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Abstract
The ability of thermal sensors to penetrate smoke, mist,

dust and aerosol makes them attractive for deployment in

essential applications in military, medical, agricultural and

animal ecology over the regular optical cameras. How-

ever, unlike optical imaging devices, the most sophisti-

cated commercial thermal imaging sensor does not match

the megapixel imaging ability. The Low-Resolution (LR)

images from thermal sensors can be enhanced through a

software-driven solution called Super-Resolution (SR). A

number of works have been proposed to employ deep net-

works for SR task; however, they are overloaded with re-

dundant features due to the deep architecture. This paper

introduces a Channel Splitting-based Convolutional Neu-

ral Network (ChasNet) for thermal image SR eliminating

the redundant features in the network. The use of channel

splitting extracts the versatile features from Low-Resolution

(LR) thermal image, helping to preserve high-frequency de-

tails in the SR images. We demonstrate the applicability

proposed network for SR task in two different scenarios

organized in the PBVS-2021 Thermal SR Challenge, con-

sisting of noise elimination (Track-1) and domain shifting

(Track-2). The efficacy is justified by comparing the SR re-

sults with other state-of-the-art thermal SR techniques in

qualitative and quantitative metrics. A set of extensive ex-

periments separately analyzes the importance of each block

in the proposed architecture. The code of this work is also

published online1.

1. Introduction
The optical camera senses the reflected light from the

scene being observed within the visible range of the electro-

magnetic (EM) spectrum. Despite the flexibility of obtain-

ing high-resolution images from optical sensors, their de-

ployment in night-time and conditions under the presence of

smoke, mist, dust, etc., results in demotivating performance.

1https://github.com/kalpeshjp89/ChasNet

(a) TEN [5] (b) TherISuRNet [6]
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Figure 1: The visual assessment of the thermal SR images

obtained using the different CNN based methods for up-

scaling factor ×4.

In such conditions, thermal cameras can be employed which

sense the thermal radiation emitted by the objects in the

range of Long Wavelength Infrared (LWIR) spectrum. Such

passive sensors measure the infrared wavelength in terms of

temperature above absolute zero [11] and has found applica-

tions in enormous use in military [12], agriculture [37], mar-

itime surveillance [16], medical [29], industry [1, 28], urban

development [4, 9] amongst others. However, thermal sen-

sors are limited to a coarser spatial resolution as compared

to visible sensors due to the lower span of the LWIR range.

Thus, the most sophisticated commercial thermal imaging

device does not match the megapixels provided by optical

cameras [11]. An alternative solution in such a case is to use

software-driven algorithms to enhance the spatial resolution

of the scene being captured by the thermal sensors, which

is usually referred to as Super-Resolution in the computer
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vision community [38, 19, 10, 17].

Although a number of approaches are proposed for SR

of images, the recent technological advancements in com-

puting hardware, memory devices, availability of large data

for various problems and latest innovations related to deep

learning networks has led to the use of Convolutional Neu-

ral Network (CNN) for SR. Dong et al. [7] first intro-

duced CNN based SR solution (referred to as SRCNN) us-

ing a neural network of three convolutional layers. Such a

shallow network beats the performance of traditional meth-

ods and shows its effectiveness for SR over classical meth-

ods. To further improve the quality of SR images, abun-

dant CNN based SR techniques have been published in re-

cent time [8, 41, 22, 27, 39, 40]. However, these works

are limited to the RGB data, where three different channels

are provided with reasonable spatial resolution. Motivated

from the success of SR for visible images, SR approaches

are also explored for thermal images in the recent works

[5, 3, 23, 25, 16].

