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Abstract

Raman spectroscopy is a well-established method to de-

tect small amounts of potentially dangerous substances. In

a Coded Aperture Snapshot Spectral Imaging (CASSI) sys-

tem spatial and spectral information are mixed resulting in

an ensemble of compressed sensing measurements. A re-

construction method is applied to the Compressed Sensing

(CS) measurement to reconstruct a hyperspectral cube con-

taining the Raman spectra for the locations in the scene.

Traditional reconstruction methods based on regularization

such as Total Variation (TV) are time consuming which re-

duce the number of applications where the technology is

applicable. A machine learning reconstruction approach

using Convolutional Neural Network (CNN) is presented.

The loss function for the CNN is a combination of recon-

struction error and re-projection error of the reconstructed

Raman spectra. Simulation of CS-measurements of sam-

ples containing different chemical substances and different

concentration levels are reconstructed with high precision.

The reconstruction time using the novel machine learning

approach decreases several orders of magnitude.

1. Introduction

Improvised Explosive Devices (IEDs) are a common and

increasing threat in the society. To find these, it is desirable

to not only have a detection equipment capable of detecting

them but also from a safe distance. Laser-based techniques

e.g. Raman spectroscopy is a technique capable of this. By

illuminating the explosive or residues with laser light and

collect the scattered light these can be detected and iden-

tified. Today this technique has come a long way and for

many substances very small amounts can be detected. There

is a need to shortening the measurement times and also

to further decrease the influence of the background noise.

To achieve this Östmark et al. have used trace detectors

based on multi spectral imaging Raman spectroscopy [16]

and also hyper spectral imaging [15] based on Compressed

Sensing (CS) [6]. Even though the measurement times are

a few seconds for these detectors today’s CS-algorithms are

slow with computational times of several minutes. The con-

sequence is that it is not practical possible to measure on

large surfaces in real time. In this publication we investi-

gate the possibility to use machine learning and especially

Convolutional Neural Networks (CNN) to essentially speed

up the decoding of the measured data.

2. Related Work

Using deep learning and other machine learning ap-

proaches to reconstruct high resolution images from com-

press sensing measurements is a very active research field.

Higham et al. [11] propose a Deep Convolutional Auto-

Encoder approach (DCAE) where the encoding step is the

CS part i.e. applying a binary pattern to an image – and the

decoding step is the reconstruction of an image. The non-

learned hidden latent representation is a set of single pixel

CS-measurements and the DCAE is learned to reconstruct

the image from the latent CS-representation. They recon-

struct 128x128 pixel gray scale images (film) using solely

333 binary patterns (2% sub-sampling ratio) at 30 frames

per second. The reconstructed images are of high visual

quality and the reconstruction time has been reduced in or-

der of magnitudes.

Kulkarni et al. [14] present a two steps non-iterative

deep learning approach for reconstruction of high resolution

monochrome and color images. They propose a patch based

reconstruction algorithm which reconstruct fixed sized im-

age patches. The patches are then combined to reconstruct

a full size image. The reconstructed images are denoised to

improve the visual quality of the image. Kulkarni et al. [14]

present results from simulated CS-measurements but also

for CS-measurements from a real system.

Wang et al. [22] have developed a framework that

jointly optimize the binary pattern used to obtain the CS-

measurement and a CNN architecture for reconstruction the



hyperspectral cube using the CS-measurements. The sim-

ulated CS-measurements are from a Coded Aperture Snap-

shot Spectral Imaging (CASSI) type of system were spa-

tial and spectral information has been mixed. This is the

first, and only as far as the authors know, attempt to use

ML for reconstruction of a hyperspectral image from a CS-

measurement from a (simulated) CASSI-system. Recon-

struction of high resolution hyperspectral images require a

large amount of memory, Wang et al. [22] therefore pro-

posed a patch based reconstruction. The hyperspectral im-

age is divided into patches and the patches are reconstructed

to form a full resolution hyperspectral image. Two concate-

nated CNNs were used, a spatial CNN followed by a spec-

tral CNN.

Sun et al. [20] propose a dual path reconstruction of im-

ages from CS-measurements. The dual path proposal is mo-

tivated by the issue that many reconstruction methods fail to

reconstruct fine-scale details in the image – texture – while

coarse scale details – structure – is reconstructed fairly well.

