the Bi-GRU

predicts for four columns at any given time instead of a single

column thus the output is of shape 3 × 4 × 256. We use the bidi-

rectional nature of GRU since it offers flexibility of incorporating

left and right context values (yw, yf , and yc) offering enhanced

representation for our model.

3.5. 3D Layout Generation

For recovering the 3D layouts from the predictions, we follow

the methodology described by Sun et al. [26] and make the fol-

lowing assumptions: (a) all rooms follow the Manhattan world as-

sumptions, (b) the camera height is 1.6 meters [32] above the floor,

and (c) pre-processing [34] correctly aligns the floor perpendicu-

lar to the y-axis. There are two broad steps in the layout recovery,

the first is to recover the floor plane and ceiling plane, while the

second is to recover the wall-wall planes. First the model’s pre-

dictions provide the locations of floor boundaries (yf ), and ceiling

boundaries (yc) for every column, we can project them from im-

age coordinates to 3D XYZ coordinates. Second the ceiling wall

boundaries share the same positions as the floor wall boundary

(X and Z). We then subtract the ceiling and floor 3D coordinates

for each image column and take the average over all the image

columns to get the height h of the room.

2We performed experiments with both LSTM [15] as well as GRU [4]

and finalized Bi-GRU for our network since it trains faster and gives ap-

proximately the similar performance as a Bi-LSTM.

Figure 6. Our model predicts (top) the ceiling-wall (yc) boundary,

floor-wall (yw) boundary and the wall-wall (yw) probability map.

The post-processing is done in ceiling view (bottom-left). This

helps in enforcing the orthogonality of adjacent walls and helps in

detecting false negative corners (bottom-right).

Later the wall planes are recovered by selecting peak points

from the predicted wall-wall probability map (yw) which have the

peak signal strength in its 5◦ field of view and minimum signal

strength of 0.05. While the prediction of boundaries and corners

are done using the equirectangular view (See Fig. 6a), the post-

processing is done using the ceiling view. To correct the horizontal

alignment of the 3D layout, the ceiling wall boundary is divided

into parts ( p1, p2, ..., pn ) using the prominent peaks (see Fig. 6b).

It then gives a higher score to the vector line with more pixel points

within 0.16 meters and selects the vector that obtains the highest

score as the wall for every part pi (see Fig. 6b).

Finally we force adjacent walls to be orthogonal to each other,

however the wall whose adjacent walls have not been constructed

yet are free to choose the orthogonality type. We also consider

special cases, where two adjacent walls for a part pi are already

constructed, but their vector lines are orthogonal to each other (in-

stead of being parallel). This may occur in rare cases of occluded

or undetected corners, hence its important to add an additional cor-

ner to the layout based on the position of the adjacent walls with

respect to part pi. For example, in Figure 6, we see that Wall

5 is orthogonal to Wall 3 which violates the Manhattan properties

leading to a new corner being added to the layout. The ceiling-wall

corner points are established using the intersection of 3 perpendic-

ular planes (2 adjacent walls and a ceiling). The floor-wall corner

points are found using the ceiling-wall corner points and the height

of the room. More details can be found in [26].

4. Experiments

In this section, we first introduce the datasets used in the exper-

iments (Sec. 4.1). Then we describe our experimental setup and

some implementation details (Sec. 4.2). At the end, we present

the experimental results and compare with other state-of-the-art
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Method Pixel Corner 3D IoU

Error (%) Error (%)

PanoContext [32] 4.55 1.60 67.23

CFL [11] 2.49 0.79 78.79

LayoutNet [34] 3.34 1.06 74.48

DuLa-Net [30] - - 77.42

HorizonNet [26] 2.7 0.82 79.8

Ours 2.2 0.75 83.02

Table 1. Cuboid layout estimation evaluation on PanoContext

Dataset [32] (Training set - PanoContext [32]).

Method Pixel Corner 3D IoU

Error (%) Error (%)

LayoutNet [34] 3.18 1.02 75.12

HorizonNet [26] 2.6 0.79 80.2

Ours 2.10 0.69 84.5

Table 2. Cuboid layout estimation evaluation on PanoContext

Dataset [32] (Training set - PanoContext [32] + Stanford 2D-3D

[1]).

results (Sec. 4.3 and Sec. 4.4).

4.1. Dataset

We conduct experiments on two benchmark datasets:

PanoContext [32] and Stanford 2D-3D [1] extended by [34].

PanoContext: This dataset consists of 500 annotated cuboid room

layouts. We perform the same experimental protocol as [26] and

[34] by splitting 10 % validation images from the training set to

make sure similar rooms do not appear in the training set. The

panoramas are captured from indoor settings such as living rooms

and bedrooms.

Stanford 2D-3D: This dataset consists of 571 RGB panoramas

with room layout annotations provided by [34]. The panoramic

images are captured from large-scale indoor environments such

as offices, classrooms, and corridors. This is a more challenging

dataset since it has more occlusions on the floor boundaries and

the images have a smaller vertical field of view.

