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1. Introduction

This supplementary material complements our original
manuscript with additional results, supporting further abla-
tion experiments, providing qualitative results on real data
and comparisons between the different architectures.

2. Supplementary Results

Table 1 complements Table 1 of the main document, pre-
senting the performance of all remaining metrics, namely
the spherical direct depth metrics, the boundary preserva-
tion metrics, and the smoothness metrics. In addition, Fig-
ure 1 presents the different models’ performance in terms of
three indicators, one for each trait. These indicators com-
bine an error and an accuracy metric:

id =
1

(1− δ1.25)×RMSE
, (1)

ib =
1

(1− (rec0.25+rec0.5+rec1.0)/3)× dbeacc , (2)

is =
1

(1− (α11.25o+α22.5o+α30o )/3)×RMSEo
, (3)

with id, ib, and is the depth, boundary and smoothness
performance indicators. Evidently, UNet performs signifi-
cantly better than the other models, especially in the bound-
ary consistency metrics, while all models benefit of the ad-
dition of extra losses. The addition, of skip connections in
a common ResNet architecture offers better performance.
WhileLgrad offers better depth performance for ResNetskip,
the variant trained with Lcomb offers higher performance
across the two secondary traits.

*Indicates equal contribution.

In addition, we complement the main’s paper spheri-
cal metrics Table 2 by collating the traditional ones for a
straightforward comparison.

Finally, Table 3 reproduces the grounds upon our
methodology was designed, namely the efficacy of pre-
trained models [6] and the L1 loss [2]. We use the DenseNet
and Pnas models with the encoders initialized using weights
pre-trained on ImageNet. Both claims stand, with all pre-
trained models achieving better performance than the model
trained from scratch. In addition, the L1 loss outperforms
both berHu [5] and log loss. Interestingly, the perfor-
mance drops significantly in DenseNet when trained with
other losses, while for Pnas the performance gap is smaller.
Therefore, when benchmarking different models, this needs
to be taken into account as well. Only through consistent
experimentation across different aspects measurable and ex-
plainable progress will be possible.

3. Qualitative Results
Finally we present additional qualitative results for dif-

ferent models. Apart from the collation of the predicted
depth maps between the different models, we provide an
advantage visualisation technique similar to that presented
in HoHoNet [7]. The visualisation is the MAE difference
between two comparable models.

To that end, Figure 2 demonstrates the comparison of
ResNet and ResNetskip architectures, Figure 3 that of the
UNet and Pnas architectures, and, finally Figure 4 presents
the differences between the UNet and ResNetskip architec-
tures.

Additionally, Figure 5 presents comparative results re-
garding the boundary preservation performance across
models. Once again, UNet is able to capture finer-grained
details while the Pnas model produces smoother results.



Table 1: Three axis depth metrics performance across models and supervision schemes. Best three performers are denoted
with bold faced light green (1st), light blue (2nd) and light purple (3rd) respectively following the ranking order. Same
scheme applies to all tables.

Model
Direct Depth Depth Discontinuity Depth Smoothness

Error ↓ Accuracy ↑ Error ↓ Accuracy ↑ Error ↓ Accuracy ↑
wRMSE wRMSLE wAbsRel wSqRel δico

6

1.05 δico
6

1.1 δico
6

1.25 δico
6

1.252 δico
6

1.253 dbeacc dbecomp prec0.25 prec0.5 prec1 rec0.25 rec0.5 rec1 RMSEo α11.25o α22.5o α30o

Pn
as

L1 0.5606 0.0854 0.1328 0.1196 32.69% 56.94% 85.12% 95.38% 97.95% 2.6542 5.7303 38.73% 30.26% 23.58% 18.74% 10.48% 8.48% 20.12 53.88% 69.81% 75.65%
Lcosine 0.5622 0.0858 0.1338 0.1317 34.49% 58.06% 85.52% 95.44% 97.88% 2.7194 5.4964 36.16% 27.76% 22.22% 21.48% 13.55% 10.02% 15.70 67.14% 77.37% 81.05%
Lgrad 0.5374 0.0822 0.1276 0.1146 35.68% 59.54% 86.41% 95.72% 98.04% 2.5008 5.4548 40.91% 32.05% 25.27% 22.49% 12.17% 9.07% 18.12 59.56% 73.24% 78.30%
Lcomb 0.5367 0.0811 0.1259 0.1153 36.44% 60.52% 86.80% 95.83% 98.11% 2.5119 5.3501 39.83% 31.59% 27.01% 23.53% 14.42% 10.98% 15.26 67.73% 77.99% 81.67%
Lvnl 0.5403 0.0815 0.1280 0.1183 35.43% 59.72% 86.58% 95.79% 98.11% 2.5141 5.3893 40.14% 31.77% 24.47% 22.14% 12.69% 8.74% 15.57 66.61% 77.34% 81.23%

