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Abstract

Small Unmanned Aerial Vehicle (UAV) platforms

equipped with compact laser scanners provides a low-cost

option for many applications, including surveillance, map-

ping, and reconnaissance. For these applications, semantic

segmentation or semantic labeling of each point in the li-

dar point cloud, is important for scene-understanding. In

this work, we evaluate methods for semantic segmentation

of three-dimensional (3D) point clouds of outdoor scenes

measured with a laser scanner mounted on a small UAV.

We compare the performance of four different semantic seg-

mentation methods, which are all applied in a scan-by-

scan fashion, on semi-sparse laser data. The best method

achieves 95.3% on the three classes ground, vegetation, and

vehicle in terms of mean intersection over union (mIoU)

on a previously unseen scene from a different geographical

area. The results demonstrate that it is possible to achieve

good performance on the semantic segmentation task on

data measured using a combination of a small UAV and a

compact laser scanner.

1. Introduction

The technical development of Unmanned Aerial Vehi-

cles (UAV) and a drive for miniaturization of advanced sen-

sor technologies enables new sensing approaches. For ex-

ample, a small UAV can be equipped with a scanning li-

dar and be used for short-range applications in surveillance,

mapping, and reconnaissance. UAVs with scanning lidars

are well suited for mapping three-dimensional (3D) envi-

ronments and can provide accurate 3D measurements dur-

ing both day and night conditions.

Scene-understanding is an important step in the data

analysis of point clouds from scanning lidar. This paper

addresses the problem of labeling each point in a 3D point

cloud with the correct class in data from a scanning li-

dar mounted on a UAV. This labeling problem is denoted

semantic segmentation and is well studied for lidar point

clouds in computer vision applications like autonomous
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cars, where the annotated public dataset SemanticKITTI [1]

is available. However, semantic segmentation is not well

studied in the context of scanning lidar data from UAVs.

Applications of point cloud semantic segmentation are also

found in robotics and remote sensing.

In this work, we want to expand the applications of lidar

semantic segmentation. We select top-performing methods

for scan-by-scan semantic segmentation of 3D lidar data

from ground based vehicles and evaluate on 3D lidar data

from a UAV. We focus especially on small UAVs with com-

pact lidar sensors. For the comparison, we have chosen

recent works that are high ranking on the SemanticKITTI

benchmark as the lidar sensor is similar. There are some

differences between the autonomous car application and the

UAV application. The most prominent difference is the

view of the scene and the objects. We move from a ground-

based view of objects to an elevated view when we mount

the lidar on the UAV and fly over a scene. The data we use

from the UAV is also more sparse than SemanticKITTI and

we need to adapt the segmentation methods to this type of

data and evaluate the performance. Methods trained only

on SemanticKITTI can not be applied directly.

The methods we evaluate in this paper are all applied on

data from single scans, i.e. single rotations of the lidar scan-

ner. This approach is common in automotive applications,

since real-time analysis is needed. An alternative approach,

where data is collected and jointly registered before further

analysis, is often used for data from terrestrial lidar or aerial

lidar. When using registered point clouds, all data in each

neighborhood in the imaged space is available at the time

of analysis. In a scan-by-scan approach data is sparse and

only few points may be available at the time of analysis for

some object features in the imaged space. The semantic seg-

mentation still needs to provide a classification of the points

based on the point coordinates and intensity. An example

of a single scan measured using a small UAV and the corre-

sponding semantic segmentation result predicted from only

this data is shown in Figure 1. A scan-by-scan approach en-

ables segmentation of a moving scene and does not require

high accuracy positioning of the platform as registration of

all data to a joint reference frame in a larger scene often

does.



Figure 1: Point cloud from single scan of a VLP-16 lidar mounted on a UAV. Top: Colored by point intensity. Bottom: Colored

by the three semantic labels predicted by the method SPVCNN. Best viewed in color.

In this paper, we present an evaluation of four meth-

ods [10, 19, 16, 20] for semantic segmentation of 3D point

clouds from a small UAV with a compact scanning lidar.

We evaluate the methods using annotated data with three

classes: ground, vegetation, and vehicle. The methods are

trained and validated on data from six different outdoor

scenes and we evaluate on a separate outdoor scene from

a different geographical area. We compare the methods us-

ing the parameters optimized for SemanticKITTI and apply

adaptations of the batch size for the UAV data. We describe

the methods for semantic segmentation in Section 3. The

datasets and experiments with the results are presented in

Section 4 and conclusions are drawn in Section 5.

