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Abstract

Mask wearing has been considered as an effective mea-

sure to prevent the spread of COVID-19 during the cur-

rent pandemic. However, most advanced face recognition

approaches are not adequate for masked face recognition,

particularly in dealing with the issue of training through

the datasets covering only a limited number of images with

ground-truth labels. In this work, we propose to learn from

the large scale of web images and corresponding tags with-

out any manual annotations along with limited fully anno-

tated datasets. In particular, inspired by the recent success

of webly supervised learning in deep neural networks, we

capitalize on readily-available web images with noisy an-

notations to learn a robust representation for masked faces.

Besides, except for the conventional spatial representation

learning, we propose to leverage the power of frequency do-

main to capture the local representative information of un-

occluded facial parts. This approach learns robust feature

embeddings derived from our feature fusion architecture to

make joint and full use of information from both spatial and

frequency domains. Experimental results on seven bench-

marks show that the proposed approach significantly im-

proves the performance compared with other state-of-the-

art methods.

1. Introduction

Masked face recognition is a special kind of occluded

face recognition [42, 50, 53]. Different from other types

of face recognition, this task focuses on recognizing people

wearing face masks via their face images [41], and exam-

ples are shown in Figure 1. During the ongoing outbreak

*Chao Gou is the corresponding author.
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Figure 1: Illustration of Masked Face Recognition Task.

The left samples (image and its label) are from fully anno-

tated datasets [41]. The right samples (image and its tags)

are from weakly annotated datasets .

of coronavirus disease 2019 (COVID-19), almost everyone

wears a mask [46]. On the other hand, for masked face

recognition, conventional facial recognition technology is

ineffective in many cases, such as community access con-

trol, face access control, facial attendance, facial security

checks at train stations, etc. Therefore, it is very urgent and

essential to design a robust and effective model for masked

face recognition.

Although, these datasets cover a significant number of

images (e.g., about 1M in Megaface and 200K in CelebA),

creating a larger dataset with image-label pairs is extremely

difficult and labor-intensive [15]. Especially, considering

the current global epidemic, it may be impossible to es-

tablish large-scale manual labeling. Moreover, it is gen-
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Figure 2: The Open-World Setting of Our Paper. We focus on the learning of robust masked face recognition model using

clean images with ground-truth labels, and update this learning by utilizing web images and its noisy associated tags. During

this process, the latent space is learned and tested by images and tags from our web datasets.

erally feasible to have only a limited number of users to

annotate training images, which may lead to a biased model

[29, 30]. Hence, while these datasets provide a convenient

modeling assumption, they are very restrictive considering

the enormous amount of detailed descriptions that a human

can compose. Accordingly, although trained models show

excellent performance on benchmark datasets for masked

face recognition task, applying such models in the open-

world setting is unlikely to show satisfactory generalization.

Streams of images with noisy labels are readily avail-

able in datasets [47] as well as in nearly infinite numbers

on the web. Developing a practical system for masked face

recognition, considering a large number of web images, is

more likely to be robust. However, inefficient utilization of

weakly annotated images may increase ambiguity and de-

grade performance.

Motivated by this observation, we pose an essential ques-

tion in this paper: Can a large number of web images with

noisy annotations be leveraged upon with a fully annotated

dataset of images to learn a better model for masked face

recognition? Figure 2 shows an illustration of this scenario.

In this work, we study how to judiciously utilize web

images to develop a strong masked face recognition system.

We propose a novel framework that can augment knowledge

through an effective masked face recognition model with

weakly supervised web data. Our approach outperforms

previous approaches significantly in masked face recogni-

tion.

In masked face images shown in Figure 1, even though

there are a little noise and shadow, humans are very good at

recognizing the subjects. Why can human beings identify

these subjects quickly and accurately with very little direct

supervision or none at all? Probably because human beings

can use the experience to learn [35], while the network can-

not. And isn’t this one of the mechanisms of meta-learning

[34]? Therefore, why don’t we use the principle of meta-

learning to build a network to capture the relation of sub-

jects and its masked face images?

Furthermore, under the occlusion by masks, the accuracy

of deep-network-based face recognition models would be

degraded[7, 19]. This may be because the existing network

is based on the down-sampling operation, which would

cause redundant and salient information loss [22]. How-

ever, the frequency domain analysis method (e.g., discrete

cosine transform (DCT)) arises the redundant and salient in-

formation of the image [26]. Thus, how to apply frequency

domain analysis to make up for the deficiency of existing

deep networks?

On the other hand, inspired by the success of the residual

network [12] and its variants [48, 27], which are both fusion

of multiple shallow networks, we intend to investigate net-

work feature fusion strategies to overcome the aforemen-

tioned problem. However, it has not been considered in ex-

isting work about network feature fusion for jointing spatial

domain with frequency domain information. How to design

spatial-frequency fusion to make the full of and joint use of

spatial domain and frequency domain information?