U
ne

t

L1 0.4834 0.2361 0.1211 0.0913 35.18% 58.24% 86.80% 96.45% 98.43% 1.4011 4.3152 57.59% 58.00% 53.85% 38.74% 31.57% 24.31% 24.66 36.80% 60.60% 69.73%
Lcosine 0.4736 0.0906 0.1217 0.0891 32.65% 58.04% 87.40% 96.68% 98.61% 1.4513 5.0455 55.35% 52.16% 46.01% 39.36% 30.01% 21.69% 15.80 63.10% 77.60% 82.38%
Lgrad 0.4659 0.5186 0.1209 0.0833 35.25% 58.79% 87.33% 96.56% 98.45% 1.3305 4.0582 63.27% 63.13% 56.54% 40.39% 32.47% 23.37% 19.52 52.23% 70.40% 76.91%
Lcomb 0.4630 0.1690 0.1222 0.0847 34.79% 58.21% 87.08% 96.63% 98.66% 1.3077 4.2080 63.31% 61.74% 54.96% 39.38% 30.27% 22.00% 16.19 61.01% 76.18% 81.45%
Lvnl 0.4520 0.1300 0.1147 0.0811 36.68% 60.59% 88.31% 96.96% 98.73% 1.2699 3.8876 58.97% 57.54% 51.85% 43.96% 36.69% 28.59% 16.02 61.80% 76.58% 81.70%

D
en

se
N

et

L1 0.5441 0.6872 0.1348 0.1144 34.34% 57.10% 84.73% 95.28% 97.69% 2.3690 5.5135 40.40% 36.07% 28.78% 20.45% 11.54% 8.05% 21.08 49.98% 68.29% 74.78%
Lcosine 0.5361 0.0822 0.1239 0.1034 34.98% 59.34% 86.36% 95.94% 98.13% 2.3486 5.3702 41.01% 35.45% 29.10% 22.80% 14.19% 9.39% 15.97 64.92% 76.91% 81.15%
Lgrad 0.5202 0.4655 0.1304 0.1045 32.68% 57.59% 85.69% 95.85% 98.06% 2.0789 5.2159 47.01% 40.61% 33.32% 23.68% 13.71% 9.35% 18.90 56.86% 71.79% 77.23%
Lcomb 0.5209 0.1982 0.1209 0.1013 35.97% 60.41% 87.02% 95.96% 98.09% 2.0628 5.0977 47.16% 40.77% 35.20% 26.09% 16.87% 12.21% 15.98 64.58% 76.86% 81.20%
Lvnl 0.5232 0.7560 0.1258 0.1030 36.28% 60.04% 86.61% 95.66% 97.74% 2.0525 5.0931 44.81% 40.14% 32.30% 25.21% 15.71% 10.33% 16.51 63.43% 76.02% 80.53%

R
es

N
et

L1 0.5500 0.1922 0.1394 0.1186 30.59% 54.17% 84.07% 95.47% 98.03% 2.4386 5.7688 39.10% 31.69% 23.28% 20.92% 10.24% 6.32% 22.83 44.68% 64.51% 72.02%
Lcosine 0.5435 0.0864 0.1364 0.1194 34.77% 56.32% 84.29% 95.64% 98.11% 2.6918 5.7928 38.35% 32.13% 26.82% 21.88% 12.61% 8.71% 16.37 64.24% 76.30% 80.63%
Lgrad 0.5475 0.2976 0.1387 0.1151 32.43% 54.46% 83.76% 95.37% 97.97% 2.4112 5.7959 41.87% 33.23% 21.60% 21.31% 9.27% 4.95% 20.50 52.77% 68.97% 75.00%
Lcomb 0.5294 0.1365 0.1374 0.1127 32.03% 55.31% 84.74% 95.81% 98.21% 2.2393 5.3796 44.10% 36.70% 27.44% 22.91% 12.23% 7.20% 16.63 63.09% 75.70% 80.20%
Lvnl 0.5324 0.3320 0.1301 0.1070 33.60% 57.50% 85.20% 95.83% 98.07% 2.1335 5.1866 45.00% 38.70% 30.85% 24.88% 14.43% 9.28% 17.07 61.99% 75.22% 79.91%