2. Related work

Semantic segmentation of lidar point clouds has been

studied for different types of applications. One field of

research concerns semantic segmentation of larger point

clouds from terrestrial laser scanning or aerial laser scan-

ning. This type of research is often evaluated on datasets

such as the Vaihingen dataset for semantic segmenta-

tion [14] for the aerial sensors and Semantic3D [7] for the

terrestrial sensors. Recently, new datasets have been pre-

sented for aerial laser scanning [17, 8]. Typically the data

is registered to a larger point cloud in a first step and sensor

specific characteristics and sensor positioning are marginal-

ized. When using registration, all data points near a specific

world coordinate, or in a point neighborhood, are avail-

able in the analysis. Another field of research concerns

data from compact scanning lidars mounted on moving plat-

forms. The research topic which attracts most attention us-

ing this type of data is self-driving cars. If wanted, data

can be registered to a common coordinate system, but often

the semantic segmentation is intended for online analysis

as input to the scene analysis in the autonomy. As data is

only available up until a certain time-point a scan-by-scan

approach is often applied in the analysis. For automotive li-

dar applications the large public dataset SemanticKITTI [1]

has advanced research on semantic segmentation of point

clouds in recent years, since methods can be directly com-

pared and benchmarked. The dataset contain over 43 000

scans, with over 21 000 scans available for training and val-

idation and the rest are withheld for testing on the bench-

mark. SemanticKITTI contains 19 different classes in the

single-scan setup.

General advances in deep learning and advances in meth-

ods aimed for point clouds have pushed the performance

also for semantic segmentation of point clouds from laser

scanning. Recent overviews of semantic segmentation of

point clouds can be found in [6, 18]. Methods for semantic

segmentation of point clouds are now dominated by deep

learning approaches. The first deep learning approaches

for point clouds were introduced around 2015 using voxel

grid [9] and multi-view [15] approaches. Later, in 2017, the

first point-based methods were introduced [11, 12]. The de-

velopment of the deep learning approaches is strongly de-

pendent on the availability of annotated data. The release

of SemanticKITTI in 2019 with the associated challenges

has boosted research on data from scanning lidars and new

methods are constantly improving the results on the leader-

board. There are different approaches for point cloud seg-

mentation that performs well on the benchmark, regarding

both network design and data representation. Some meth-

ods are projection based [5, 19, 10], where the point cloud



is projected to a 2D image with several bands and a 2D con-

volutional neural network is used for the semantic segmen-

tation. Recently, networks using sparse convolution in 3D

are improving on the benchmark [16, 4, 20, 2]. A combina-

tion of point-based and voxel-based approach is employed

in [16] to support both attention to detail and possibility to

scale up to large scenes. A cylindrical voxel grid and asym-

metrical 3D convolution networks are used in combination

with a point-based branch in [20]. An encoder-decoder

CNN network which fuse the voxel-based and point-based

learning with two attention blocks is used in [2].

3. Semantic segmentation of 3D UAV data

In this section, we provide more details on the methods

we adapt and compare for lidar data collected using a UAV.

We compare the performance of RangeNet++[10],

SqueezeSegV3 [19], SPVCNN [16], and Cylinder3D [20]

on the task of semantic segmentation of single scans from a

compact scanning lidar mounted on a small UAV. We have

selected these methods since they have recently shown good

results on scanning lidar data from a ground vehicle applica-

tion on the SemanticKITTI benchmark. They also represent

two different data representation approaches for point cloud

semantic segmentation.

All evaluated methods are scan based approaches. They

are fast compared to approaches that require joint registra-

tion of multiple point clouds before segmentation. Scan

based approaches are desirable when it comes to onboard

execution of the algorithms on a small UAV. Small UAVs

have a limited processing capacity and algorithms should

preferably be fast and lightweight.

RangeNet++ is a projection based method. The data

is mapped from a point-cloud to an image of range values

from the sensor with associated point coordinates (x, y, and

z) and the intensity as additional channels using a spheri-

cal projection. On each projected image a fully convolu-

tional semantic segmentation is applied in 2D. The data is

mapped back to 3D and is post-processed using a k-Nearest-

Neighbor (kNN) search. The network follows an encoder-

decoder structure and makes use of a modified DarkNet

backbone [13]. RangeNet++ comes in two main flavors,

RangeNet21 and RangeNet53, that are based on two ver-

sions of the DarkNet backbone with 21 and 53 layers, re-

spectively. In this work we use RangeNet21 in the compar-

ison.

