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Abstract

The application of infrared hyperspectral imagery to ge-

ological problems is becoming more popular as data be-

come more accessible and cost-effective. Clustering and

classifying spectrally similar materials is often a first step

in applications ranging from economic mineral exploration

on Earth to planetary exploration on Mars. Semi-manual

classification guided by expertly developed spectral param-

eters can be time consuming and biased, while supervised

methods require abundant labeled data and can be diffi-

cult to generalize. Here we develop a fully unsupervised

workflow for feature extraction and clustering informed by

both expert spectral geologist input and quantitative met-

rics. Our pipeline uses a lightweight autoencoder followed

by Gaussian mixture modeling to map the spectral diver-

sity within any image. We validate the performance of our

pipeline at submillimeter-scale with expert-labelled data

from the Oman ophiolite drill core and evaluate perfor-

mance at meters-scale with partially classified orbital data

of Jezero Crater on Mars (the landing site for the Persever-

ance rover). We additionally examine the effects of various

preprocessing techniques used in traditional analysis of hy-

perspectral imagery. This pipeline provides a fast and ac-

curate clustering map of similar geological materials and

consistently identifies and separates major mineral classes

in both laboratory imagery and remote sensing imagery. We

refer to our pipeline as “Generalized Pipeline for Spectro-

scopic Unsupervised clustering of Minerals (GyPSUM).”

1. Introduction

Unlike a three-channel RGB image, imaging spec-

troscopy, or hyperspectral imaging (HSI), typically mea-

sures radiance values for hundreds of narrow wavelength

bands. Material composition and physical properties deter-

mine light absorption and scattering behavior [23], allowing

HSI to be used for identification of materials through their

spectra. Well-designed instruments can resolve individual

absorption features, and images can be used to quantify

material abundance and physical properties – tasks that are

generally difficult with multispectral imaging, which mea-

sures radiance for a few, typically broad wavelength bands

[9, 32, 28]. Geological HSI is used for natural-hazard risk

assessment and mitigation, mineral and oil exploration and

production, and Earth system modeling, among other ap-

plications [2]. With increased governmental, industrial, and

academic interest in and access to this technology, advanced

analysis techniques for the rapidly growing wealth of hyper-

spectral images are becoming more valuable [2].

Typical tasks for HSI analysis of geological targets in-

clude classification, segmentation, anomaly detection, and

unmixing [2] and use instruments that target the visible

to mid-infrared wavelengths (VIS-MIR, ∼400-20000 nm)

for mineral, ice, and atmospheric gas identification [9].

Semi-manual investigation is still common in these tasks

[4, 6, 22]. One common approach for classification by ex-

pert spectral geologists is to apply knowledge of likely ge-

ologic processes occurring in the study target to isolate im-

portant known absorptions and use simple algebraic opera-

tions (“spectral parameters”) to map relative abundances of

materials. Then, a system of thresholds and rules is used

to classify pixels at a granularity determined by the goals

of the study. Spectral parameters are also commonly used

to guide basic template matching approaches of classifica-

tion, such as spectral angle mapping or spectral feature fit-

ting, which rely on extracted type spectra from the image

or library spectra [11]. While many attempts to partially

automate this interactive and often labor-intensive work-

flow have been made, the same three issues are typically

left unresolved: (1) analysis is time-consuming; (2) human

bias can lead to false positives or negatives; and (3) expert

knowledge is needed to understand the interactions between

non-unique absorptions across a large space of possible ma-

terials [11, 6]. Additionally, many geologists do not have

the programming or machine learning experience required

to develop more sophisticated approaches.

Supervised learning partially resolves the issues with

semi-manual analysis by automating feature extraction [19].