On the other hand, most deep networks extract highly re-

dundant features due to the deeper nature of networks due

to multiple layers extracting similar features. We propose a

novel Channel Split Convolutional Neural Network (ChaS-

Net) for the thermal image SR task to address this limita-

tion and simultaneously provide better SR results. The pro-

posed approach employs the concept of channel splitting at

different stages of the network, helping to extract versatile

features in the given thermal image. The prime element in

the proposed framework is the structure of Common Block

(CB) connected in a residual manner using Residual Blocks

(ResBlocks) to extract the relevant details from LR obser-

vation. The potential of the proposed method has been ver-

ified in two different SR scenarios released in PBVS-2021

Thermal SR Challenge (i.e., Track-1 noise elimination and

Track-2 domain shifting) and it shows committed improve-

ment as discussed in the experimental section later in the

manuscript. A sample out from the proposed network is de-

picted in Fig. 1 where the SR results obtained using the re-

cent techniques such as TEN [5] and TherISuRNet [6] (i.e.,

best paper and extension of winner architecture in PBVS-

2020 Thermal SR Challenge [33]) are displayed alongside

the proposed method. One can note the superior quality of

the SR image obtained using the proposed method over the

other networks by closely looking into Fig. 1. The key con-

tributions of this work are:

• Proposes a novel CNN based architecture referred

hereafter as ChaSNet for thermal image super-

resolution. The work introduces a novel concept of

channel splitting in the proposed framework. Such

channel splitting is helpful to gain considerable im-

provement in the quality of SR results while reducing

the redundant features.

• Additionally, this work proposes to use Channel At-

tention (CA) scheme with average and standard devi-

ation pooling to find statistical information from the

features.

• To tackle the problem of domain shifting where the ex-

act paired data is unavailable for training, we propose

a fusion approach to improve the SR performance sig-

nificantly.

• Further, the SR performance of the proposed network

is validated in the two different scenarios, for instance,

noise elimination in SR results (Track-1) and domain

shifting case (Track-2). The performance gain is illus-

trated through empirical validations obtained using the

proposed method over the other existing state-of-the-

art methods.

• Presents a detailed statistical study on the impact of

various design considerations in the proposed network

to exemplify the rationale of the choices made.

In the rest of the paper, the overview of relevant SR

works on thermal images is presented in Section 2. The ar-

chitecture and methodology of the proposed framework are

described in Section 3. The experiment analysis, including

training details, description of the dataset, ablation study,

quantitative and qualitative analyses, are discussed in Sec-

tion 4. The concluding remarks of the proposed work and a

set of future works are presented in Section 5.

2. Related Works
The successful attempts of deep models to SR for visi-

ble images motivated many researchers to use it for thermal

images. Inspired by SRCNN [7] (i.e., the first CNN based

SR approach), Choi et al. [5] proposed to employ it for

enhancement of thermal images and referred to it as Ther-

mal Enhancement Network (TEN). Further, Marivani et al.

[25] have proposed a CNN model trained on Near-Infrared

(NIR) images along with RGB images to provide auxiliary

information. However, the training of the model on RGB

images limits its performance on thermal images, as demon-

strated by Rivadeneira et al. [34] in which they trained their

model explicitly on thermal images. Additionally, the idea

of the sequential connection of two networks for thermal

SR was presented by Bhatt et al.[3] where the first network

was used for denoising of given infrared image and another

network was employed for SR task on maritime infrared

images. Similarly, based on the above cascade connections

of two networks, the same idea was further explored by

He et al.[16] to improve the quality of SR image for up-

scaling factor ×8. Recently, TherISuRNet [6] was also pro-

posed for SR of thermal images using asymmetric progres-

sive learning strategy - a modified architecture which won

first place in PBVS-2020 Thermal SR Challenge [33].