SqueezeSegV3 is also a projection based method. It

builds on RangeNet and propose Spatially-Adaptive Con-

volution (SAC) which replace parts of the RangeNet net-

work structure. It also comes in two main flavors, which

are based on RangeNet21 and RangeNet53. The SAC pro-

cess different parts of the image with different filters which

also adapt to feature variations. The motivation for SAC is

that an analysis of filter activations from RangeNet shows

that specific filters are only activated in certain parts of the

projected image. By adding SAC the network can be bet-

ter utilized and better performance can be obtained. This

is shown for SemanticKITTI in [19]. In this work we

use SqueezeSegV3-21 with the same post-processing as for

RangeNet21 in the comparison.

SPVCNN is an architecture which has recently achieved

top-performing results on the SemanticKITTI dataset. The

method combines voxel-based and point-based calcula-

tions. The voxel-based branch in the network use sparse

3D convolutions. The method employs a technique

called Sparse Point-Voxel Convolution (SPVConv) where

the point-based branch holds information about the high-

resolution and the sparse voxel-based branch can gather in-

formation from a larger receptive field. There are also con-

nections between the two branches. In [16], the authors

also present a Neural Architecture Search (NAS) which is

used to learn some of the hyperparameters in the network

by training networks with different parameters and using

Evolutionary Search. The NAS part is not used in our

evaluation. We compare the backbone architecture called

SPVCNN using the parameters that the authors have pro-

vided for SemanticKITTI.

Cylinder3D has also recently achieved top-performing

results on the SemanticKITTI dataset. The method com-

bines voxel-based and point-based calculations. Instead of a

regular voxel grid, a cylindrical voxel grid is used in combi-

nation with asymmetrical 3D convolution networks to over-

come difficulties with sparsity and varying density. Sparse

3D convolutions are used in this method. The point-based

branch provides point-wise features to the cylindrical cells

in the grid and it is used to enhance the output in a point-

wise refinement module.

4. Evaluation and results

We evaluate the methods for semantic segmentation for

the UAV application using annotated data with three classes.

The data, experiments, and results are described in the fol-

lowing sections.

4.1. Dataset

A dataset was collected using a Velodyne VLP-16

mounted on a small UAV. The lidar has 16 channels (lasers)

rotating 360° in the horizontal direction at 10Hz and span-

ning a 30° Field of View (FoV) in the vertical direction (as

seen in local sensor coordinates). The sensor is mounted un-

derneath the UAV with the lasers imaging down and slightly

forward to be able to measure the ground from above. Due

to the mounting of the sensor, only about 180° of the sen-

sor horizontal FoV provides interesting data. The mea-

sured point clouds are semi-dense with many points avail-

able from each laser in the horizontal direction and from

only 16 channels in the vertical direction. At longer mea-



surement ranges objects are covered by only few horizontal

lines due to the vertical sparsity.

There are some differences between this dataset and the

commonly used SemanticKITTI dataset. SemanticKITTI

data is collected using a Velodyne HDL-64E. The HDL-

64E has four times as many channels as the VLP-16. In

SemanticKITTI the sensor is mounted on a ground vehicle

with the full 360° horizontal FoV and the UAV data has

approximately 180°. The UAV data is both more sparse than

the SemanticKITTI in the vertical direction, with only every

fourth line available, and covers half of the horizontal FoV.

A single scan of the VLP-16 sensor gives approximately

12 000 points in the UAV set-up. This is about 5-10% of the

number of points in a single scan in SemanticKITTI. These

numbers are approximate and depend on the content of the

respective scenes.

The dataset contain ten flights over seven scenes in three

different geographical areas. The data was collected in

spring with clear to overcast weather conditions. All data

show outdoor scenes from rural areas with one or two vehi-

cles. The data includes examples of open areas with fields,

gravel roads, asphalt, and grass, but also of trees and bushes.

The flight altitude varies within each flight. The mean alti-

tude is 15m and the maximum altitude is 35m. The dis-

tance to the vehicles varies mostly between 10m and 25m.

In one flight the distance is up to 60m. Vegetation and

ground appear in all parts of the scene and distances are

spread at both longer and shorter ranges.