4.2. Setup and Implementation Details

We follow the same train/val/test split as LayoutNet [34] for

both the datasets PanoContext [32] and Stanford 2D-3D [1] and

use the same experimental protocol described in [26] for train-

ing the baseline method. Training and test set images are pre-

processed by the panoramic image alignment method proposed in

[34]. PanoStretch data augmentation [26] is used to augment the

training data by stretching the panorama images along the axes in

3D space. The main idea of PanoStretch data augmentation [26] is

to convert the pixels of the equirectangular image to 3D space and

multiply their X, Y, Z coordinates with separate hyperparameters

(augmentation parameters). The stretched points can then be pro-

Method Pixel Corner 3D IoU

Error (%) Error (%)

LayoutNet [34] 2.70 1.04 76.33

DuLa-Net [30] - - 79.63

HorizonNet [26] 2.5 0.97 77.2

Ours 2.37 0.78 81.2

Table 3. Cuboid layout estimation evaluation on Stanford 2D-3D

Dataset [1] (Training set - Stanford 3D-3D [1]).

Method Pixel Corner 3D IoU

Error (%) Error (%)

LayoutNet [34] 2.42 0.92 77.51

HorizonNet [26] 2.36 0.77 80.8

Ours 2.14 0.68 83.4

Table 4. Cuboid layout estimation evaluation on Stanford 2D-3D

Dataset [1] (Training set - PanoContext [32] + Stanford 2D-3D

[1]).

jected back to form the final image. Exact details can be found in

[26].

To predict the position of the floor-wall boundary (yf ) and

ceiling-wall boundary (yc) we use L1 loss for the learning,

whereas for the prediction of the wall-wall boundary (yw) we use

binary cross-entropy loss. The optimizer used is Adam with a

learning rate of 0.0003. We train all our networks by using the

pretrained Imagenet weights for 150 epochs with a batch size of 4.

It takes around 12 hours to finish the training on a single NVIDIA

GTX 1080 GPU. 3

4.3. Experimental Results

We present the results on two benchmark datasets described in

Sec. 4.1 and compare our model with the current state-of-the-art

models in Table. 1 - Table. 4. We perform both quantitative (Sec.

4.3.1) and qualitative evaluation (Sec. 4.3.1). Finally in Sec. 4.4,

we conduct ablation studies to highlight the gain in performance

due to the proposed sphere convolution formulation.

4.3.1 Quantitative Evaluation

We measure the quantitative performance based on three standard

metrics: 3D intersection over union between the predicted 3D re-

constructed layout and ground truth, pixel error between predicted

and ground truth surface class, and corner error which measures

the euclidean distance between predicted and ground truth cor-

ners. Apart from the architectural difference, existing literature

differ in the input resolution and augmentation techniques. Clara

et al. [11] and Yang et al. [30] use input image of resolution

256×512 whereas Zou et al. [34], Sun et al. [26] and our method

3Training time can be further optimized by optimizing spherical CNN

implementation on CUDA. The training time in the case of standard con-

volutions is 3x faster.
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Figure 7. Qualitative results for room layout estimation on PanoContext [32] (top) and Stanford 2D-3D [1] (bottom). Each image was

randomly sampled from the dataset. Our model’s prediction is highlighted in red color whereas the ground truth is highlighted in green

color. Best viewed in color.

Figure 8. Qualitative results for the non-cuboid layout prediction (top row) and the cuboid layout prediction (bottom row). Best viewed in

color.

uses input resolution of 512 × 1024. Clara et al. [11] is trained

with random erase augmentation technique, while our method and

Sun et al. [26] are both trained with the PanoStretch augmenta-

tion technique. Throughout our evaluation from Table 1 - Table 4,

we compare with the state-of-the-art results that we were able to

reproduce from the open-source codes.

Based on the evaluation metrics pixel error (%), corner error

(%), and 3D IoU we can see that our method is the new state-

of-the-art approach and outperforms all prior methods by ≈ 4%
on both benchmarks PanoContext [32] and Stanford 2D-3D [1].

The comparison with more relevant approach [11] validates our

hypothesis since they are only other work using spherical con-

volutions for layout estimation. However Clara et al. [11] use

spherical convolution with inverse gnomic projection and reports

3D IoU, which is ≈ 5% lower compared to our method on both

PanoContext [32] and Stanford 2D-3D [1] benchmarks.

Although our method uses a different projection type for spher-

ical convolution, in ablation studies we show our network’s results

with the inverse gnomic projection are similar to the projection

type used in [11] despite this our network achieves ≈ 4% better

performance than Clara et al. [11]. Therefore we hypothesis that

the boost in our performance is due to incorporation of spherical

convolution with better representation architecture. To validate the

importance of spherical convolution alone, we perform several ex-

periments as described in Sec. 4.4.

