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Abstract

This paper addresses the automatic identification of

pelagic species in acoustic backscatter data. Large quan-

tities of data acquired during underwater acoustic surveys

for environmental monitoring and resources management,

visualized as echograms, are typically analyzed manually

or semi-automatically by marine biologists, which is time-

consuming and prone to errors and inter-expert disagree-

ments. In this paper, we propose to detect pelagic species

(schools of herring and of juvenile salmon) from echograms

with a deep learning (DL) framework based on instance

segmentation, allowing us to carefully study the acoustic

properties of the targets and to address specific challenges

such as close proximity between schools and varying size.

Experimental results demonstrate our system’s ability to

correctly detect pelagic species from echograms and to out-

perform an existing object detection framework designed

for schools of herring in terms of detection performance and

computational resources utilization. Our pixel-level detec-

tion method has the advantage of generating a precise iden-

tification of the pixel groups forming each detection, open-

ing up many possibilities for automatic biological analyses.

1. Introduction

This paper focuses on the detection of pelagic species

in acoustic backscatter data. Multi-frequency echosounders

enable the acquisition of time series of acoustic backscatters

during underwater acoustic surveys. Echosounder data can

be visualized in 2D images known as echograms, where the

vertical axis shows the depth or range in the water column,

and the horizontal axis represents the time. The intensity

of each pixel corresponds to the reflected echo amplitude or

intensity, generally computed as the volumetric backscatter

strength. Different species, geological formations, and var-

ious phenomena (e.g., supsended sediments) produce dif-

ferent echoes. Thus, an echogram will display a variety of

structures and patterns that may be indicative of the seabed,

the water-air interface, and the presence of one or many bi-

ological objects in the water column, usually schools of fish

and/or planktonic organisms [27].

Underwater acoustic surveys allow marine biologists to

gather large quantities of data that enable them to per-

form a variety of tasks crucial for environmental mon-

itoring, such as species identification, biodiversity map-

ping, and animal behaviour studies, in a non-invasive man-

ner. Detecting pelagic species, including schools of her-

ring and juvenile salmon, over large periods of time con-

stitutes an important part of fisheries and ocean resources

management as well as valuable information towards a bet-

ter understanding of the effects of climate change on the

oceans. Echograms are commonly interpreted with man-

ual or semi-automatic methods, using commercial software

like Echoview1. Given the shear size of the data to ana-

lyze, this is a time-consuming process, prone to errors and

inter-expert disagreements. Indeed, echogram analysis can

be challenging due to many factors, including the varying

size and acoustic properties of the targets, significant inter-

class similarities, and the specific context of the data ac-

quisition. For instance, a marine biologist will determine

a type of fish based on location, time, behaviour, acous-

tic backscatter strength, differences in acoustic backscat-

ter strength from different frequencies, and additional data

from net tows and/or underwater cameras [23].

In this paper, we propose to detect pelagic species from

echograms using a deep learning (DL) framework based

on instance segmentation. More specifically, we aim to

detect schools of herring and of juvenile salmon, which

can be found concurrently in the same geographic locations

(i.e., within the same echograms), but typically at differ-

1https://www.echoview.com/



ent depths. In addition to the more general challenges of

echogram analysis mentioned above, from a computer vi-

sion viewpoint, challenges related to the identification of

pelagic species include the potential close proximity of dif-

ferent schools, making it harder to detect and distinguish

between them; the possible close proximity of schools of

juvenile salmon to the surface, which may then overlap with

the turbulence of the water-air interface; the potential pres-

ence of bubbles around a school, altering the apparent mor-

phology of the school; the possible small size of schools

of juvenile salmon compared to the size of the echograms,

which may make the feature extraction process for identi-

fication purposes less reliable. There are several available

image analysis paradigms for the identification of pelagic

species from echograms: image classification, semantic

segmentation, object detection, and instance segmentation.