To tackle all the aforementioned problems, in this paper,

we propose a novel meta-learning based model for masked

face recognition. In this work, we attempt to utilize web

images annotated with noisy tags for improving the model

trained using a dataset of images and labels. We build a two-

branch relation network via meta-learning. First, we use the

embedding approach to do feature extraction of training im-

ages. In this process, we design the spatial domain network

and the frequency domain network, and propose a feature

fusion approach to get salient information of masked faces

via combining the learning of our two networks. Then, to

compare the features, we design a relation model that de-

termines if they are from matching categories or not. Ex-

perimental results show that our model performs better than

similar works, and has strong robustness. On the side, we

propose a two-stage approach that learns the image-label

representation. In Stage I, we use a supervised formulation

that leverages the available clean image-label pairs from a

dataset. In Stage II, we utilize weakly-annotated image-



tags pairs from the web (e.g., Google Photo) to update the

previously learned image representation, which allows us

to transfer knowledge from thousands of freely available

weakly annotated images to develop a better masked face

recognition system. We address a novel and practical prob-

lem in this paper that how to exploit large-scale web data for

learning an effective masked face recognition model with-

out requiring a large amount of human-crafted training data.

Towards solving this problem, we make the following main

contributions:

⊛ We propose a webly-supervised approach utilizing

web image collection with associated noisy tags, and a clean

dataset containing images and their labels for learning ro-

bust masked face recognition model. Experimental results

show that the proposed approach has strong robustness and

superiorities.

⊛ We propose an effective and novel frequency domain

network for masked face recognition.

⊛ We design spatial-frequency fusion architecture to em-

bed frequency features into the spatial network to enhance

the recognition performance.

2. Webly Supervised Meta-Learning Approach

In this section, we first describe the problem defini-

tion. Then, based on our definition, we propose network-

based representation learning for masked face recognition.

Finally, we present our proposed strategy to incorporate

the tags in the framework to learn improved representation

learning.

2.1. Problem Definition

We consider the problem of masked face recognition as

meta-learning- and webly-supervised-learning-based (i.e.,

webly supervised meta-learning based) few-shot classifi-

cation. Before elaborating on the proposed network, we

briefly present the notations and prior knowledge.

Learning to Learn The ability to learn new classes is

crucial to the development of real-world artificial intelli-

gence systems. In this paper, we focus on the few-shot

learning problem. In this setting of our meta-learning, there

are three datasets: a training set, a support set, and a test-

ing set. The support set and testing set share the same label

space, but the training set has its own label space that is

disjoint with support/testing set.

We can, in principle, train a classifier to assign a class

label ŷ to each sample x̂ in the test set while we only use

the support set. However, in most cases, the performance

of such a classifier is usually not excellent because of the

lack of the labeled samples in the support set. Therefore,

we use the meta-learning on the training set to transfer the

extracted knowledge to the support set. It aims to perform

the few-shot learning on the support set better and classify

the test set more successfully. The training procedure of our

approach is shown in Figure 3.

We propose novel matching networks[36, 34] to solve

the problem of adversarial image classification. Suppose

there are m labeled samples for each of n unique classes in

support set. We select randomly n classes from the training

set with m labeled samples from each of the n classes to

conduct the sample set DS = {(xi, yi)}
z
i=1

(z = m × n),
and we select the remaining samples to conduct the query

set DQ = {(xj , yj)}
v
j=1

. This sample/query set split is de-

signed to simulate the support/test set that will be encoun-

tered at test time.

2.2. Network Representation Learning

Considering that (1) existing neural networks mainly op-

erate in the spatial domain, and (2) the downsampling op-

erations of these neural networks remove both redundant

and salient information obliviously, which results in accu-

racy degradation, we propose a novel matching networks

based on relational network [9, 23] to solve the problem of

masked face recognition. First, we meta-learn a transfer-

able feature exaction model through the designed spatial-

frequency fusion network, which considers both spatial and

frequency domain sampling of images. The well-learned

features of the query samples in the support set are then fed

into the non-linear distance metric to learn the similarity

scores. Further, we conduct a few-shot classification based

on these scores.

Meta-Learning Based Classifier: As illustrated in Fig-

ure 4, our matching network consists of two branches: a

feature extraction model and a relation model during the

training of our network.

❶ Meta-Learning Based Feature Extraction: As il-

lustrated in Figure 4, our spatial-fresquency fusion network

consists of three parts: spatial domain network, frequency

domain network, and spatial-frequency fusion architecture.

① Spatial Domain Network: We use the ResNet-50

network [12] to deals with traditional convolution, pooling

and activation neurons for input images, and get the spatial

domain features of these images.