Further, Generative Adversarial Network (GAN) [13]

was employed for SR of thermal images after the success



of SRGAN [20] for visible images. Liu et al. [23] proposed

GAN based learning to train the deep network. Similarly,

DCGAN model [30] is also exploited by Guei et al. [14]

for NIR and LWIR images. Additionally, to further accel-

erate the research in SR of thermal images, Rivadeneira et

al. [31] released a novel dataset consisting of thermal im-

ages acquired at different resolution factors. The first Ther-

mal SR Challenge [33] was organized PBVS CVPR-2020

workshop based on this dataset. Multiple SR approaches

such as TherISurNet [6] (winner of this challenge), multi-

level supervision network [18] has been proposed under this

challenge. Additionally, Rivadeneira et al.[32] utilized the

features from each layers of sequential network using con-

catenation in order to improve the performance.

In a similar direction for thermal image super-resolution,

we propose a novel approach named as ChaSNet to improve

the quality of SR images. We introduce the concept of chan-

nel splitting in the proposed framework to enhance the per-

formance of SR images. The details of the proposed ap-

proach are presented in the section below.

3. Proposed Method
A deeper neural network with a number of CNN layers

with many feature maps in each CNN layer for SR occu-

pies a larger space due to redundant information load. Such

behaviour of deep models can be optimized to improve the

performance. In this direction, we propose to employ chan-

nel splitting in the proposed network that distinguishes the

features in the channel dimension. Different operations can

be performed on the reduced feature maps leading to low re-

dundancy and improving the SR performance. We propose

two CNN models designed specifically for two scenarios of

SR tasks as organised in PBVS 2021 Thermal SR challenge

(i.e., Track-1 & Track-2)2 based on the concept of chan-

nel splitting. In Track-1 of the challenge, it is required to

perform super-resolution on LR thermal images with noise

elimination for upscaling factor ×4, while the Track-2 is de-

signed for domain transfer including super-resolution with

scale factor ×2.

The architecture of the proposed approach for Track-1

is depicted in Fig. 2(a), which can be categorized into the

following three modules based on their functionality:

• Shallow Feature Extraction (SFE) module,

• Deep Feature Extraction (DFE) module and

• Image Reconstruction (IRec) module

Initially, the input Low-Resolution (LR) image is passed

through the SFE module, which is composed of two con-

volutional layers with a kernel size of 3 × 3 & C feature-

maps and 5 × 5 with 2C feature-maps, respectively. The

first convolutional layer with a smaller receptive field (i.e.,

2https://pbvs-workshop.github.io/

with a kernel size of 3×3) extracts minutes details that cor-

respond to smaller objects from the input LR image while

the convolutional layer with larger kernel size (i.e. 5 × 5)

learns the local information related to larger objects present

in the thermal LR observation. Mathematically, the output

of SFE module, i.e., XSFE can be represented as,

XSFE = FSFE(ILR), (1)

where, FSFE represents the functionality of SFE module

and ILR denotes input thermal LR image.

The feature maps available from the SFE module (i.e.,

XSFE) are separated into two streams (i.e., Xin and Xskip)

each of size C channels first in the DFE module. The Xin

feature maps are then passed through the sequence of Com-

mon Blocks (CBs) to extract rich features while the rest

Xskip feature maps are bypassed and directly concatenated

with the output of K number of CBs. Each CB unit takes C

channel features and outputs 2C number of channels. The

design of CB is depicted in Fig. 2(c), which is made up of

three densely connected Channel Splitting Blocks (CSBs)

followed by one convolutional layer of kernel 1 × 1. The

architecture design of the CSB is displayed in Fig. 2(c),

which consists of 1 × 1 convolutional layer followed by a

channel splitting operation. Such channel splitting in CSB

is required to perform two different operations correspond

to densely connected convolutions and pass through a se-

quence of two Residual Blocks (ResBlocks). Finally, the

output of both different paths is combined using concate-

nation at the end of the CSB unit. In Fig. 2(c)), we show

the design of ResBlock composed of two convolutional lay-

ers followed by Pixel Attention (PA) and Channel Attention

(CA) modules. Additionally, we also deploy local residual

learning in the design of ResBlock to avoid the problem of

vanishing gradient problem [15].