We elect to use an instance segmentation paradigm here,

which assigns an instance label locally to each pixel in the

echogram, tackling precisely (at the pixel level) the “where”

and “what” and distinguishing between different instances

of the same class, in our case different schools of the same

species. This allow us to address many of the aforemen-

tioned challenges related to overlaps and morphology, in

addition to allowing for more precise biological analyses.

Our contributions are two-fold. 1) From a methodologi-

cal viewpoint, we provide a comprehensive experimen-

tal design considering diverse feature extraction backbones

within an instance segmentation framework adapted for

echograms, taking advantage of the most powerful state-

of-the-art DL architectures. 2) From a practical viewpoint,

we show that instance segmentation networks are more suit-

able and accurate for the detection of pelagic species than

object detection networks; the proposed instance segmen-

tation framework offers a unique opportunity for automatic

biological analyses based on a precise identification, at the

pixel level, of schools of herring and of juvenile salmon.

To the best of our knowledge, the proposed framework is

the first of its kind in fisheries and acoustics (see Sec. 2.2).

It is capable of detecting pelagic schools with an accuracy

that closely matches that of human operators (see Sec. 4.4).

Differently from what an expert can do manually, it also

specifies the pixels associated with each detection allow-

ing for a precise estimation of the number of specimens per

school (see Sec. 4.6). Other advantages over object detec-

tion networks include the ability to better distinguish be-

tween schools in close proximity and the additional infor-

mation on the often complex morphology of each output

at the pixel level, instead of simple bounding boxes. Our

method can be easily reproduced in other layouts/datasets

and is also inherently scalable due to the use of a DL-based

instance segmentation network: it can identify new species

as long as training pixel-level annotations are provided.

The remainder of the paper is divided as follows.

Sec. 2 reviews related works on marine species detection in

echograms. Sec. 3 details the PLHS (Pixel-Level Herring

and Salmon) dataset and our proposed instance segmenta-

tion framework. Sec. 4 discusses experimental results, in-

cluding a comparison with the object detection framework

of [23]. Sec. 5 presents concluding remarks.

2. Related works

The detection of pelagic species, and more generally

of marine species from echograms can be categorized

into classical machine learning (ML)- and DL-based ap-

proaches. Both categories are reviewed next.

2.1. Classical machine learning­based approaches

Classical approaches to echogram analysis make use of

hand-crafted features focused on statistical characteristics

of organism aggregations. We find three different groups

of characteristics in the literature [32, 12, 26]: 1) posi-

tional/bathymetric characteristics, which relate to the posi-

tion in the water column; 2) morphometric characteristics,

linked to the school height, width, and perimeter; and 3) en-

ergetic characteristics, pertaining to the backscattered sig-

nal properties. Hand-crafted features are typically extracted

using commercial software tools (e.g., Echoview), based on

the above domain-dependent taxonomy [23].

Hand-crafted feature-based methods for marine species

detection in echograms generally rely on classical ML

methods for feature classification. To detect various fish

schools (Bonaerensis anchovy, Patagonian anchovy, rough

scad, sprat, longtail hoki, and blue whiting), Cabreira et

al. [2] compared three types of artificial neural network

(ANN) architectures and found that for asymmetrical num-

bers of input data per species, the best ANN differed from

one species to another, while for symmetrical data, self-

organizing maps (SOMs) yielded the best performance.