The reconstruction is divided into two parts: geometry and

texture. The reconstructed geometry and texture is com-

bined to an image using ordinary addition. The structure-

texture decomposition using the G-norm was developed by

Aujol et al. [2]. The image structure is reconstructed using

a CNN while the image texture is reconstructed using an

attention based CNN, the reconstructed part are combined

using ordinary addition.

Gedalin et al. [9] present a patch-based CNN that recon-

struct hyperspectral images using CS-measurements from

a so-called Compressive Sensing Miniature Ultra-Spectral

Imager (CS-MUSI). DeepCubeNet, as they call their archi-

tecture, is based on a U-NET [19] CNN architecture.

Wu et al. [23] present a generative based approach for

image reconstruction. A Generative Adversarial Network

(GAN) is trained to generate image from a low dimensional

set of parameters z i.e. G(z) generates images using the

parameters z. A transfer function F is used to transform

images to CS-measurements. Let m be a vector of CS-

measurement, let F be a transfer function corresponding to

the CS-measurement and let G(z) be an image generator.

An image is reconstructed by finding the image using G(z)
that minimizing the distance between the measurements m
and the F (G(z)). If the ground true image is in the span of

the generator G(z), theoretical bounds on the reconstruc-

tion error is known.

As far as the authors know machine learning has never

been used to reconstruct Raman spectrum from an active

CASSI-system.

3. Raman spectroscopy

When light fall onto a molecule the photons can be elasti-

cally scattered by Rayleigh scattering and also inelastically

scattered by Raman scattering [18]. The Raman scattered

light is very week, typically only one photon per million.

Even though, it is still strong enough to be measured at

tens or even hundreds of meters distance. Since the Ra-

man light is scattered inelastically it carries information

about the scattering molecule, specificity the vibrations in

the molecule and since different types of molecules have

different vibrations the information from Raman scattering

is molecule specific. In a way it holds a sort of fingerprint

from the molecules. Figure 1 shows example of Raman

Figure 1. Raman spectra from ammonium nitrate and potassium

chlorate measured with 1064 nm excitation wavelength.

spectra from ammonium nitrate and potassium chlorate. It

can be seen that ammonium nitrate have two strong peaks

while potassium chlorate have three.

4. Coded aperture snapshot spectral imaging

To measure a 3D data cube (two spatial and one spec-

tral) with hyperspectral information without using a scan-

ning system is challenging since available detectors are 1D

or 2D arrays. In addition, the data collection is often a

compromise between spectral resolution, spatial resolution,

measurement time and light throughput. By using tech-

niques such as CASSI [10, 21, 1], it is possible to mix spec-

tral and spatial information and thereafter from this infor-

mation recreate all of the data, without sacrificing resolu-

tion. Typical CS-algorithms used for this are Two-step It-

erative Shrinkage/Thresholding (TwIST) [3] and Gradient

Projection for Sparse Reconstrution (GPSR) [8]. The fun-

damental steps of the CASSI system is shown in Figure 2.

The real hyperspectral data of the target (top-left) is imaged

on a coded aperture. The coded aperture consists of a bi-

nary pattern that either block the light or pass the light that

falls onto it. The parts of the imaged target that pass the

coded aperture is dispersed by a grating i.e. a spectrograph

(bottom-middle) and is recorded by a 2D detector (bottom-

right). The image read by the detector is a mixture of spa-

tial and spectral information of the target scene and can be

decoded by a computer to retain a hyperspectral data cube

(top-right). To increase the resolution (spatial and spectral)

of the recreated hyperspectral cube several images with dif-

ferent coded apertures can be measured [13].



Figure 2. Fundamental steps of CASSI.

5. Experimental

A sketch of a CASSI setup can be seen in figure 3.

A pulsed laser illuminates the target whereby the scat-

tered light is collected through a lens and imaged onto a

DMD (digital mirror array). The Rayleigh scattered light

is blocked by a notch filter that pass the Raman scattered

light through. A DMD consists of many small mirrors and

Figure 3. Sketch of the important parts in a CASSI system using a

DMD.

can be positioned in two different angles. One of them re-

flects the light onto a CMOS-camera that shows a white

light image of the target and the other angle reflects the

light onto a imaging spectrograph where the light is dis-

persed and recorded by an intensified CCD-camera. The

DMD also function as the coded aperture. A typical set-

ting of the DMD can be seen in Figure 4, white means light

going to the spectrograph while black means going to the

CMOS-camera.