R
es

N
et

sk
ip

L1 0.5041 0.2924 0.1259 0.0977 34.10% 57.64% 86.05% 96.13% 98.30% 1.5462 4.7640 49.48% 47.23% 43.31% 32.86% 23.57% 16.63% 22.30 44.07% 65.82% 73.55%
Lcosine 0.5024 0.1207 0.1208 0.0958 37.15% 59.61% 87.03% 96.34% 98.35% 1.6012 4.7078 52.83% 49.23% 41.05% 32.03% 23.82% 16.75% 15.76 63.32% 77.05% 81.83%
Lgrad 0.4754 0.3274 0.1183 0.0905 36.23% 60.44% 87.96% 96.62% 98.45% 1.5013 4.4831 56.27% 54.26% 47.88% 33.96% 23.52% 16.07% 18.72 55.00% 71.76% 77.82%
Lcomb 0.4788 0.0927 0.1166 0.0893 36.20% 60.64% 87.99% 96.62% 98.49% 1.4883 4.5346 57.34% 54.11% 47.57% 33.99% 24.30% 16.37% 15.27 64.18% 77.57% 82.27%
Lvnl 0.4923 0.1095 0.1197 0.0941 37.55% 60.43% 87.23% 96.42% 98.46% 1.4629 4.1408 54.99% 51.98% 45.40% 35.29% 25.22% 17.68% 15.67 63.28% 77.05% 81.94%

Table 2: Direct depth performance using spherical and conventional metrics. Bottom part results are the same as those
presented in Table 2 of the original document. Top part are the corresponding results from Table 1 of the original manuscript.

Model
Depth Error ↓ Depth Accuracy ↑

RMSE RMSLE AbsRel SqRel δ1.05 δ1.1 δ1.25 δ1.252 δ1.253

Pnascomb 0.4613 0.0740 0.1143 0.0892 38.56% 63.31% 88.70% 96.68% 98.62%
Unetvnl 0.3967 0.1182 0.1095 0.0672 38.62% 62.16% 89.08% 97.35% 99.03%
DenseNetcomb 0.4490 0.2565 0.1129 0.0806 38.30% 63.02% 88.56% 96.66% 98.54%
ResNetcomb 0.4573 0.1200 0.1272 0.0894 34.53% 57.97% 86.26% 96.56% 98.71%
ResNetcomb

skip 0.4165 0.0843 0.1102 0.0722 36.71% 61.92% 89.17% 97.24% 98.90%
wRMSE wRMSLE wAbsRel wSqRel δico

6

1.05 δico
6

1.1 δico
6

1.25 δico
6

1.252 δico
6

1.253

Pnascomb 0.5367 0.0811 0.1259 0.1153 36.44% 60.52% 86.80% 95.83% 98.11%
Unetvnl 0.4520 0.1300 0.1147 0.0811 36.68% 60.59% 88.31% 96.96% 98.73%
DenseNetcomb 0.5209 0.1982 0.1209 0.1013 35.97% 60.41% 87.02% 95.96% 98.09%
ResNetcomb 0.5294 0.1365 0.1374 0.1127 32.03% 55.31% 84.74% 95.81% 98.21%
ResNetcomb

skip 0.4788 0.0927 0.1166 0.0893 36.20% 60.64% 87.99% 96.62% 98.49%

L1 Lcosine Lgrad Lcomb Lvnl

id

Direct Depth Performance

L1 Lcosine Lgrad Lcomb Lvnl

ib

Boundary Preservation Performance

L1 Lcosine Lgrad Lcomb Lvnl

is

Smoothness Performance

Pnas
UNet
DenseNet
ResNetskip
ResNet

Figure 1: Performance indicators (higher is better) of different loss functions per model in three different axis. From left to
right: depth indicator id, boundary indicator ib and smoothness indicator is.



Table 3: Direct depth performance metrics across different variations of DenseNet and Pnas.

Depth Error ↓ Depth Accuracy ↑
model pretrained L RMSE RMSLE AbsRel SqRel δ1.25

D
en

se
N

et
7 L1 0.4672 0.5580 0.1223 0.0896 86.72%

3 L1 0.4072 0.3194 0.1140 0.0694 88.91%
3 Llog 0.5597 0.5720 0.1528 0.4475 80.48%
3 LberHu 0.4532 0.3754 0.1228 0.0852 86.68%

Pn
as

7 L1 0.4817 0.0780 0.1213 0.0933 87.25%

3 L1 0.3998 0.0634 0.0975 0.0661 91.91%
3 Llog 0.4135 0.0656 0.0999 0.0697 91.09%
3 LberHu 0.4059 0.0643 0.0992 0.0666 91.56%

Similarly, the differences between ResNet and ResNetskip,
attributed to the addition of the skip connections are appar-
ent across all samples.