This work led to ECOPAMPA [33], a recent tool for auto-

matic fish schools detection and assessment from echo data

based on the same ANN architectures. Also comparing dif-

ferent types of ANNs and support vector machines (SVMs),

Robotham et al. [29] classified schools of anchovy, com-

mon sardine, and jack mackerel. They found that multi-

layer perceptrons (MLPs) and SVMs performed better for

multi-class classifications. Working with high-resolution

echograms, LeFeuvre et al. [15] detected Atlantic cod and

capelin using a Mahalanobis distance classifier. Also using

Mahalanobis distance information, Charef et al. [3] identi-

fied three broad fish groups using a discriminant function

analysis. Focusing on the classification of six mesopelagic

fish groups, Gauthier et al. [7] proposed a decision model

based on an objective classification decision tree. Fallon

et al. [5] favored random forests (RFs) to classify South-

ern Ocean krill and icefish echoes. More recently, Proud et

al. [24] also proposed to use RFs to detect schools of silver
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Figure 1: Proposed method and comparison baseline. PLHS (left) is a 107-sample dataset where schools of herring and of

juvenile salmon are annotated on a pixel level. Using PLHS, we train the proposed, fully-custom instance segmentation-based

detector (bottom right) as well as the method proposed by Marques et al. [23] (top right).

cyprinid from echograms for generating consistent biomass

time series. RFs have also been used by Mannocci et al.

[21] in the context of tropical tuna purse seine fisheries. The

authors trained RFs to differentiate between high and low

bycatch occurrence in data collected by echosounder buoys

attached to drifting fish aggregating devices.

An important drawback of hand-crafted feature-based

methods is that new sets of features need to be engineered

for each species, making the methods not easily and readily

scalable to various and diverse marine species. This draw-

back is mitigated by DL-based approaches.

2.2. Deep learning­based approaches

DL-based approaches have been shown to achieve excel-

lent results for a variety of computer vision-related applica-

tions in the visible spectrum, including for object detection.

To this date, there is still only a handful of works utilizing

DL beyond the visible spectrum for the detection of marine

species from acoustic backscatter data.

In a hybrid study involving both classical ML and DL

methods, Shang and Li [31] studied echo features and clas-

sification methods of fish using simulated data. They exper-

imented with three different features (all based on backscat-

ters, i.e., echo waveforms, echo spectrograms, echo spectra)

and four different classification methods (decision tree, ad-

aboost, ANNs, and convolutional neural network (CNN)),

and found that the best combination was CNN with echo

spectrograms. Hirama et al. [11] detected five fish species

(yellowtail, salmon, squid, sardine, and juvenile tuna) from

echosounder data in a set-net using a CNN. With this im-

age classification-based approach, the echograms have to be

divided in a rough set of anisotropic non-overlapping tiles

classified individually, assuming only one class of fish per

tile. In a slightly different direction more in line with nat-

ural language processing, Måløy [20] focused on the spa-

tiotemporal properties contained in echograms. The author

proposed a transformer-based approach that interprets the

spatiotemporal dynamics of echograms through attention

mechanisms to classify fish behavior and detect the onset

of pancreas disease in farmed Atlantic salmon. Closer to

our work, Brautaset et al. [1] focused on acoustic classifica-

tion in multifrequency echosounder data for sandeel detec-

tion. They proposed a semantic segmentation CNN based

on the U-Net [30] architecture. Their method yielded a

substantially higher performance compared to that of Ko-

rneliussen et al. [14], who used a “traditional automated

processing pipeline” to detect sandeel. Rezvanifar et al.

[28] proposed a hybrid approach to detect schools of herring

from echograms, in which regions of interest (ROIs) are first

extracted based on schools’ intensity and morphology and

then classified via a DL classifier. The authors compared

three popular CNN architectures for the feature extrac-

tion and classification task and found that DenseNet [13]

achieved the best overall performance. One drawback is

that the ROI extraction is species-specific and cannot be

straightforwardly extended to other species. In a follow-

up paper by Marques et al. [23], the authors provided a

comparative study covering the entire spectrum of learning



approaches, from traditional and hybrid methods to com-

plete end-to-end DL object detection networks. Focusing

on schools of herring, they concluded that the latter are

preferable to other learning approaches, providing compa-

rable or better results than traditional methods even with

limited training data. A limited number of papers focus on

DL methods for the detection of marine species from sonar

data, which generally have a higher resolution compared to

echograms. They tackle the detection of jellyfish [6] and

fish count/concentration [19, 8]. Neupane and Seok [22]

provide a review of DL-based approaches for the more gen-

eral topic of automatic target recognition from sonar data.