6. Machine learning based spectrum recon-

struction

Lately, Machine Learning (ML) and Deep Learning

(DL) have been applied to solve inverse problems with the

goal to reconstruct information from transformed data or a

set of transformed data. An example of inverse problem is

to reconstruct a noise-free (clean) image from a noisy im-

age or a high-resolution image from a set of low-resolution

Figure 4. Example of a binary coded aperture shown by the DMD.

image (super-resolution). Inverse problems are commonly

ill-posed and require some regularization assumption on the

data to be solvable. Compressed sensing is an ill-posed in-

verse problem where one wants to reconstruct high resolu-

tion data using a set of compressed measurement.

CS in Raman spectroscopy using a CASSI system can be

viewed as a regression problem where one wants to recon-

struct the Raman spectrum from a set of CS-measurements.

The problem is introduced in a simplified formulation

where a single Raman spectrum is reconstructed and later

reformulated to reconstruct a full Raman Spectrum matrix.

Single Raman spectrum cannot be reconstructed instead a

vector (a line on the sensor) must be reconstructed simulta-

neously.

Here we describe it seen from one spatial point to later

include a whole line. Let x be a Raman spectrum (in a sin-

gle spatial point), y be a CS-measurement from a CASSI-

Raman system and let f be the transfer function from Ra-

man spectrum to a CS-measurement i.e.

y = f(x) (1)

Given a known transfer function f , as discussed in sec-

tion 7, one can compute the CS-measurement y for a given

Raman spectrum x. The goal is to train a DL-net that is

able to reconstruct the Raman spectrum x from the CS-

measurement y. One want to find a function that solves

x̂ = c(y;w) (2)

where c is a CNN with parameters w that decode the CS-

measurement y and reconstruct an estimate of the Raman

spectrum x̂. The reconstruction error is defined using the

L1-norm as

‖x− x̂‖
1

(3)

and express how well c(y;w) can reconstruct the Raman

spectrum x from the CS-measurements y. The L1-norm is

commonly used but other norms are also frequently used

as error measure. Given the transfer function f and the re-

constructed Raman spectrum x̂, the transfer function can be

applied to the reconstructed Raman spectrum resulting in an

emulated CS-measurement

ŷ = f(x̂) (4)



where ŷ is a emulated CS-measurement from the recon-

structed Raman spectrum x̂. The CS-measurement y from

the Raman spectrum x is known and the distance between

emulated CS-measurement ŷ from x̂ and y from x should be

small. The re-projection error is defined using the L1-norm

as

‖y − ŷ‖
1

(5)

which measure the distance between the original CS-

measurement and the re-projected CS-measurement of the

reconstructed Raman spectrum.

The loss-function to minimize with respect to the param-

eters w is a linear combination of the reconstruction error

and the re-projection error and is defined as

E(y) = ‖x− x̂‖
1
+ λ ‖y − ŷ‖

1
(6)

where λ is a weight term which balance the impact of the re-

construction error and re-projection error. x̂ and ŷ depends

on w through the CNN net c(y;w) and one wants to deter-

mine the weight w that minimize the error over a fixed train-

ing set. The parameters have been optimized using ADAM,

gradient based search with adaptive step length [12].

The line-based reconstruction of the Raman spectrum

from the vectors of CS-measurements is similar to the sim-

plified presentation above. Let X be a M×N matrix where

each column is a Raman spectrum containing M wave-

lengths. X contains N Raman spectra – the N columns in

the matrix – with measurement of M wavelengths defined

by the rows in the matrix. The transfer function f(X) maps

the matrix to a CS-measurement

Yi = f(X;Pi) (7)

where Yi is a CS-measurement vector of length N where

the binary pattern Pi has been used in the transfer function.

One wants to reconstruct the matrix X from a set of CS-

measurement vectors Y = (Y1, · · · , YN ) where different

patterns Pi have been used in the transfer function. Let

X = C(Y ;W ) (8)

where C is a CNN that reconstructs the M × N matrix

X containing the Raman spectra, Y = (Y1, · · · , YN ) the

corresponding CS-measurement vectors and W are the net

(weight) parameters. Again the loss-function for C(Y ;W )
is composed of two parts – the reconstruction error and the

re-projection error. The reconstruction error is defined as

the L1-norm between the ground truth matrix X and the

reconstructed matrix X̂ as
∥

∥

∥
X − X̂

∥

∥

∥

1

(9)

where X and X̂ are M × N matrices. Again the re-

projection error is computed by applying the transfer func-

tion with the corresponding patterns Pi to the reconstructed

matrix X̂ i.e.