Nonetheless, Pnas better captures the global context as
seen in Figure 6, where the scene’s dominant planar sur-
faces are better preserved by it than UNet.

Figures 7, 8, 9 demonstrate qualitative results in GV2
tiny split for the UNet, Pnas, and ResNetskip architectures
respectively. Apart from the predicted point cloud we visu-
alise the c2c error on the ground truth point cloud, with a
blue-green-red colormap denoting the error’s magnitude.

Finally, Figures 10 and 11 offer qualitative results of our
best performing method in real world, in-the-wild, data cap-
tures. We also qualitatively compare our predictions with a
state-of-the-art 360o depth estimation model (i.e. BiFuse
[8]). It is worth highlighting that even the two of the three
360o images are captured by a panorama camera, the last
two images are captured by a smartphone camera, and as
such there are artifacts. Yet, it seems that this does not
greatly affect the performance of models. The UNet model
produces higher quality depth estimates than BiFuse, albeit
trained only on the train split of M3D, while the publicly
available BiFuse model, as reported in UniFuse [3], has
been trained on the entire M3D dataset.
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(a) Color (b) Ground Truth Depth (c) ResNet Depth (d) ResNetskip Depth (e) Depth Advantage

Figure 2: Qualitative comparison between the ResNet and ResNetskip architectures. On the right the advantage visualization
shows with blue color the areas where the former performs better, and with red color the areas where the latter performs better.
The color magnitude corresponds to the MAE difference between the two models, illustrating the performance deviation
between the two models. The addition of skip connections allows ResNetskip to capture finer-grained details.

(a) Color (b) Ground Truth Depth (c) Unet Depth (d) Pnas Depth (e) Depth Advantage

Figure 3: Qualitative comparison between the UNet and Pnas architectures. On the right the advantage visualization shows
with blue color the areas where the former performs better, and with red color the areas where the latter performs better. The
color magnitude corresponds to the MAE difference between the two models, illustrating the performance deviation between
the two models. Pnas provides smoother results while it is clear that UNet is able to capture finer-grained details.



(a) Color (b) Ground Truth Depth (c) Unet Depth (d) ResNetskip Depth (e) Depth Advantage

Figure 4: Qualitative comparison between the UNet and ResNetskip architectures. On the right the advantage visualization
shows with blue color the areas where the former performs better, and with red color the areas where the latter performs better.
The color magnitude corresponds to the MAE difference between the two models, illustrating the performance deviation
between the two models.

Figure 5: Boundary preservation qualitative comparison between the UNet, Pnas, ResNet and ResNetskip models. Boundaries
are extracted by applying a Canny edge detector [1] with predefined thresholds on normalized predicted depth maps, and then
are blended with the original color panorama. From left to right: i) GT depth (green), ii) UNet (orange), iii) Pnas (cyan), iv)
ResNet (yellow), and v) ResNetskip (magenta).



Figure 6: Qualitative comparison of the Pnas and UNet models in surface reconstruction. From top to bottom: i) input color
panorama, ii) Pnas normal map from the estimated depth map, iii) UNet normal map, iv) Pnas Screened Poisson Surface
Reconstruction [4] 3D surface reconstruction, v) UNet 3D surface reconstruction, vi) overlaid Pnas (cyan) and UNet (pink)
3D surface reconstructions from birds eye view.



Figure 7: UNet qualitative results. From left to right: i) Input color panorama, ii) colored predicted point cloud, and iii)
heatmap visualization of the c2c error on the ground truth point cloud.



Figure 8: Pnas qualitative results. From left to right: i) Input color panorama, ii) colored predicted point cloud, and iii)
heatmap visualization of the c2c error on the ground truth point cloud.



Figure 9: ResNetskip qualitative results. From left to right: i) Input color panorama, ii) colored predicted point cloud, and iii)
heatmap visualization of the c2c error on the ground truth point cloud.



Figure 10: Qualitative results using the UNet model applied to in-the-wild real data captures. The top two rows are captures
with a 360o camera, while the bottom two rows are stitched panoramas from a mobile phone. From left to right: i) Input
color panorama, ii) predicted depth, and iii) normals derived from the predicted depth.



Figure 11: Qualitative results using in-the-wild data. On the left the input color panoramas are depicted. The two top rows
are captured with a 360o camera, while the bottom two rows are stitched panoramas from a mobile phone. The colored
point clouds of the predicted depths from our UNet model (middle) and BiFuse [8] (right). Ceilings have been removed for
visualization purposes.