DL approaches are becoming more popular in fisheries

acoustics, but instance segmentation is notably absent: re-

cent works [1, 23] focused on semantic segmentation and

object detection, respectively.

3. Methodology

Our proposed pelagic schools detector is composed of

a custom, DL-based instance segmentation framework that

was trained using PLHS, a novel proprietary dataset of

schools of herring and juvenile salmon (see Fig. 1 and

Sec. 3.1). The recent method proposed by Marques et al.

[23] closely relates to the task our system attempts to per-

form, thus it is used as the main baseline of comparison (see

Sec. 4). Fig. 1 gives an overview of our framewok and com-

pares it to the framework proposed by Marques et al. [23].

As seen on the bottom right of Fig. 1, our proposed method

is able to: 1) identify schools of juvenile salmon and of

herring; 2) specify the pixels composing each instance; 3)

provide bounding boxes around each detection.

3.1. PLHS dataset

The Pixel-Level Herring and Salmon (PLHS) dataset

consists of 107 echograms with pixel-level annotations in-

dicating the presence of schools of herring and of juvenile

salmon. It contains 153 instances of schools of herring

and 252 instances of schools of juvenile salmon, covering

schools with different morphologies, positions in the water

column, and biological densities. The annotations follow

the MS-COCO format [18]. Particularities of this dataset

include the fact that it can be used to train models aiming

to perform multi-class object detection, but also semantic

or instance segmentation tasks, due to the granularity of its

annotations. It also identifies two distinct pelagic species

that are often difficult to differentiate even by specialists, re-

sulting in an equally challenging automatic detection task.

Fig. 2 shows sample annotated echograms in PLHS.

The acoustic data used to create the echograms in PLHS

were obtained from Canada’s Department of Fisheries and

Oceans (DFO) and acquired using AZFP echosounder in-

struments [16]. These AZFPs were deployed by DFO in

fixed positions close to the sea bottom looking upward un-

Figure 2: The Pixel-Level Herring and Salmon (PLHS)

dataset. Left: a zoomed-in region showing annotations of

schools of herring (red) and juvenile salmon (green). Right:

three samples illustrating its diverse nature: most samples

include multiple instances of schools of herring and salmon.

der water columns of approximately 55 m. The instruments

were located at the Okisollo channel, off the coast of British

Columbia, Canada, between the months of May and Octo-

ber of 2015 and 2016. Each AZFP measurement is done at

four frequencies: 67, 125, 200, and 455 kHz. The measure-

ments at each frequency are visualized as a 571×1200-pixel

echogram (water column depth x time) that represents one

hour. Thus each pixel of a PLHS sample represents roughly

3 s throughout a depth resolution of 10 cm.

Since the acoustic response of schools of herring and of

juvenile salmon is expected to be more pronounced at lower

frequencies, we only consider the 67 kHz channel from the

multifrequency data that AZFPs capture. We create stan-

dard echograms that display volume backscattering strength

(Sv). The Sv representation of acoustic data, often used to

detect the presence of marine species, reflects the sum of all

the acoustic response within a volume scaled to 1m3. Given

raw acoustic data from AZFPs, the Sv representation can be

calculated as follows [16]:

(1)
Sv = ELmax −

2.5

a
+

N

26216a
− SL

+ 20 logR+ 2αR− 10 log(
cτΨ

2
)

where ELmax represents the acoustic input (in dB re 1µPa)

that the transducer has to receive to produce a full-scale out-

put on the 16-bit A/D converter, a the slope of the detector

response in units of volts/dB, N the number of “counts”

(raw value) obtained from the instrument, SL the source

level (dB re 1µPa at 1m), R the range of the instrument (m),

α the absorption coefficient (dB/m), c the speed of sound

(m/s), τ the transmit pulse length (s), and Ψ the equivalent



solid angle that the transducer beam creates. The specific

values of these parameters are available as metadata associ-

ated with each AZFP deployment. The AZFP instruments

are calibrated by the manufacturer before each deployment.