However, creation of ground-truth classification maps is ex-



pensive and requires expert input, which depends on inter-

pretation and can be biased. Due to these challenges, only

a limited collection of high-quality, fully-labeled training

images for geological targets are publicly available. Large

spectral libraries of minerals have been developed [28, 32],

but the full range of natural spectra is large [43] and libraries

do not contain the spatial context that exists in HSI. There

are infinitely many naturally-occurring infrared spectra be-

cause they are combinations of pure mineral spectra which

are modified further by varying abundances and physical

properties. Thus, large spectral variability and limited train-

ing data availability make generalizable supervised classifi-

cation a difficult task in geological HSI analysis.

In this work, we develop a novel autoencoder-based (AE)

feature extraction technique coupled with Gaussian mixture

modeling (GMM) for fully unsupervised classification of

single HSI images in the near-infrared (NIR, ∼ 1000-2500

nm) . In addition, we quantify the effects of traditional

preprocessing methods on the pipeline. We employ both

quantitative metrics and qualitative expert interpretation to

determine algorithmic performance on two geological HSI

datasets, which include a labelled laboratory image from the

Oman Drilling Project [27] and satellite images from the

Compact Reconnaissance Imaging Spectrometer for Mars

(CRISM) [34], including Jezero Crater, where the Persever-

ance rover recently landed (Section 3).

2. Previous Works

Unsupervised clustering of HSI is challenging for three

reasons: (1) Noise profiles vary widely depending on tar-

get, imaging conditions, instrumentation, and calibration,

and can have distinct spatial or spectral structure [7, 29, 34];

(2) Performing dimensionality reduction of HSI data with-

out losing important information is difficult [43]; (3) Many

clustering approaches are computationally intensive and

rely on distance metrics which become less meaningful as

dimensionality increases [35, 47].

A commonly used unsupervised clustering algorithm is

principal component analysis (PCA) and k-means cluster-

ing [39]. However, k-means favors equal sized clusters (typ-

ically a poor assumption for geological targets) and PCA

works well in the case of well-separated, convex clusters

in the original space, which is uncommon in hyperspectral

data [3]. Deep Embedded Clustering (DEC) [46] and Sparse

Manifold Clustering and Embedding (SMCE) [17] fail to

consistently outperform PCA + k-means in HSI datasets

[47]. Spectral-Spatial Diffusion Learning (DLSS) [35] is

a state-of-the-art unsupervised learning algorithm for HSI

[47], but does not scale well with respect to memory and is

only applicable to small datasets [35, 47]. Mou et al. pro-

posed a Conv–Deconv (convolutional/encoder - deconvo-

lutional/decoder) network for unsupervised spectral-spatial

feature learning, but it requires labels for fine-tuning [33].

Nalepa et al. [36] used a KL divergence based objective to

learn parameters for clustering. However, this method does

not outperform GMM-based methods on the Salinas Val-

ley dataset, which is most similar to the Oman and CRISM

datasets, and it is significantly slower than both k-means

and GMM [36]. Infinite mixture of infinite GMM, I2GMM,

is an unsupervised method that has been shown to be suc-

cessful on CRISM data [13, 30]. This method results in

component features that are more difficult to interpret in

comparison to AE extracted features [30].

Automated determination of the number of endmem-

bers is crucial to successful HSI analysis. The unsuper-

vised Hyperspectral Signal identification by minimum error

(HySime) algorithm for endmember optimization infers the

signal subspace in hyperspectral imagery [1], which yields

comparable or superior results compared with Harsanyi-

Farrand-Chang (HFC) [24] and Noise-Whitened HFC [8]

eigen-based Neyman–Pearson detectors. HySURE [38]

outperforms HySime for low SNR synthetic data settings

but is less consistent on real datasets. Thus, we use HySime

to determine the optimal number of clusters to produce.

To best address the three issues outlined above, we

develop an AE-GMM methodology with optional post-

processing (GMM+) with HySime optimization of end-

members. We directly compare the performance of this

new methodology, which we call GyPSUM, to semi-manual

workflows and the industry standard PCA and k-means

methodology.