4.3.2 Qualitative Evaluation

We present the qualitative results in the form of room layout maps

(Fig.7) and 3D layouts of both non-cuboid and cuboid-shaped

rooms (Fig. 8). The non-cuboid rooms in Stanford 2D-3D [1]

and PanoContext [32] are labelled as cuboids, thus making it dif-

ficult for our model to learn non-cuboid rooms. To overcome this,

we use the 65 general room layouts re-labeled by Sun et al. [26]

in the train split to fine-tune our network. The samples in Fig. 8

show that our network is capable of generating both non-cuboid

(“L-shaped”) room layouts as well as cuboid room layouts.

From Fig. 7 we can observe the obvious similarity between

model’s predictions and ground truth. One important aspect of

our model is the capability to detect the corner while estimating

the boundary line even when the corner is hidden (such as cor-

ner hidden behind a door in Fig. 7). We believe that our model
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Method Pixel Corner 3D IoU

Error (%) Error (%)

Standard Conv 2.6 0.79 81.4

Sphere Conv 2.09 0.669 84.65

(Inv. gnomic proj.)

Ours 2.06 0.662 86.15

Table 5. Comparison between standard convolution, spherical con-

volution (with inverse gnomic projection) and spherical convolu-

tion (with inverse equirectangular projection) on the PanoContext

[32] + Stanford 2D-3D dataset [1]

representation combined with Bi-GRU to understand context over

longer horizon, leads to better prediction of corners.

4.4. Ablation Study

In Table. 5, we compare the results with standard convolution,

spherical convolution with inverse gnomic projection [6] and our

proposed spherical convolution with inverse equirectangular pro-

jection. It is evident from our results that both the spherical con-

volutions (inverse gnomic and inverse equirectangular projection)

are better when compared with standard convolution. Thus val-

idating the hypothesis that spherical convolutions are well suited

for this problem and can efficiently handle the distortions in the

equirectangular images. Since the property of equirectangular im-

ages are more inclined towards cylindrical projections rather than

projections over tangent plane, inverse equirectangular projection

offers rich representation and leads to improved performance (≈ 2
%) than inverse gnomic projection (Table. 5).

While dealing with equirectangular images metric such as pixel

error offer least information and fail to capture significance of the

model, since error is calculated over entire dataset. It is impor-

tant to know the various regions (i.e simple or complex regions)

in image which lead to improvement or degradation in model per-

formance. To incorporate this scenario we propose a new metric,

which identifies the region or groups where spherical convolution

performs better than standard convolution. In Fig. 9, we plot the

pixel error (%) observed in the test set for standard convolution

and spherical convolution against row groups. The panoramic im-

ages are divided into different row groups based on distance from

the poles (See Fig. 9), where each row group has a width of 25

rows. As hypothesised the difference in the pixel space is highest

(≈25%) when we are closer to the poles and the image regions

where the ceiling-wall and floor-wall boundaries are likely to ap-

pear in majority of samples. The difference gradually decreases as

we go towards the equator of the image (i.e simple region). This

confirms to our assumption that majority of the distortion that our

method removes are near the poles of the image, which we catego-

rize as the difficult or complex regions for standard convolutions.

Finally, we input our proposed sphere convolution to the fol-

lowing networks of the ResNet family: ResNet-34 [13], ResNet-

101 [13], and ResNet-151 [13] and report the results in Table 6. It

is evident that our approach is not restricted to any architecture and

can improve performance across any convolution architecture. The

Method Pixel Corner 3D IoU

Error (%) Error (%)

Standard Conv 2.56 0.79 81.4

(ResNet34)

Spherical Conv 2.2 0.67 85.7

(ResNet34)

Standard Conv 2.53 0.77 82.1

(ResNet101)

Spherical Conv 2.05 0.65 86.3

(ResNet101)

Standard Conv 2.52 0.76 82.4

(ResNet151)

Spherical Conv 2.04 0.65 86.5

(ResNet151)

Table 6. Comparison between standard convolution and proposed

spherical convolution for 3 different networks of the ResNet fam-

ily. Evaluation done on both PanoContext [32] and Stanford 2D-

3D [1].

Figure 9. Input images are divided into row groups (left image

shows a sample for reference) based on distance from the poles.

We calculate pixel error in these row groups to show the differ-

ence in performance across different regions of the image. Results

evaluated on PanoContext [32] and Stanford 2D-3D [1].

proposed method is independent of model parameters and depth of

the network, hence for complex tasks can also be extended to work

with very deep networks.

5. Conclusions

We proposed a novel state-of-the-art approach which re-

duces the distortions in equirectangular images for the task of

360◦ room layout recovery. In our knowledge this is the first

work in room layout estimation that uses the equirectangular

projection function to reduce the distortions. The proposed

method, OmniLayout is computationally efficient and can also

recover both cuboid shaped layouts as well non-cuboid shaped

layouts (“L-shaped”). The experimental analysis and ablation

study shows that OmniLayout significantly improves the per-

formance on two room layout benchmark datasets, especially

in the distortion heavy regions of the input panoramic images.
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