Before carrying out the manual annotation process, we

consulted with specialists from DFO, who provided impor-

tant biological cues, such as: 1) schools of herring typi-

cally appear as elongated shapes in the vertical axis with a

strong acoustic echo in the center of the school; 2) there are

particular periods of the year (August-September) when the

frequency with which schools of juvenile salmon are de-

tected is expected to be reduced significantly; 3) schools

of juvenile salmon often appear as smaller morphologi-

cal structures than those representing schools of herring in

echograms; 4) schools of herring are not typically travelling

in close proximity to those of juvenile salmon; 5) schools of

salmon usually travel closer to the surface. It is important

to note that these biological cues might not necessarily be

valid in other geographical regions. Fig. 2 (left) illustrates a

scenario where these cues were paramount to the annotation

process: since the two schools closer to the sea bottom are

easily identified as schools of herring, the smaller, sparser

schools located at the top of the image are likely from juve-

nile salmon (as reflected by the annotations). Fig. 2 (right)

shows three samples from the PLHS dataset.

3.2. Instance segmentation framework

Our detection system is based on Mask-RCNN, the state-

of-the-art instance segmentation method of He et al. [9].

The official pre-trained implementation of Mask R-CNN 2

is trained on a dataset of natural images (COCO [18]) that

structurally differ from our visual targets. Therefore, we

initially re-trained all parameters from the Mask-RCNN ar-

chitecture using the PLHS dataset to assess its ability to

identify pelagic species in echograms. The performance ob-

served in these initial experiments was rather low, likely due

to the small size of the PLHS dataset and the complexity of

the Mask R-CNN architecture.

CNNs are able to automatically extract meaningful vi-

sual features from images of diverse natures. The fully

connected networks (FCN) of CNNs combine these fea-

tures into “templates” that are representative of the differ-

ent classes from a given dataset. The feature extraction and

template creating capabilities obtained with the pre-trained

version of Mask R-CNN using COCO proved to be ex-

tremely useful to our application. We use transfer learning

on the official implementation of Mask R-CNN to take ad-

vantage of these capabilities and fine-tune the framework to

fit the two classes of the PLHS dataset. In particular, we

freeze the updating of parameters of the first block of Mask

R-CNN (“stem”) as well as its first residual block [10].

2https://github.com/facebookresearch/detectron2

Our proposed system was trained using a number of

backbone models. Each model employs a different strat-

egy for the extraction of visual features and requires an ex-

clusive training process. We experiment with nine differ-

ent combinations of backbones: 1) ResNet-101 [10] with a

learning schedule (LS) of 3x; 2) ResNet-101 with Feature

Pyramid Networks (FPN) [17] and LS = 3x; 3) ResNet-

50 [10] with LS = 1x; 4) ResNet-50 with LS = 3x; 5)

ResNet-50 with deformable convolutions (DC) [4] and LS =

1x; 6) ResNet-50 with DC and LS = 3x; 7) ResNet-50 with

FPN and LS = 1x; 8) ResNet-50 with FPN and LS = 3x;

9) ResNeXt-101 [34] with FPN and LS = 3x. The “learn-

ing schedule” refers to the number of times that the orig-

inal dataset (COCO [18]) was visited during pre-training

(epochs): LS of 1x equates to approximately 12 COCO

epochs, and 3x to approximately 37 COCO epochs. Fea-

ture pyramid networks are a mechanism proposed by Lin et

al. [17] to represent feature maps at different scales, ulti-

mately allowing for the identification of targets with signif-

icantly distinct dimensions. Deformable convolutions were

introduced by Dai et al. [4] to help CNNs better adapt to

possible geometric transformations of the visual targets.