3. Background

3.1. Autoencoder

Autoencoders (AE) [44] are a feature-extraction tech-

nique that consists of an encoder network Eφ and decoder

network Dθ parameterized by φ and θ respectively. The en-

coder Eφ maps inputs x ∈ R
N to a latent representation

z ∈ R
D. For a single hidden layer encoder, z is given by

z = W2σ(W1x+ β1) + β2 (1)

where W1 and β1 are the weights and the bias vector of

the hidden layer, W2 and β2 are the weights and the bias

vector of the output layer, and σ represents the nonlinear

activation function. The encoded representation z is used to

produce a reconstruction x̂ through the decoder Dθ. For a

single hidden layer decoder, x̂ is given by

x̂ = V2σ(V1z+ γ1) + γ2 (2)

where V1 and γ1 are the weights and bias vector of the

hidden layer, V2 and γ2 are the weights and bias vector of

the output layer, and σ represents the nonlinear activation

function. Typically, the loss function is a reconstruction loss

‖x− x̂‖2.



3.2. Expectation Maximization Clustering Models

Expectation maximization (EM) [3] methods calculate

the maximum likelihood estimate (MLE) parameters θ (in-

dependent of the decoder Dθ parameters) of a statistical

model. This model depends on unobserved latent variables

Z for a dataset X and likelihood function L(θ;X,Z) =
p(X,Z|θ). In particular, EM clustering algorithms solve

for the optimal clustering given a number of clusters and

cluster probability distribution.

Maximizing the marginal likelihood function L(θ|X) =
∫

Z
p(X,Z|θ)dZ is often intractable. Thus, EM algorithms

iteratively solve the marginal likelihood. These steps t are

repeated until convergence:

(1) Defining

Q(θ|θ(t)) = E
Z|X,θ(t) [logL(θ;X,Z)]. (3)

(2) Improved estimates of θ are computed through

θ(t+1) = argmax
θ(t)

Q(θ|θ(t)). (4)

GMM [3] is an example of an EM clustering algorithm with

a Gaussian distribution for the cluster probability model.

Unlike GMM, k-means does not optimize a probabilistic

model. This biases k-means towards equal sized clusters.

3.3. Quantitative Metrics

We use multiple unsupervised cluster-separation metrics

for evaluation. The Calinski-Harabasz (CH) index [5] for

data E with nE pixels and k clusters is

s =
tr(Bk)

tr(Wk)
×

nE − k

k − 1
(5)

where

Wk =

k
∑

q=1

∑

x∈Cq

(x− cq)(x− cq)
T

Bk =
k

∑

q=1

nq(cq − cE)(cq − cE)
T

with Cq as the set of points in cluster q, cq the center of

cluster q, cE the center of data E, and nq the number of

points in cluster q. CH scores are higher when clusters are

dense and well-separated but penalize non-convex clusters.

The Davies-Bouldin (DB) index [12] is defined by

b =
1

k

k
∑

i=1

max
j

Rij (6)

where

Rij =
si + sj
dij

is a cluster similarity measure between clusters i and j. si is

the cluster diameter and dij is the distance between the cen-

troids of clusters i and j. This score is lower when clusters

are dense and well-separated, unlike the CH index.

3.4. Oman Dataset

Ocean crust is typically technologically challenging to

drill and investigate in situ. However, the Oman ophio-

lite was tectonically thrust on top of stable continental crust

[40, 20] and it is the subject of the International Continental

Scientific Drilling Program’s Oman Drilling Project [27].

Our first dataset consists of a few images selected from >
31 TB of drill core images ( > 3.2 km of imaged slices of

∼ 5 cm diameter extracted rock core). Images were col-

lected in-lab with Caltech’s custom imaging spectrometer

with a spectral resolution of ∼6 nm and a spatial resolu-

tion of ∼0.25 mm/pixel at wavelengths from 900 to 2600

nm. These high SNR images have high spectral variance

compared with typical imagery, but contain rare, low spa-

tial occurrence mixtures that are hard to isolate.