Ŷi = f(X̂, Pi) (10)

and Ŷ = (Ŷ1, · · · , ŶN ). The re-projection error is defined

as
∥

∥

∥
Y − Ŷ

∥

∥

∥

1

. (11)

The loss-function is a weighted combination of the re-

construction error and the re-projection error

E(Y ) =
∥

∥

∥
X − X̂

∥

∥

∥

1

+ λ
∥

∥

∥
Y − Ŷ

∥

∥

∥

1

(12)

where λ is a weight that is used to balance the two terms.

Given a fixed CNN net structure – number of layers,

number and size of the convolutional kernels in each layer

and activation function – a (local) optima can be found by

minimizing the combined loss-function using adaptive step

length gradient search method. Deciding the architecture

of the CNN is a complex question that involves many ques-

tions based on hands-on knowledge and trial-and error. Cru-

cial CNN issues include:

• Transfer learning – can pre-trained CNN be used to

improve performance, decrease training time and limit

the size of the training set?

• Number of layers, type of layers and number of nodes

in each layer.

• Number of convolutional layers, size of the convolu-

tional kernels and type of pooling layer.

• Connection structure between the layers – fully-

connected, sparse-connected or skipping connections.

• Activation function.

In some cases well established recommendation for the

different parameters exist that can be used as initial val-

ues. For inverse problem and especially for CS-problem

the previous experience on parameter setting is limited and

for CASSI-Raman system no previous results have been

reported. Determine suitable parameter setting has been

largely using trail-and-error. Explicit net configurations that

has been evaluated are discussed in Section 8.

7. Method

One of the challenges with DL is acquiring or simulating

large amounts of training data. The data used in the train-

ing of a DL network should preferably be obtained with the

hardware for which the network is to be trained. The diffi-

culty with system acquired data is that a large dataset with

large variation needs to be recorded and annotated, which

is time consuming and costly. The alternative is to simu-

late data, this opens up the possibility of generating a lot of

(annotated) data, with large variation. The disadvantages of
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Figure 5. The simplified model of the CASSI system.

simulated data is the difficulty to model an existing system

including noise and distortions in a satisfactory manner.

The benefits of using a simplified simulation at this early

stage of research outweigh the use of recorded data and the

complex model of the physical system. It is a big challenge

how to apply DL models trained on simulated training-data

to data from the developed CASSI system. By using a sim-

plified model of the system the more theoretical inversion

(reconstruction) is in focus.

To create training data, a simplified model of the CASSI

system was generated. The simplifications that were made

were:

• No ”cross-talk” between adjacent rows, which means

that one row at a time is reconstructed. This can be

realized in reality by measuring every other row in the

mask, but twice as many measurements needs to be

recorded. The advantages of separating each row are

that it reduces the size of the neural network and also

reduces the time to train the network.

• Constant dispersion i.e. the mapping for a row is con-

stant regardless of the wavelength.

• No optical aberration.

• Lowering the spatial resolution initally to 64 × 64,

while keeping the spectral resolution to 340 bins.

• Four different masks, i.e. four measurements per

scene.

This results in a CASSI model that each row in the hyper-

spectral cube can be illustrated according to Figure 5.

Figure 5 shows how the light, for different wavelengths,

passes through the simulated CASSI system. The hyper-

spectral cube for a specific row (far left) hits the mask,

blocking parts of the light. Then the partially blocked cube

meets a dipersive element and is shifted one pixel for each

wavelength. This light hits the detector (CCD) as spa-

tially and spectrally mixed data. Because the detector is

monochrome, it measures the intensity of the light regard-

less of the wavelength and the detected signal becomes sim-

ilar to the image on the computer on the far right. This rep-

resents the measured data that is later used to recreate the

hyperspectral cube for this specific row.

The generation of training data was controlled by an al-

gorithm that randomly plotted Raman spectra on a 64x64

image. The spatial substances were in the form of rectan-

gles or ellipses that were rotated and scaled randomly. The

tool created both a hyperspectral cube and a measurement

of this cube. With the help of the tool, a number of param-

eters could be controlled to obtain the desired training data:

• Number of substances in the image.