4. Experimental results and discussion

4.1. Comparison baseline

We compare the performance of the proposed system on

the PLHS dataset with that of the object detection frame-

work by Marques et al. [23]. The method in [23] works

with data obtained with an AZFP (similarly to our method),

considers schools of herring as visual targets, and outputs

detections as bounding boxes. We retrained the model of

[23] with PLHS to include the “school of juvenile salmon”

class and allow for a direct comparison with our work.

4.2. Training considerations

In the training routine of both our method and the com-

parison baseline, we used the PLHS dataset with a di-

vision of 73% for training/validation and 27% for test-

ing. All models (see Sec. 3.2) are trained using a single

NVIDIATM GeForce GTX 1660 Ti GPU. We used the same

set of hyper-parameters for the training of the proposed

method in all configurations: 300 iterations, 2 images per

batch, base learning rate of 0.02 (this learning rate drops

linearly during training), 256 ROIs per image, and Stochas-

tic Gradient Descent (SGD) with 0.9 of momentum as an

optimizer. This particular set of hyper-parameters does not

necessarily yield to an optimal performance for all back-

bones; some larger models could likely benefit from longer

training and from considering additional images per batch

in a more robust hardware setting.



4.3. Quantitative evaluation

Table 1 presents the performance of the proposed method

along with that of the comparison baseline [23] for the var-

ious configurations/models, in terms of mean average pre-

cision (mAP). Both methods are evaluated exclusively on

the test set. As the comparison baseline does not provide

pixel-level detection, we also report the performance of our

method for bounding boxes (“Object Detection” column)

for a direct comparison. Bold font indicates the best re-

sults for each metric. For instance segmentation and an

Intersection-over-Union (IoU) threshold of 0.5, the best

backbone configuration of our method is #4, which includes

Mask R-CNN with a ResNet-50 backbone, no FPN and LS

= 3x. Its performance is closely followed by that of con-

figuration #2, which differs in terms of backbone model

(ResNet-101) and in the usage of FPN. When looking at

mAP for IoU thresholds ∈ [0.5 : 0.05 : 0.95], the situ-

ation is reversed, with configuration #2 yielding the best

performance followed by #4. The worst performances are

linked with the use of deformable convolutions (i.e., #5 and

#6), which would require longer training routines. A simi-

lar performance is observed when considering the mAP for

object detection (i.e., using bounding boxes). Our method

outperforms the comparison baseline significantly for ob-

ject detection, by approximately 35 points (configuration

#2 and IoU=0.5) and 34 points (configuration #4 with IoU

∈ [0.5 : 0.05 : 0.95]); and by approximately 15 points and

9 points for the worst-performing configurations (i.e., #6).

Aside from its superior detection performance and more

granular output, our method also executes about 10x faster

than that of Marques et al. [23]. Our method processes each

echogram in ∼ 0.4 s (with small variations for each config-

uration) versus ∼ 4 s per sample for [23]. This difference is

mainly due to the overlapping tiling strategy of [23], which

requires a full YOLOv2 inference for each tile.

4.4. Qualitative evaluation

Fig. 3 shows representative detection results of the best-

performing configurations of both the proposed method

(i.e., configuration #4) and that of the comparison base-

line [23] (i.e., configuration #11). Although the baseline’s

results are qualitatively excellent on a first analysis, upon

a closer inspection we identified two reasons explaining

its significantly lower performance metrics (see Table 1).

First, the baseline often brakes a valid school down into two

or more detections, creating false positives (see Fig. 3a).

Second, the baseline produces bounding boxes with a con-

siderably worst fit with the ground truth than those gener-

ated by the proposed method (see Fig. 3b). Despite these

performance-lowering characteristics, we consider that the

baseline method generated correct detections that carry sig-

nificant scientific value in most of the test samples.