3.5. CRISM Dataset

CRISM is a push-broom visible/infrared imaging spec-

trometer aboard the Mars Reconnaissance Orbiter that has

been orbiting Mars since 2006. It has collected hundreds

of thousands of images of the planet’s surface in varying

image modes ranging from coarse multispectral imagery to

high spatial resolution targeted imagery at 18-40 m/pixel at

spectral sampling of ∼6.5 nm across the wavelength range

of 362-3920 nm [34]. HRL000040FF (∼40 m/pixel) is

an image of the Jezero Crater rim and an ancient crater

lake delta that is the main target of exploration for the re-

cently landed Perseverance rover [18, 21]. We also include

FRT0000634B1 (∼18 m/pixel), an image from the Claritas

Rise that shows evidence of hydrothermal alteration [15].

Challenges to clustering include systematic cross-track de-

pendent noise, pixels that always represent only mixtures

due to coarse spatial resolution, subdued absorptions in-

dicative of minerals, and atmospheric residual absorptions

which overlap with mineralogically important absorption

features.

4. GyPSUM Method

Our pipeline consists of preprocessing detailed in Algo-

rithm 1, feature extraction and clustering detailed in Algo-

rithm 2, and an optional post-processing step.

4.1. Preprocessing

We implement two similar preprocessing workflows in

the case of laboratory imaging versus orbital CRISM im-

agery detailed in Algorithm 1. We begin with reflectance

data and clip values between 0 and 1 to remove nonphys-

ical outlier spikes before trimming the data in the spectral

dimension to between 1050 and 2550 nm; this spectral sub-

set contains the absoprtion features of greatest interest for

our studies. We normalize each spectrum with the per-pixel

1included in the supplementary materials



ℓ2 norm and reshape the data to a flat vector of pixels. We

then apply a mask created from previous work to remove

background material. While not necessary for generalized

implementation, we find that this increases the total vari-

ance captured by a fixed dimension of latent components.

Finally, we optionally divide out a linear convex hull com-

puted for each spectrum, a technique (continuum removal,

CR) commonly used to visually interpret subtle absorption

features [10].

Algorithm 1 Preprocessing

Data: X HSI cube n × m × w, optional mask M

Result: X̂ preprocessed vectorized image p × w

X← ClipReflectance(X) % clip values from 0 to 1

if CRISM then
X← RatioImage(X) % divide by ratio spectrum

end

X← ClipWavelengths(X) % clip from 1050 to 2550 nm

X←X./‖X‖2 % per pixel normalization

if mask then
X← mask(X, M) % mask out unwanted pixels

end

if not CRISM then
X← RemoveContinuum(X) % get convex hull

end

X̂ = Flatten(X)

In the case of orbital CRISM imagery, we start with

MTR3 products from the Planetary Data System [41], con-

sidered the highest-fidelity publicly available CRISM im-

agery. A sophisticated set of empirical and statistical cor-

rections have been pre-applied to this data to remove spikes,

correct for imaging geometry and gimbal motion, and re-

move atmospheric contamination to retrieve approximate

surface reflectance. It is noteworthy that the method used

for atmospheric correction is imperfect and leaves consider-

able CO2 absorption residuals [31]. One common way that

atmospheric residuals and systematic cross-track dependent

noise is removed in CRISM imagery is through spectral ra-

tioing with bland material within the image, which also em-

phasizes minor mineral components [15, 4]. We optionally

manually develop a ratio spectrum from a mean of many

bland pixels for each image and divide it out of every pixel

of the image.

4.2. Feature Extraction

In order to develop a general approach that performs

well across different noise settings, we use an autoencoder

framework, which has been shown to perform well at de-

noising [44]. We train on a per-image basis to leverage

the inherent mineralogical similarity within an image target.