The coordinates of the data points are given in a fixed

sensor coordinate frame. The data was labeled with three

classes: ground, vegetation, and vehicle. The ground class

contains all types of ground and low vegetation that can not

be separately annotated as vegetation. Example materials in

the ground class include asphalt, gravel, grass, sand, rock,

and soil. A small part of the data which belongs to other

classes were marked as unlabeled. Also various outliers

were removed from the training labels. The labeling tool

released for SemanticKITTI data [1] was used for the label-

ing. To facilitate the labeling process, the scans were jointly

registered to a common coordinate frame by combining the

positioning information from the UAV and point cloud reg-

istration. The registration was performed by optimizing a

pose graph consisting of pairwise ICP-registrations [3]. By

using the registered point clouds in the labeling tool, a few

hundred scans could be labeled together. If a very accurate

registration is available, data from all flights over a static

scene can be labeled together. However, this can be very

difficult to achieve if expensive positioning equipment is not

used onboard the UAV. The registered point clouds are only

used in the labeling process and for visualization purposes

in this work.

The dataset is divided into a training set, a validation

set, and a test set. For training and validation, data from

nine different flights showing six different scenes were an-

notated. All scenes contain all of the three classes ground,

vegetation, and vehicle. For the vehicle class, there are cars,

terrain cars, and a truck present in the data. For the test set,

data from one flight from a different geographical area was

annotated. This scene contains two cars. There is a total of

9931 annotated scans, i.e. single rotations of the lidar. 9361

of these are the training and validation sets and 570 are the

test set. The total number of points in the training and vali-

dation sets is over 108 million and the number of points in

the test set is over 6.6 million.

4.2. Experiments

In our experiments, we compare the methods directly

as they are provided online with given parameters for Se-

manticKITTI, except for the batch size which is adapted to

our available GPU-memory using results on the validation

data. All networks are trained from scratch without pre-

training using only the UAV data training set.

We evaluate the result in terms of intersection over union

(IoU). It can be formulated as: IoUi = TP i/(TP i+FP i+
FN i), where TP i, FP i, FN i are the sum of true posi-

tive, false positive, and false negative predictions for class

i and the mean intersection over union (mIoU) is the mean

value of IoUi over all classes. Each network is evaluated

on the validation data during training. The network, which

performs best on the validation data based on mIoU, is se-

lected for the comparison of the four methods. We have

trained with each parameter setup several times to get infor-

mation on the stability of each method in training as well as

on the validation result. In general, the result varies a cou-

ple of percent in mIoU between trainings and it is difficult

to draw conclusions on network configurations or parame-

ters when improvements are small since these can depend

on the randomness of the training process.

In Table 1 we report our main result with the IoU for each

class and the mean IoU for each method. The results change

slightly between trainings and we report the IoU for the net-

works that got the best result on the validation data from a

number of trainings with the same parameters. The method

Cylinder3D performs best overall on the UAV data test set

closely followed by SPVCNN, RangeNet++, and Squeeze-

SegV3. Cylinder3D performs best on all individual classes.

Figure 2 shows a part of the test scene with the point inten-

sities, the ground truth labels, and the predicted semantic

segmentation using the four different networks. All scans,

which cover the area, are visualized in the images. Figure 1

shows the result for a single scan using SPVCNN. It is clear

that all four methods provide good results both qualitatively

and quantitatively on the semantic segmentation task.

Figure 3 shows details on the cars for each method. The

left column shows all scans colored by the prediction and

the right column show only the misclassified points. Here



Method mIoU Ground Vegetation Vehicle

RangeNet++ 0.8891 0.9844 0.8043 0.8785

SqueezeSegv3 0.8913 0.9861 0.8312 0.8566

SPVCNN 0.9352 0.9896 0.8657 0.9505

Cylinder3D 0.9526 0.9914 0.8875 0.9789

Table 1: IoU on the test set. Training on the UAV dataset for the three classes ground, vegetation, and vehicle.

Figure 2: Point intensity and semantic segmentation result on the test data with the scans registered and visualized in a

common coordinate system. Top left: Point intensity. Top right: Ground truth. Center left: Cylinder3D. Center right:

SPVCNN. Bottom left: RangeNet++. Bottom right: SqueezeSegV3. Best viewed in color. Each color represents one of the

three semantic classes: ground, vegetation, and vehicle.



we can see the difference in segmentation between the two

voxel and point based methods and the two projection based

methods. Cylinder3D erroneously predicts part of the vege-

tation and the cars as ground, but also part of the ground

near the cars as vehicle. SPVCNN under-segments both

the cars and the vegetation in this scene and erroneously

predicts e.g. the wheels as ground and low vegetation as

ground. RangeNet++ and SqueezeSegV3 also miss part of

the wheels, and incorrectly predict part of the ground as

the vehicle class and part of the car as ground or vegeta-

tion. In general, all four methods also misclassifies points

on the borders between ground and vegetation. SPVCNN

also misclassifies vegetation far up in the trees as ground.