Despite our system’s high performance (see Table 1), we

consider that the metrics are still under-representing its ac-

tual capabilities. When qualitatively analyzing the predic-

tions of our system, we notice a number of scenarios where

detections of schools of salmon were triggered in regions

not annotated as such in the dataset, but that closely resem-

bled valid schools. Some of these “gray area” scenarios

(as discussed in Sec. 3.1) could reasonably be considered

as true positives, and would likely lead to different anno-

tations if interpreted by different specialists. Fig. 4a illus-

trates this phenomenon: in this particular region, only three

schools of juvenile salmon were annotated. The proposed

method correctly identified these schools, but also indicated

the presence of a fourth one (yellow arrow), which could

have been considered as valid in the ground truth, based in

part on the subjective analysis of the scientist annotating the

dataset. Regardless, this “incorrect” detection hinders the

performance of our system as reported in Table 1. A sim-

ilar scenario is depicted in Fig. 4b, where the two leftmost

schools of herring are identified as four instances by the sys-

tem. While this result could be interpreted as valid and is

extremely useful for the timely analysis of echograms by

scientists, these two extra detections are classified as false

positives for performance evaluation purposes.

4.5. Class­specific performance analysis

We observed that schools of juvenile salmon are particu-

larly challenging to annotate because their morphology and

acoustic echo vary significantly across echograms. Con-

versely, schools of herring typically present easy-to-identify

characteristics (i.e., vertically-elongated shapes with strong

intensities), leading to an overall easier annotation pro-

cess (see Fig. 2 left). This phenomenon is echoed by the

class-specific performances of our method. While Table 1

presents aggregate results that consider all classes of the

dataset, we also compute the class-specific detection perfor-

mance. Table 2 highlights the fact that the instance segmen-

tation of schools of juvenile salmon is particularly difficult

to perform, given that their morphology changes abruptly

across samples. It also shows that the choice of configura-

tion plays an important role on the system’s capabilities. For

instance, configuration #2 is preferable if the identification

of schools of salmon is the focus of a study, while configu-

ration #4 yields the best herring-specific performance.

4.6. Instance segmentation vs. object detection

Instance segmentation methods are able to provide de-

tailed information about their detection output; not only a

list of pixels composing each detection is generated, but

also a distinction between intra-class instances (e.g., school

of salmon “A”, school of salmon “B”). This ability allows

for a precise estimation of populations associated with each

detection, as illustrated in Fig. 5, which is not possible via

object detection. Consider, for example, that each pixel in a



mAP (Instance Segmentation) mAP (Object Detection)

# Configuration Backbone FPN5 LS6 Notes IoU=0.5 IoU=0.5:0.05:0.95 IoU=0.5 IoU=0.5:0.05:0.95

1 Mask R-CNN 1 ResNet-1012 N 3x 87.72 44.00 86.85 45.05

2 Mask R-CNN 1 ResNet-1012 Y 3x 90.35 52.79 90.15 48.01

3 Mask R-CNN 1 ResNet-502 N 1x 89.63 46.08 89.63 47.76

4 Mask R-CNN 1 ResNet-502 N 3x 92.12 50.19 89.12 50.48

5 Mask R-CNN 1 ResNet-502 N 1x Deformable convolutions [4] 73.8 29.61 70.79 26.99

6 Mask R-CNN 1 ResNet-502 N 3x Deformable convolutions [4] 73.95 25.93 70.63 24.74

7 Mask R-CNN 1 ResNet-502 Y 1x 90.05 49.56 87.11 49.69

8 Mask R-CNN 1 ResNet-502 Y 3x 89.69 45.92 88.20 43.90

9 Mask R-CNN 1 ResNeXt-504 Y 3x Aggregated residual transforms [34] 87.49 43.49 87.49 38.96

10 YOLOv23,7 Darknet-533 N N/A Tiling strategy [23] N/A N/A 41.69 11.63

11 YOLOv23,7 ResNet-502 N N/A Tiling strategy [23] N/A N/A 55.67 16.04

1,2,3,4,5,6: Mask R-CNN [9], ResNet-50 [10], YOLOv2 [25] and ResNeXt [34], Feature Pyramid Networks [17] and “learning schedule”, respectively.
7: A custom-trained version of the method proposed by Marques et al. [23].