For each image, we train a lightweight autoencoder to learn

a per-pixel embedding that is of a lower dimension d than

the input image space w. The training data for the image-

specific autoencoder consists of the entire hyperspectral im-

age of interest with p pixels with w channels each. The in-

put to the autoencoder is a single pixel x ∈ R
w, which is a

single w channel spectrum. The encoder network Eφ, pa-

rameterized by φ, generates learned features z ∈ R
d. Then,

the decoder network Dθ, parameterized by θ, generates a

reconstructed spectrum x̂ ∈ R
w. The dimensionality d of

the learned feature space Z ∈ R
d is determined by HySime

[1]. The learned features z are then used for clustering.

Algorithm 2 Feature Extraction and Clustering

Data: X̂ vectorized image p × w, optional spectral an-

gle threshold λ, optional embedding size d, optional

number of clusters k
Result: C clusters p × k
if d is not given then

d← HySime(X̂)

end

Z← Autoencoder(X̂ , d) % train with preprocessed data

if k is not given then
k ← 2d

end

C ← GaussianMixtureModel(Z, k)

if PostProcess then
C ← PostProcess(C, λ)

end

We use a lightweight two-hidden-layer encoder and de-

coder architecture for training efficiency as well as im-

plicit regularization. We use rectified linear unit (ReLU)

as the activation function. Using ReLU instead of output-

constrained activation functions, like sigmoid and hyper-

bolic tangent, allows for faster convergence [25]. We use

Adam [49] as our optimizer with a learning rate of 10−3 and

train until convergence. Instead of the typical mean squared

error reconstruction loss, we use the spectral angle (SA) be-

tween the input x and reconstruction x̂, which is defined

by

SA(x, x̂) = arccos

(

〈x, x̂〉

‖x‖2 ‖x̂‖2

)

. (7)

Using spectral angle allows for invariance to relative magni-

tude, which results in decreased sensitivity to network ini-

tialization, and increases the cost in small scale variation,

which helps to capture small features in the spectra. Learn-

ing a per-pixel embedding for each image allows for robust-

ness to various mineral abundance distributions and varying

systematic instrumental and environmental noise.

4.3. Clustering

We cluster the learned embeddings from the autoencoder

on a per-pixel basis using a Gaussian mixture model with

full covariance matrices. Unlike k-means, GMMs are robust



F1 NMI ARI

NCR CR NCR CR NCR CR

11 Cl. 0.260 0.258 0.254 0.289 0.122 0.185

20 Cl. 0.243 0.236 0.282 0.313 0.109 0.149

GMM+ 0.157 0.149 0.332 0.402 0.170 0.221

PCA+ 0.132 0.129 0.223 0.238 0.148 0.181

Table 1: Supervised Metrics: Oman. F1, Normalized Mutual

Information (NMI), and Adjusted Rand Index (ARI) using ex-

pert labels (11 classes). Clusters generated using non-CR (NCR)

and CR embeddings from GMM (11 and 20 clusters), GMM with

twice the HySime output (52) and post-processed to 11 (GMM+,

full GyPSUM pipeline), and PCA (20 components) + k-means (52

clusters) + post-processing to 11 (PCA+). Best score for each met-

ric is bolded.

to small clusters and can separate clusters that are not well-

separated in space. Since the features can be interpreted as

corresponding to different minerals, enforcing feature inde-

pendence would artificially prevent mixtures of minerals to

be identified. To determine the number of clusters, we use

twice the number estimated by HySime [1] on the spectral

data since HySime tends to underestimate the number of

distinct endmembers [38]. We can then use post-processing

to reduce the number of clusters to a manageable number.

4.4. PostProcessing

Because we fix the number of classes before clustering

to twice the estimate from HySime [1], we optionally post-

process output clusters by merging redundant classes based

on their mean spectra. We use spectral angle as a similar-

ity metric between mean spectra of each cluster. We iter-

atively combine pairs of clusters with the smallest spectral

angle between cluster means until the minimum spectral an-

gle between cluster means exceeds a user-defined threshold

λ.