The mathematical formulation of each CB can be given

as,

X
skip
CBi

, Xin
CBi

= S(FCBi
(Xin

CBi−1
)), i = 1, 2, . . .K. (2)

Here, FCBi
denotes the functionality of ith CB and S rep-

resents channel splitting. From all such CBi (i.e., i =
1, 2, ...K), the feature Xin

CBi
passed to next CB while other

feature X
skip
CBi

is bypassed through Layer Attention (LA)

module. The operations performed by LA module can be

expressed mathematically as,

XLA = Fc(M(Xskip
CBi

,Fc(. . . ,Fc(M(Xskip
CB2

, X
skip
CB1

)) . . . ))),
(3)

Where M(., .) denotes the merging operation (i.e., concate-

nation) of the features along with channel dimension, after

merging operation, one convolution layer with a kernel of

1× 1 (i.e., noted by Fc(.)) is applied which acts as a transi-

tion layer. Finally, the output feature maps of last CB (i.e.,



(a) The proposed CNN framework for up-scaling ×4 in Track-1 and for up-scaling ×2 in Track-2 of PBVS-2021 Thermal SR Challenge.

(b) The proposed Unet based CNN model for up-scaling ×2 in Track-2.

(c) The architecture design of Common Block (CB) of the proposed network.

Figure 2: The architecture design of the proposed ChaSNet for thermal image super-resolution.

Xin
CBk

), LA module (XLA) and Xskip are concatenated to-

gether and passed through 1 × 1 convolutional layer in or-

der to generate output feature maps of DFE module (i.e.,

XDFE). This can be formulated mathematically as,

XDFE = Fc(M(Xskip, Xin
CBk

, XLA)). (4)

Further, The output feature maps from the DFE module

are forwarded to the IRec module, which upscale the feature

maps to the desired factor and then reconstruct the gray-

scale thermal SR image. Here, we employ the pixel-shuffle

based up-sampler to increase the spatial resolution of the

feature maps [36]. Mathematically, the function of the up-

sampler block can be expressed as,

Xup = FPS(Fc(XDFE)), (5)

Where FPS denotes the pixel-shuffler operation for the fac-

tor of ×4 and ×2 for Track-1 and Track-2, respectively. Fi-

nally, the output feature maps of the up-sampler block are

passed through two additional convolution layers in order

to reconstruct the residual SR image. Further, we adopt the



Global Residual Learning (GRL) approach where the input

LR image (i.e., ILR) is upsampled via bicubic interpolation

and then it is added with the residual output image obtained

from the IRec module to generate the final thermal SR im-

age. Such a GRL approach helps to stabilize the training of

the network, and it also preserves the identity of the input

image in the SR output. Mathematically, the final SR image

can be formulated as,

ISR = Fc3

(

Fc1(Xup)
)

+B(ILR), (6)

where Fc1 and Fc3 denotes as convolution with kernel hav-

ing the size of 1×1 and 3×3, respectively while B indicates

the up-sampling operation using bicubic interpolation.

To tackle the track-2 scenario of PBVS-2021 Thermal

SR Challenge where domain transfer is needed along with

SR for upscaling factor 2, another framework is designed

(i.e., depicted in Fig. 2(b)) which is inspired from UNet

model [35]. The proposed network design consists of sev-

eral CBs and many convolution layers connected in a UNet

manner. By inspecting the LR and HR data of Track-2, we

observe the uncertainty between the same, motivating us

to employ the UNet type structure in the proposed method

where most of the domain transfer tasks are performed at

the bottom layers.