• Size of the substance.

• Which substances to use.

• Magnitude of the spectra.

• Magnitude of additive noise in the hyperspectral cube

and measurement.

8. Reconstruction network

Since DL has not been applied to CASSI-Raman to the

authors’ knowledge, DL reference points were sought in a

similar but different sub-area, namely Compressive Imaging

(CI). Within CI, both pure Fully Connected (FC) and CNN

networks [11, 14] and generative models [23, 4] have been

used successfully to invert one-pixel camera measurements.

Common to all these networks is to take the measurements

y in an FC layer as a first step and transform the number of

nodes to a desired amount which then goes into a CNN with

several layers which gives out the reconstructed image.

Input to the model is a (n0 = K × (N + M − 1) =
4×(64+340−1) = 1612) long 1D array, where the spatial

and spectral data is modulated. Output from the model is

n1 = N × M = 64 × 340 2D matrix, where columns

represent spatial position and rows spectral data. Thus every

output from the model is a reconstructed row with one to

one mapping to a row of the mask.

8.1. Encodedecode architecture

In [11, 14], both used a FC layer as input followed by a

CNN part with the same spatial resolution as the target out-

put. Considering the size of the data an unmodified pipeline
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Figure 6. Network architecture, where FC is fully connected layers

and Conv is transposed 2D convolution layers.

would yield an enormous first FC layer > 30M parame-

ters compared to 1 − 4M parameters in the CNN layers.

To many parameters in the architecture increase the risk of

over-fitting and increased time to train. Furthermore, the FC

part will dominate the network in relation to the CNN part.

With the current simplified model, four masks are used

for each measurement, which result in n0

n1

≃ 7% sub-

sampling ratio. Our hypothesis is that the input data can be

compressed further with trained parameters in the FC layer

and this is based on two insights.

• The Raman spectra is more sparse than a regular im-

age/HSI, that is for non-zero elements k in x, kraman <
kimage. In [7], the relationship m ≥ k logN/k, holds

for CS-measurements, where N is the resolution of the

hyperspectral image and m is the minimum number of

measurements. In [5], images could be recovered with

mimage < 3% ⇒ mraman < mimage sub-sampling ratio.

• The second argument, which is more empirical, shows

that generative networks such as GAN [23, 4] can re-

construct images with more information and size in

parity with n1, from a 1D vector as input to the net-

work with a size of ng = 100 variables (ng/n1 ≃
0.5%).

Therefore, to reduce the number of parameters in the FC

part, an FC layer is added, with the change that the first

FC samples down input n0 → 100 − 200 nodes and the

second FC layer samples up to the desired number of nodes

in the CNN part. This method reduces the parameters in the

FC part from about 35M to about 2-4M depending on the

number of nodes in the sampling step and the number of

kernels of the input in the CNN part.

The decoding part of the architecture is inspired by [4]

which used [17] architecture. The generator in [17] recon-

structs the image from a 1D vector, uses transposed 2D con-

volution to upsample a 2D image to the desired size. The

output from the encoding part of the network is reshaped to

(21, 4, k) where transposed 2D convolution layers upsam-

ple the data to (340, 64). All filter kernels have size 3 × 3,

stride (2, 2) and batch normalization and ReLu activation

after each convolutional layer except the last layer. The

number of filter kernels are decreased to half the number

from the previous layer, except for the last, which have one

kernel, as seen in Figure 6.

9. Results

Two different datasets were generated, both containing

up to 16 Raman spectra in one image but with the differ-

ence that in the first set all spectra were used in both the

training and validation set (see Section 9.2) while in the sec-

ond set only half of the spectra were used during the train-

ing i.e. during the validation unknown spectra could appear

(see Section 9.3). Each dataset is built up from 4 600 hyper-

spectral images resulting in 260 000 rows in the test set and

33 000 rows in validation set.

9.1. Data Generation

When generating the target surface, a number of rectan-

gles and ellipses were randomly positioned as targets and

placed on the target surface. See Figure 7 for an exam-

ple of a target surface with the different targets placed and

simulated measurement. The targets were then assigned a

Raman spectra. Raman spectra were randomized by letting

a spectrum consist of three to six Raman peaks with Ra-

man shifts in the range 300 − 700 cm−1 and thereafter a

white noise background was added. Later in the simulated

measurement, a white noise measurement was also added.