4.5. Evaluation

Classification of geological materials is interpretive by

nature, with necessary class specificity dependent on the

application. For example, initial expert classification maps

for the Oman core data did not differentiate two spectrally

distinct zeolite minerals because they did not inform the

scientific goal of determining trends in hydration, forma-

tion temperatures, and water chemistry with depth. To as-

sess performance of varying preprocessing techniques, au-

toencoder architectures, embedding sizes, and number of

clusters, we apply visual qualitative analytical methods and

compare against PCA + k-means, which is used widely

in software for unsupervised HSI classification. We hand-

select regions of interest (ROIs) in each image covering the

range of important mineralogical diversity determined by

two spectral geologists in the case of the laboratory data,

and through both a partially expert-labelled image and liter-

ature results across many publications for the CRISM data

[45, 26, 21, 15, 42]. We visually assess each class present

within the ROIs to determine if the class is consistently

mapping similar material across a large subset of the im-

age. Additionally, we assess whether cluster means of the

classes comprising the pixels from the ROIs contain the ab-

sorption features representative of the mineralogy, and if

mixing with other distinct mineralogy is muted.

In addition to the qualitative evaluation, we employ sev-

eral quantitative metrics to evaluate our methods. We com-

pute metrics that evaluate the separation and density of clus-

ters for each variation of our pipeline. In particular, we use

unsupervised metrics (CH index (Eq. 5) and DB index (Eq.

6)) and supervised metrics (F1, Normalized Mutual Infor-

mation (NMI), and Adjusted Rand Index (ARI)) [37] for

the Oman dataset, which has spatially complete expert la-

bels available.

5. Experiments and Results

We apply our methods to two datasets and show results

for one image from each with additional images in the sup-

plement. For consistency in presentation of classification

images, we show the results for 20 latent embeddings and

20 clusters in Figures 2 and 4 despite better quantitative

metrics for different combinations for both images (Tables

1, 2, and 3). Colors are matched between images to maxi-

mize the pixel-wise color similarity of the largest clusters.

We perform no post-processing to selectively remove re-

dundant endmembers for classification images. The 11-

class expertly labeled image for the Oman dataset (Fig. 1a)

and the 6-class partially classified Jezero crater image 3a

are displayed without color matching.

5.1. Oman Core Evaluation

In this image, we expect to map different assemblages

of the mineral groups chlorite, pyroxene, zeolite, epi-

dote, prehnite, amphibole, and gypsum, with other miner-

als present but spectrally inactive in this wavelength range.

Several distinct veins not clustered using PCA and k-means

or mapped in the expert classification are clearly identified

with our pipeline (i.e. multiple orange � zeolite veins to-

wards the bottom of the image in Fig. 1c), and speckle

noise abundant in the PCA case (Fig. 1b) is clearly re-

duced. The autoencoder uniquely maps subtle cross-cutting

prehnite mixing in an epidote-chlorite vein (labeled 1 in Fig.

1a). The autoencoder also cleanly separates gypsum from

zeolite in a large vein in the center of the image where PCA

struggles (neon green �, slate blue � in Fig. 1a, grey �,

purple � in Fig. 1c).

The main challenge for the current implementation is



(a) Expert Labels (b) PCA + K-Means (c) AE + GMM on

Spectral Data

(d) AE + GMM on CR Data

Figure 1: Oman core ROI with different methods (c) and (d) clearly capture the epidote vein (dark green � below 1 in (a), cobalt blue

� in (c) (d)), while separating distinct prehnite/epidote mixtures (dark blue � in (a), blue-green � in (c) (d), labeled 1). PCA + k-means

(b) fails to identify this distinct mixture. All methods struggle with distinctly mapping amphibole (labeled 2, turquoise � in (b)). Full size

core images are available in the supplement.