3.1. Loss Functions

For Track-1 and Track-2 cases of PBVS-2021 chal-

lenge3, the network shown in Fig. 2(a) is trained using pixel-

wise L1 loss between SR and HR images. However, due

to inaccurate results of image registration between LR-HR

pair images in Track-2 challenge dataset, we have employed

semi-supervised paired data for domain shift. To deal with

such dataset in Track-2, an adversarial learning is used to

train the network shown in Fig. 2(b). In this setting, the

generator network is trained using combination of pixel loss

(L1), GAN loss (LGAN ) and SSIM loss (LSSIM ) which can

be expressed as,

LG = λ1L1 + λ2L
G
GAN + λ3LSSIM . (7)

Here, λ1, λ2 and λ3 are the weighting constants set em-

pirically in the training process. For adversarial learning,

we use the Least Squared GAN (LSGAN) framework [24].

The GAN loss for generator network (i.e., LG
GAN ) can be

formulated as,

L
G
GAN =

1

N

∑

(

1−D(ISR)
)2
, (8)

Here, N represents number of images in a batch and D(·)
denotes the function of discriminator network which is

trained using LSGAN framework with following loss func-

tion,

L
D
GAN =

1

N

∑

(

(1−D(IHR))
2 + (D(ISR))

2
)

. (9)

3https://pbvs-workshop.github.io/

4. Experimental Analysis

The details of the training setup of the proposed network

followed by experimental analysis are elaborated in this sec-

tion. The proposed networks are trained with Adam opti-

mizer on the default β values and with the learning rate of

2 × 10−4 which is decayed by half at every 25% of a total

number of iterations. We have trained the proposed modules

up to 2× 105 number of iterations with a batch size of 8. In

training, the 192 × 192 patch from HR images and its cor-

responding patch from LR images are extracted randomly

and then augmented using random horizontal flipping and

rotation with 0o and 90o operations. The weighting con-

stants λ1, λ2 and λ3 associated to Equation (7) are set to

0.01, 0.1 and 0.5, respectively. Additionally, we also pub-

lished the code of this work, and the same is available from

https://github.com/kalpeshjp89/ChasNet.

4.1. Training and Testing datasets

The proposed network is trained on a thermal image

dataset made available by Rivadeneira et al. [34]. However,

in this work, we only used Flir (HR) and Axis (MR) datasets

for the different tracks as organized in the PBVS-2021 chal-

lenge. These datasets contain 951, 50 and 20 (10 images

for Track-1 and another 10 images for Track-2 individually)

images for training, validation and testing purpose, respec-

tively. In Track-1, the original Flir dataset is utilized as an

HR dataset and corresponding LR data is created by bicubic

down-sampling with a factor ×4 and degrading the same by

Additive White Gaussian Noise (AWGN) with mean and

standard deviation values of 0 and 10, respectively based on

empirical trials.

For Track-2, the target (i.e., Axis (MR) dataset) is re-

quired with an upscaling factor of ×2 and match the same

with the resolution of the Flir (HR) dataset. It is worth not-

ing that the characteristics of both datasets are different, and

there is a need to register them to perform the SR task. How-

ever, the available images in the dataset are not exactly reg-

istered with pixel-wise accuracy, which restricts their use

for the training of the SR network. Hence, for Track-2, we

perform image registration using SURF features [2] which

results in semi-matched image pairs and later, those images

are used for training the proposed methods. Further, the

SR task in Track-2 is performed using two networks de-

picted in Fig. 2(a,b). The network presented in Fig. 2(b) is

trained using the semi-paired dataset, which helps to con-

vert the domain shift from Flir to Axis. However, due to the

semi-paired nature of the registered dataset, the SR results

from the network lack structure information. To improve

the same, we also train the network displayed in Fig. 2(a),

which uses Axis dataset as HR images and corresponding

LR images are generated using bicubic downsampling.

Further, the proposed networks are tested compared with

other state-of-the-art SR methods on the PBVS-2021 ther-



Table 1: The quantitative measurements for the experiments

of ablation study.