Table 1: Mean average precision (mAP) comparison for the detection results on the test set of PLHS. Configurations 1-9

represent the instance segmentation-based method proposed, while the remaining layouts use the comparison baseline [23].

Best results are highlighted in bold.

(a) A single school of herring is divided into two detections by the

comparison baseline (yellow arrow).

(b) The bounding boxes created by our best-performing model (configuration

#4 in Table 1) better fits the ground truth (gray arrow).

Figure 3: Qualitative comparison between the ground truth annotations (first row), best-performing configuration of the

proposed method (second row) and best-performing version of the comparison baseline [23] (third row).



Original echogram.

Manual annotations.

Best-performing model prediction.

(a) The proposed system identifies possibly valid schools of

salmon (yellow arrows) that are not annotated as such.

Manual annotations. Best-performing model prediction.

(b) An instance where the proposed system broke two correct

detections down into four distinct objects (leftmost schools).

Figure 4: Two scenarios where the incorrect detections of

the proposed system could be argued as valid.

AP (Inst. Segm.) AP (Object Det.)

# Configuration (see Table 1) Herring Salmon Herring Salmon

4 ResNet-50 3x 60.18 40.19 59.05 41.92

2 ResNet-101 FPN 3x 58.29 47.3 47.61 48.42

7 ResNet-50 FPN 1x 55.77 43.34 50.20 49.18

Table 2: Class-specific Average Precision (AP) for instance

segmentation and object detection considering IoU ∈ [0.5 :
0.05 : 0.95]. Only the results for the three best-performing

configurations detailed in Table 1 are presented.

PLHS sample representing a school of herring contains ap-

proximately α specimens. The bounding box produced as

the output of the object detection method in Fig. 5 contains

approximately 7, 000 pixels, while the manual annotation

and instance segmentation outputs depicted in this same

Fig. have roughly 3, 500 and 4, 200 pixels, respectively. In

this illustrative example, the instance segmentation output

would result in a significantly better estimation of herring

population (an error of 700α fish), while the bounding box-

based object detection would have an estimation error of

3, 500α herring. The precise morphology of a detection, as

offered by the proposed method, might carry vital informa-

tion about schools of fish such as grouping and movement

patterns, predation-related movements, environmental and

anthropogenic stress, among others, which is not available

via the bounding boxes of object detection methods.

Original 
school

Manual annotation
(pixel-level)

Instance segmentation
output

Object detection
output

Figure 5: Illustration of different outputs and their influence

on biological analyses. The precise morphology obtained

with the output of instance segmentation methods allows

for a better estimation of specimens count.

5. Conclusion

We propose a system that allows for a timely and pre-

cise identification of pelagic species (schools of herring

and of juvenile salmon) from acoustic backscatter images

(echograms). The proposed system uses a deep learning-

based instance segmentation framework, the first of its kind

in fisheries and acoustics, to generate not only bounding

boxes around objects, but also the identify the groups of

pixels that form each detection. This opens up many possi-

bilities in terms of automatic biological analyses from un-

derwater acoustic survey data. Our method comfortably

outperforms the object detection framework proposed by

Marques et al. [23] while providing more information (i.e.,

pixel-level data) as output in shorter processing times. The

training and evaluation is done using PLHS, a novel dataset

of pixel-level annotations of schools of herring and of juve-

nile salmon in echograms. Future work will involve a stan-

dardization module that allows for echograms coming from

multiple instruments and deployment layouts to be used as

input, as well as a semantic segmentation-based module

dedicated to the identification of krill and hake.
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