This is not the case for Cylinder3D or the two projection

based methods even without kNN post-processing. In the

visualizations, the scans are registered to a common coordi-

nate system for illustrative purposes.

In our experiments, SqueezeSegV3 and RangeNet++ are

trained using the same configuration for the backbone size

and both use post-processing. They give very similar pre-

dictions on the data we have in our experiments. The

post-processing using kNN improves the result for both

RangeNet++ and SqueezeSegV3. The architecture design

of SqueezeSegV3 was developed to utilize the network bet-

ter than RangeNet++ for the scenes in the driving case. We

obtain only a slightly better result using SqueezeSegV3,

but the variation between trainings is larger than the dif-

ference between the results in mIoU. We apply the smaller

backbone networks, RangeNet21 and SqueezeSegV3-21,

on the UAV data. Experiments with the larger network,

RangeNet53, for RangeNet++ did not improve the result.

The results show that the methods perform well using

a relatively small amount of training data. However, it is

difficult to make predictions on which method that would

perform best if a large amount of annotated data was avail-

able. The UAV data is more sparse than the data in Se-

manticKITTI and has fewer classes. More data and more

classes may change both the mIoU and the ranking of the

methods for semantic segmentation. The segmentation re-

sult for the ground class is very high and the networks can

be used for ground segmentation, which is useful for posi-

tioning and registration purposes.

We have also performed experiments with data augmen-

tation including horizontal flip, vertical flip, and adjusting

the range of all points in a single scan with a small constant

value. However, we only obtain a small improvement on

the validation data using this augmentation and it is unclear

if it improves the result on the test data in the same way.

SPVCNN could possibly benefit from the augmentation, but

the results are within the variation obtained when running

training multiple times. SPVCNN already include another

type of data augmentation where the point cloud is rotated.

Cylinder3D also includes a similar type of data augmenta-

tion using the default settings. The results for RangeNet++

and SqueezeSegV3 on the test data are not improved by the

investigated augmentation. The results we report are ob-

tained without this additional data augmentation.

The result depend on the quality of the annotation. Since

different persons annotate different parts of the data there

may be differences in how the interface between classes is

annotated. Also, it is difficult to annotate some parts of each

scene consistently when visual images are not available

for each detail. Especially the interface between ground

and vegetation is difficult to distinguish. Both of these is-

sues may introduce slight differences between the data se-

quences on the border between classes.

The result may also depend on the division of the data

set in training, validation, and test. We have few scenes,

which result in few examples of each type of terrain and

scene content. The terrain in the test data is similar to the

scenes used in training and validation, but there are also dif-

ferences. For example, there are no ditches or gravel road

in the training or validation data. In our experiments, this

may affect the absolute value of the results, but not the rel-

ative comparison. One training scene contain asphalt and

five other scenes are off-road areas near forest edges. The

methods perform well in our experiments, despite the small

amount of data and relatively large within-class variation,

but more data with more diverse appearance of each class

and data for all types of interesting terrain is of course de-

sired.

5. Conclusion

In this paper, we have addressed the problem of seman-

tic segmentation of point clouds from UAV lidar scans of

outdoor scenes. We have compared four different methods,

which are all applied on single scans. The methods are eval-

uated on data with three different labels: ground, vegeta-

tion, and vehicle. The results show that semantic segmen-

tation methods developed for other applications can be ap-

plied also to lidar scans from UAV with good performance,

when training is applied for the UAV application. In our

experiments, the method Cylinder3D performs best for this

application with a mean IoU for the three classes of 95.3%.

It is evident that the scan-by-scan approaches for 3D se-

mantic segmentation is successful also on this type of data,

which is more sparse and has a different view of the scene

compared to data from street view scenes in automotive ap-

plications. The semantic segmentation result for the ground

class is very good and this can be used for ground segmen-

tation. The result raises an interest to investigate if it can be

further improved in future work using more annotated data

from more diverse scenes. It would also be interesting to

add more classes in the annotations and data from different

flight altitudes.



Figure 3: Semantic segmentation result showing details of the cars in the test scene for each method (left column) and the

misclassified points colored by their respective predicted labels (right column). Top row: Cylinder3D. Second row: SPVCNN.

Third row: RangeNet++. Bottom row: SqueezeSegV3. Best viewed in color. Each color represents one of the three semantic

classes: ground, vegetation, and vehicle.
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