(a) (b)

Figure 2: Comparison of mean spectra for continuum re-

moved (CR) and non-CR clustering on Oman core image (off-

set for clarity) (a) Cluster means on spectral data from Fig. 1c

(left), with CR duplicate (right) (b) Cluster means of CR data from

clusters in Fig. 1d. Key unique absorptions are at 1560 nm (epi-

dote), 1750 nm (gypsum), and 1480 nm (prehnite). Important fea-

tures are correlated with the vertical dotted lines.

separating out rare, low spatial area mineral classes. With

all combinations of hyperparameters, there are no distinc-

tive amphibole (turquoise � in expertly labeled image from

Fig. 1a, combination of absorptions at 1390 nm, 2320 nm,

and 2390 nm) or pyroxene (pink � in expertly labeled im-

age from Fig. 1a, strong 1050 nm with no sharp absorptions

2200-2400 nm) clusters mapped. These classes each repre-

sent < 1% of pixels in the image, and the amphibole is only

present in subtle mixtures with other minerals, resulting in

weak diagnostic absorptions.

Although CR exaggerates spectral features of interest,

the CR-learned feature space does not seem to have stronger

clustering properties. The non-CR clusters outperform

the CR clusterings for the unsupervised metrics (Table 2).

Methods using non-CR embeddings also perform better in

with the F1 supervised metrics (Table 1), though NMI and

ARI are both slightly improved by CR. NMI and ARI met-

rics for the full implementation of GyPSUM for both spec-

tral and CR data are substantially better than PCA + k-

means results (Table 1). Supervised metrics are comparable

to results presented for a suite of unsupervised methodolo-

gies on a small subset of a Cuprite, Nevada AVIRIS image

which contains fewer, arguably more distinct classes [48].

5.2. CRISM Evaluation

For the Jezero Crater image, we expect to map different

assemblages of olivine, pyroxene, carbonate, Fe/Mg smec-

tite, hydrated silica, and Al-rich phyllosilicates. We ef-

fectively differentiate distinct units of varying olivine and

pyroxene, which are primary minerals that have not been

altered by interaction with water. In this scene, distinct

units with variable chemistry or grain size of these spec-

trally active components have been identified [16, 21, 26].

Additionally, we map varying characteristics of carbon-

ate/olivine mixtures (purple �, cyan �, magenta � in Fig.



(a) Partial Expert Classification (b) PCA + K-Means (c) AE + GMM on

Unratioed Spectral Data

(d) AE + GMM on Ratioed Data

Figure 3: Map projected Jezero Crater clustering with different methods (a) Partial expert classified mineral map overlaying greyscale

image (olivine, yellow �; pyroxene, orange �; carbonate, green �; Fe/Mg smectite, blue �; silica, magenta �; unclassified, gray �. 6

total classes). Note the delta feature in the top center of the image, with distinct pyroxene-bearing unit bounding its edge below (tan �,

labeled 2). A spatially coherent carbonate unit branches off to the right at its top (purple �, labeled 1).

(a) (b)

Figure 4: Comparison of mean spectra for ratioed and un-

ratioed clustering on Jezero Crater image (offset for clarity)

(a) Cluster means on spectral data from Fig. 3c (left) with ratioed

duplicate (right) (b) Cluster means of ratioed data from clusters in

Fig. 3d. Key unique absorptions are at 1900 nm (water in miner-

als), 2300 nm and 2500 nm (carbonate), 2300 nm (and no 2500

nm; Fe/Mg smectite), a broad absorption from 1050 nm to 1800

nm (olivine), and a broad absorption from 1300 nm to 2300 nm

(pyroxene). Important features are correlated with the vertical dot-

ted lines.

3d), and various Fe/Mg smectite mixtures with both pyrox-

ene and olivine (Fig. 4 grey �, blue �, dark blue �). The

ratioing process better defines continuous, unaltered or very

weakly altered units (i.e. tan � in Fig. 3d).

Ratioing performs better in the unsupervised clustering

metrics for both embeddings and spectral data (Table 3).