Case PSNR SSIM

Common Block (CB) design

w/o deviation pooling in CA 33.35 0.8973

w/o average pooling in CA 33.38 0.8974

w/o CA in ResBlock 33.36 0.8974

w/o PA in ResBlock 33.36 0.8972

w/o ResBlock in CSB 33.28 0.8960

w/o dense blocks in CSB 33.34 0.8971

w/o dense connection CB 33.36 0.8976

Network configuration

w/o layer attention 33.37 0.8977

w/o ESC 33.08 0.8918

K:8, C:64 33.38 0.8978

K:12, C:64 33.30 0.8962

K:8, C:128 (Proposed) 33.41 0.8983

mal image super-resolution challenge dataset. The val-

idation dataset for Track-1 and Track-2 has 50 images,

while the testing dataset for both tracks consists of 10 im-

ages. For quantitative comparison, we measure the perfor-

mance on the validation dataset because of the availability

of the ground-truth images. The Peak Signal-to-Noise Ra-

tio (PSNR) and Structural Similarity Index Measure (SSIM)

metrics are used to validate the SR performance, which is

being calculated on the Y channel after removing s (i.e.,

scale factor) number of border pixels as suggested in [7].

Additionally, we show the qualitative performance on both

validation and testing datasets to measure perceptual im-

provement using different thermal SR methods.

4.2. Ablation Study

The justification of different parameters settings used in

the proposed methods are analyzed, and the same are dis-

cussed at length in this sub-section4. It includes different

experiments based on the network design of various mod-

ules of Common Block (CB) and network configurations.

Design of Common Block (CB): We have conducted mul-

tiple experiments to check the sensitivity of the proposed

network to the design of Common Block (CB). The SR out-

comes of these experiments are compared in terms of PSNR

and SSIM measures which are tabulated in Table 1. For

the baseline network, we consider the proposed network

having 64 channels and 8 common blocks (i.e., C=64 and

K=8). Additionally, in the proposed network, we have mod-

ified the structure of the Channel Attention (CA) module by

adopting deviation pooling parallel to the average pooling

operation. An additional experiment is carried out in the ab-

lation study to understand its effectiveness in the modified

CA block. We train the base network with global average

pooling and standard deviation pooling individually. Fur-

ther, an experiment based on the training of baseline net-

4We train the network up to 50, 000 iterations for ablation analysis.

work without adopting CA module is also conducted. By

looking at Table 1, one can note the importance of standard

deviation pooling in the CA block. A gain of +0.02dB
in PSNR can be observed by adopting the CA block in

the design of the CB unit. Additionally, one experiment

is conducted in which the Pixel Attention (PA) block from

ResBlock is removed, and its quantitative evaluation is de-

picted in Table 1. One can observe a gain of +0.02dB in

PSNR obtained by incorporating PA in the design of the CB

module. To validate the importance of the Residual Block

(ResBlock) in CB, the baseline network without ResBlock

is trained, and the corresponding SR performance is noted

in Table 1. Here, similar to the earlier experiments, we can

notice the gain of +0.1dB in PSNR value by using Res-

Block in CB, which justifies our choice of ResBlock in the

CB module. The effectiveness of densely connected con-

volutional layers in CSB block as displayed in the Fig. 2(c)

is also examined, and a gain of +0.04dB in PSNR value is

obtained (see Table 1). Lastly, in the design of the common

block, the effectiveness of dense connection is also analysed

and presented in the same table where an additional gain of

+0.02dB in PSNR is achieved by adopting it in the design

of the proposed method.

Network configurations: We also conduct a set of ad-

ditional experiments to check the effectiveness of network

configurations in the proposed network. The quantitative

results from these experiments are presented in Table 1 in

terms of PSNR and SSIM values. In the first experiment,

we remove the Layer Attention (LA) module from the de-

sign of the proposed network (see in Fig. 2(a)) and observe

that the proposed network with LA module obtains a gain

of +0.01dB in PSNR. Similarly, the use of External Skip

Connection (ESC) in Fig. 2(a) has also been analysed and

note that it helps to gain +0.3dB in the PSNR value. At last,

we also examine the effects of a different number of chan-

nels (C) and common blocks (K) in the proposed network;

1) K:8, C:64 2) K:12, C:64 and 3) K:8, C:128. From these

three experiments, it can be noticed that the wider network

(i.e., K:8, C:128) performs effectively than the deeper net-

work (i.e., K:12, C:64) in the proposed network for thermal

image super-resolution. This validates the use of a wider

network in the design of the proposed network.