Figure 7 shows examples of Raman spectra generated with

background noise added.

9.2. Training and reconstruction from limited Ra
man spectra dataset

In the first test, only 16 different Raman spectra were

used in both the test and validation data sets. The back-

ground noise in the hyperspectral image was 0.5% and 1%

in the simulated measurement. In the validation set, all Ra-

man spectra were reconstructed correctly, with relatively

correct magnitude and correct spatial position, except when

the SNR became too low. The model was able to reconstruct

Raman spectra, which were visible in a single spatial pixel,

but the reconstruction was smeared to the neighboring pix-

els. The model was also able to reduce the additive noise.

Magnitude picture, correlation of spectrum per spatial pixel

and individual spectra are seen in Figure 8.

When the input contained a Raman spectra that had not

been included in the test data, two reconstruction errors

could occur, if a peak in the unknown spectra shared peak



Figure 7. Examples of targets placed on the target surface (upper)

and simulated ICCD measurement of the target surface (lower).

Figure 8. Flattened images of ground truth, reconstructed image

and correlation between the two (upper part). Raman spectra at

three different positions (lower part). For the dataset where all

spectra were used during training.

with one of the known spectra, that part of the spectra was

reconstructed but nothing more, i.e. a partial reconstruction

of the part of the spectra the model knew. The second re-

construction error that could occur was that a peak in the

unknown spectra roughly shared one or more peaks with a

known spectra, then the whole substance was reconstructed

as the nearest known spectra, i.e. a misclassification.

9.3. Training and reconstruction from broad Ra
man spectra dataset

Counts Distribution

PRS 16 25%

SRS 128 25%

RRS - 50%
Table 1. Data distribution

Figure 9. Flattened images of ground truth, reconstructed image

and correlation between the two (upper part). Raman spectra at

three different positions (lower part). For the dataset where half of

the spectra were not used during training.

The second test consisted of 16 different primary Raman

spectra (PRS), where four of these were used in each im-

age, 128 different secondary Raman spectra (SRS) where

four of them were in each image and eight completely ran-

dom Raman spectra (RRS) in each image (Note possible to

be included in an image), see Table 1. This meant that in the

validation set, half of the spectra were not included in the

training set (the network has never seen the Raman spectra).

Both the background noise and the measurement noise were

increased to 1% and 3.5%, respectively, which is considered

a more realistic and more difficult noise model for the net-

work to train on. This set was constructed partly to train a

more robust and general reconstruction, but also to analyze

the impact of reconstructing completely unknown spectrum

but still maintain focus on ”important spectra” (PRS). Also

note that many of the spectra in the test data with high prob-

ability will only appear for the model once or a few times.

Like the first test, this model was able to reconstruct the

PRS given an adequate SNR. SRS was reconstructed either

completely or partially, while RRS was more likely to be re-

constructed only partially or not at all. In a small part from

the validation dataset, spectra from RRS with low SNR,

peaks or pairs of peaks that did not match the reference data

appeared in the reconstruction, unlike the first test these in-

correct peaks were relatively close to the reference peak and

it is unclear how large impact the relatively large noise can

generate ”ghost peaks” in reconstructed spectra.

In Figure 9, where an image from the validation set

has been reconstructed, only two substances contain known

spectra from PRS and SRS (noted with ”o” and ”x”) and

the rest from RRS (not included in the training). In the

flatten image of the reconstructed cube, it can be seen that

RRS substances are suppressed, while the correlation image

shows that partially correct reconstruction is achieved.



10. Conclusions

We have demonstrated how to use deep learning to

reconstruct hyperspectral Raman cubes from simulated

CASSI measurements. By using DL instead of conventional

reconstruction algorithms the speed of the reconstruction

has increased several orders of magnitudes (< 1 s for DL

vs. > 20 min for conventional) making it possible to do real

time measurements with CASSI Raman to cover large sur-

faces in reasonable time. The results show that it is possible

to use a relative small and thereby fast trained convolutional

neural network to reconstruct images with good spectral and

spatial resolution and precision. By increasing the number

of Raman spectra in the training we have showed that the

network is capable of a more generalized reconstruction and

is more robust against misclassified spectra.
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