These metrics show that ratioing produces dense clusters in

the learned feature space. Ratioed embeddings performed

substantially better on the spectral data, and comparison

Unsupervised Clustering Metrics: Oman

CH Scores Using Embeddings (×105)

PCA Non-CR Data CR Data

15 Clusters 1.858 1.016 0.958

20 Clusters 1.627 0.818 0.876

25 Clusters 1.464 0.744 0.801

DB Scores Using Embeddings

PCA Non-CR Data CR Data

15 Clusters 1.239 1.977 1.986

20 Clusters 1.254 2.165 2.280

25 Clusters 1.260 2.256 2.266

CH Scores Using Spectral Data (×105)

PCA Non-CR Data CR Data

15 Clusters 0.392 0.840 0.501

20 Clusters 0.330 0.656 0.355

25 Clusters 0.279 0.597 0.333

DB Scores Using Spectral Data

PCA Non-CR Data CR Data

15 Clusters 5.887 5.843 6.944

20 Clusters 6.320 6.618 7.876

25 Clusters 8.284 5.691 9.488

Table 2: CH (Eq. 5) and DB (Eq. 6) scores on embeddings

Z ⊆ R
20 and spectral data X varying by number of clusters. Em-

beddings generated from the following methods: PCA + k-means

on spectral data, AE + GMM on spectral data and CR data. The

best score between non-CR data and CR data embeddings is in

bold. PCA scores are included as reference. Note that PCA, Non-

CR, and CR embedding spaces are all different, so scores on em-

beddings are not directly comparable.



with PCA and k-means shows that our methodology is less

sensitive to push-broom sensor striping noise2. When com-

paring the PCA + k-means and AE + GMM on spectral data,

the clustering is nearly identical while the spectral data em-

bedding scores are consistently better (Table 3). This seems

to indicate that the autoencoder is learning an embedding

space that produces better distinct clusters, but further in-

vestigation is necessary.

With all combinations of hyperparameters we are un-

able to uniquely identify hydrated silica or Al-rich phyl-

losilicates, (which have distinct absorptions near 2200 nm)

which instead appear as subtle mixtures with carbonate-

dominated clusters. These minerals, and even rarer detec-

tions of jarosite and akageneite, are not abundant in the

scene and have only recently been mapped exhaustively

with new expertly-guided methodologies [42, 14]. These

classes are also not mapped in the partial expert classifica-

tion provided here (Fig. 3a).

6. Conclusions

In this work we find that the GyPSUM pipeline effec-

tively clusters most of the important spectral diversity in

both drill-core imagery and remote-sensing imagery. Our

pipeline performs comparably to other modern unsuper-

vised classification algorithms and is relatively fast and

memory efficient. Spectral ratioing of CRISM imagery

unambiguously increases both clustering performance and

spectral interpretability, while continuum removal results

show similar clustering performance and slightly better

NMI and ARI metrics. Overall, this lightweight architecture

provides a relatively fast (∼8.5 minutes for 4003x275x249

Oman image, ∼3.5 minutes for 455x751x228 Jezero Crater

image), effective initial clustering for guiding in-depth

work, and provides flexibility for semi-supervised learn-

ing by separating the feature extraction and clustering pro-

cesses. GyPSUM enables rapid determination of distinct

mineral classes across multiple imaging systems and noise

profiles, demonstrating that the technique is highly general-

izable. Its main shortcoming is non-identification of spec-

trally distinct but spatially rare (< 1%) mineral classes that

can be geologically significant. The current implementation

also requires user input of a spectral angle stopping condi-

tion for optional post-processing to determine a final num-

ber of clusters. Future work will include weighted sampling

for clustering to improve computation time and windowing

the data or hierarchical clustering to better identify spatially

rare classes.
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Table 3: CH (Eq. 5) and DB (Eq. 6) scores on embeddings

Z ⊆ R
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beddings generated from the following methods: PCA + k-means

on spectral data, AE + GMM on spectral data and ratioed data.

The best score between spectral data embeddings and ratioed data

embeddings is in bold. PCA scores are included as reference. Note

that PCA, unratioed, and ratioed embedding spaces are all differ-

ent, so scores on embeddings are not directly comparable.
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