Additionally, we examine the effect of fusion of SR im-

ages from CNN based network (i.e. Fig. 2(a)) and GAN

based network (i.e. Fig. 2(b)) in Track-2 task of PBVS-

2021 challenge. In Fig. 3, we show the visual patches of

SR images obtained by CNN based network, GAN based

network, a fusion of SR images from both networks (i.e.,

Proposed), fusion with self-assemble (i.e., Proposed+) and

semi-HR images. Due to the different characteristics in HR-

LR pair, network fails to preserve the structure of the con-

tent in the SR images, and hence there is structure loss in SR

images from the network trained using this imperfect data



Within Domain Cross Domain Proposed Proposed+ Semi-HR

Figure 3: The visual comparison of SR results obtained using different method to validate the effects of fusion for Track-2

task of PBVS-2021 Thermal Image SR Challenge.

(see Cross-Domain results from the Fig. 3). However, the

obtained gain by such network is partly domain shifted and

hence, to improve the structural information, we employ an-

other network that is trained using perfect HR data obtained

by bicubic down-sampling. From Fig. 3, one can observe

that the fusion of both networks generates better SR solu-

tions (Fig. 3 mentioned with proposed); however, the fu-

sion incorporating self-assembly (indicated as Proposed+)

generates better visual SR images than that of others for the

task of Track-2.

4.3. Quantitative Evaluation

The quantitative evaluation of the proposed method-

ChaSNet has been verified by comparing it with other ex-

isting state-of-the-art methods in terms of PSNR and SSIM.

For a fair comparison, we include different methods such

as Bicubic, SRResNet [20], TEN [5], CNN-IR [3], SRFeat

[26], RCAN [41], MSRN [21], EDSR [22], PBVS-2020

challenge winner [33] and TherISuRNet [6] methods. In Ta-

ble 2, we depict the PSNR and SSIM values obtained using

those methods on PBVS-2021 validation dataset for Track-

1 - thermal image SR using upscaling factor ×4 with noise

elimination. Proposed+ denotes the proposed method with

the self-assembly approach. From this table, one can see

that the proposed method obtains SR images with the high-

est quantitative fidelity in terms of PSNR and SSIM values

over the other methods.

The above evaluation has been extended for the domain

shifting case presented as Track-2 in the PBVS-2021 chal-

lenge. The proposed method incorporates the fusion of

the SR results obtained by CNN and GAN-based networks.

Due to the lack of true registered LR-HR pair for the Track-

2 task, we demonstrate the quantitative evaluation of CNN-

based networks only on LR images generated by bicubic

down-sampling. Thus, the SR results of the proposed net-

work (i.e., Fig. 2(a)) are compared with other methods in

terms of PSNR and SSIM in Table 2. From this table, one

can again notice the superiority of the proposed network on

the synthetically generated LR thermal image for a factor of

×2 over the other methods.

4.4. Qualitative Evaluation

We illustrate the qualitative improvement achieved us-

ing the proposed network over the other state-of-the-art

methods in this section. Fig. 4 shows the SR results ob-

Table 2: The quantitative comparison of the proposed net-

work with other existing thermal image super-resolution

methods on PBVS-2021 challenge validation dataset. High-

est two values are highlighted using red and blue colors re-

spectively.

Method
Flir (×4) Axis (×2)

PSNR SSIM PSNR SSIM

Bicubic 32.66 0.8625 34.74 0.9200

SRResNet [20] 33.12 0.9018 33.66 0.9229

MSRN [21] 34.47 0.9076 36.96 0.9471

SRFeat [26] 34.12 0.9007 - -

EDSR [22] 34.48 0.9068 36.91 0.9466

RCAN [41] 34.42 0.9072 36.67 0.9438

TEN [5] 33.62 0.8910 36.10 0.9392

CNN-IR [3] 33.77 0.8938 36.66 0.9438

PBVS-2020 winner [33] 34.49 0.9073 - -

TherISuRNet [6] 34.49 0.9101 36.76 0.9450

Proposed 34.86 0.9133 37.38 0.9509

Proposed+ 34.90 0.9134 37.49 0.9518

tained on the Track-1 task where the noise elimination is

required along with super-resolution for upscaling factor of

×4. From these results, one can notice the preservation of

high-frequency details in the SR results obtained using the

proposed method compared to other state-of-the-art meth-

ods. The proposed method preserves the structural infor-

mation in a better manner as compared to other methods.

We can also observe the advantage of self-assembling in

the thermal image super-resolution to improve the quality

of SR, which is shown as proposed+. Further, we also il-

lustrate the results from the proposed model (i.e., ChaSNet)

for the Track-2 case where the task of domain shifting is in-

tended with upscaling factor ×2. The visual comparison of

the SR results obtained using different methods on bicubi-

cally down-sampled Axis dataset is depicted in Fig. 5. From

this, one can deduce that the proposed method performs bet-

ter for domain shifting case over the other methods along-

side quantitative improvement, as mentioned with each SR

result in the same figure.

5. Conclusion

Thermal imaging sensors, despite having various crit-

ical applications, are often faced with limited resolution.

Deep networks have been proposed to super-resolve low-

resolution images using software-driven approaches. How-



TEN [5] RCAN [41] TherISuRNet [6] Proposed Proposed+ HR

(28.64/0.8352) (30.33/0.8820) (30.84/0.8944) (31.80/0.9065) (31.94/0.9081) (PSNR/SSIM)

TEN [5] RCAN [41] TherISuRNet [6] Proposed Proposed+ HR

(30.71/0.8547) (32.52/0.9009) (32.55/0.9051) (33.36/0.9152) (33.41/0.9152) (PSNR/SSIM)

Figure 4: The visual comparison of the proposed network with other existing CNN based methods for thermal image super-

resolution with factor ×4 along with noise elimination on Flir dataset [34] (i.e., Track-1). The values of PSNR and SSIM

values are mentioned along the result of each method where the top values are highlighted using red and blue colored fonts,

respectively.

TEN [5] RCAN [41] TherISuRNet [6] Proposed Proposed+ HR

(36.05/0.9319) (36.78/0.9310) (37.03/0.9413) (37.77/0.9490) (37.87/0.9499) (PSNR/SSIM)

TEN [5] RCAN [41] TherISuRNet [6] Proposed Proposed+ HR

(33.86/0.9138) (34.18/0.9184) (34.40/0.9219) (35.34/0.9354) (35.46/0.9361) (PSNR/SSIM)

Figure 5: The visual comparison of the proposed network with other existing CNN based methods for thermal image super-

resolution with factor ×2 for domain shifting case on Axis dataset of PBVS-2021 thermal SR Challenge [34] (i.e., Track-2).

ever, the redundant emerging from deep networks can be

bypassed directly using channel splitting in the architecture

for super-resolution. This work has presented a new net-

work for super resolving thermal images using a novel CNN

framework leveraging channel splitting referred to as ChaS-

Net. We have proposed to employ Common Blocks struc-

tured in a residual manner to improve the SR performance.

The performance of the proposed network is validated by

comparing it with recent methods quantitatively and quali-

tatively, where the improvements are noted consistently. As

a future work in this direction, one can adopt different losses

alongside various training strategies in the GAN framework

to improve the quality of SR images.
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