② Frequency Domain Network: We design the fre-

quency domain network utilizing ResNet-50 with discrete

cosine transform (DCT) to process additional frequency

feature representations of the same image. Firstly, the input

image, the shape of which is H×W ×C, where C = 3 and

the height and width of the image is denoted as H and W

respectively, is transformed to the YCbCr color space and

converted to the frequency domain using DCT. Then, the

two-dimensional DCT coefficients at the same frequency

are grouped into one channel to form three-dimensional

DCT cubes. Since the JPEG compression standard [31, 33]

uses 8 × 8 DCT transformation on the YCbCr color space,

we group the components of the same frequency in all the
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Figure 4: Our Relation Network. Left: the framework of our relation network. It contains two modules: a feature extraction

model and a relation model. The feature extraction model fnetwork produces feature maps to represent feature extraction

function. Our fnetwork includes two kinds of networks: spatial domain network and frequency domain network. The relation

model Jrelation(·) represents the similarity between sample and query; Right: the architecture of our relation network. Firstly,

we preprocess the input image. Secondly, for the image whose size is 448× 448× 3, we use our designed frequency domain

network to get the frequency domain features. Similarly, we use spatial domain network to get spatial domain features. We

meta-learn a transferable feature exaction model through the designed spatial-frequency fusion mechanism, where we use

the solid circle denotes this operation. By this way, our networks considers both spatial and frequency domain sampling of

images. Thirdly, the well-learned features of the query samples in the support set are then fed into the non-linear distance

metric to learn the similarity scores. Finally, we conduct a few-shot classification based on these scores.

8 × 8 blocks into one channel, maintaining their spatial re-

lations at each frequency. Thus, each of the Y, Cb, and Cr

components provides 8 × 8 = 64 channels, one for each

frequency, with a total of 192 channels in the frequency do-

main. At this point, the preliminary feature shape becomes
H
8
× W

8
× 64C, which maintains the same input data size.

Since the input feature maps in the frequency domain are

smaller in the H and W dimensions but larger in the C di-

mension than the spatial-domain counterpart, we skip the

input layer of a conventional ResNet-50, which is usually

a stride-2 convolution. We skip the max-pooling operator

as well. Then we adjust the channel size of the next layer

to match the number of channels in the frequency domain.

This way, we minimally adjust the existing ResNet-50 to

accept the frequency-domain features as input.

All in all, the spatial domain network and the frequency

domain network are both composed of a sequence of resid-

ual blocks. Each residual block contains two branches:

identity mapping and residual branch. The corresponding

function is given as,

x
spatial
t+1 = Rest(x

spatial
t ) + x

spatial
t

x
frequency
t+1 = DCT - Rest(x

frequency
t ) + x

frequency
t

(1)

where x
spatial
t and x

frequency
t denote the input of the

t-th residual block of the spatial domain network and

the frequency domain network, respectively. Rest(·) and

DCT - Rest(·) are transition functions of the spatial domain

network and the frequency domain network respectively,

corresponding to the residual branch composed of a few

stacked layers.

③ Spatial-Frequency Fusion Architecture: We aim to

jointly map spatial domain features and frequency domain

features to a unitary feature space. This combined features



are called spatial-frequency features. A feature fusion ar-

chitecture is proposed in order to use frequency features

to spatial domain features so as to make each network ex-

tract complementary features. Our fusion architecture is

shown in Figure 4 and is formed by assembling each resid-

ual branch of the spatial domain network and the frequency

domain network: Sum the inputs of each residual branch,

and add the sum to the output of each residual branch as the

input of each subsequent residual branch, respectively. It is

formulated as below,

x
spatial
t+1 = (Rest(x

spatial
t ) + x

spatial
t )+

(xfrequency
t + x

spatial
t )

x
frequency
t+1 = (DCT - Rest(x

frequency
t ) + x

frequency
t )+

(xfrequency
t + x

spatial
t )

(2)

❷ Meta-Learning Based Relation Model: We further

propose non-linear distance relation model to learn to com-

pare the sample features in a few-shot classification.

Suppose sample xj in the query set DQ and sample xi in

the sample set DS , we define the function fnetwork which

represents feature extraction function using network to pro-

duce feature maps fnetwork(xj) and fnetwork(xi). The fea-

ture maps are combined using the function Cnetwork. In this

work, we assume the Cnetwork(·, ·) to be concatenation of

corresponding feature maps in depth. The combined feature

map of the sample and query is used as the relation model

Jrelation(·) to get a scalar in range of 0 to 1 representing

the similarity between xi and xj , which is called relation

score. Suppose we have one labeled sample for each of n

unique classes, our model can generate n relation scores

Judgei,j for the relation between one query input xj and

training sample set examples xi:

Judgei,j = Jrelation(Cnetwork(fnetwork(xi), fnetwork(xj)))

i = 1, 2, · · · , n
(3)

Furthermore, we can do the operation of the element-

wise sum over our feature extraction model outputs of all

samples from each training class to form this class’s feature

map. And this pooled class-level feature map is concate-

nated with the feature map of the test samples as above.

2.3. Training with Noisy Web Data

In this work, we try to utilize image-tag pairs from the

web for improving joint embeddings trained using a clean

dataset with image-label pairs. We aim to learn a good rep-

resentation of spatial-frequency fusion that ideally ignores

the data-dependent noise and generalizes well. The utiliza-

tion of web data effectively increases the sample size used

for training our model and can be considered as implicit

data augmentation. On the other hand, due to the outbreak

of the coronavirus disease 2019 (COVID-19) epidemic, it

is impossible for a large number of workers to label data.

The exploitation of web data also frees up a lot of human

resources so that these can be used to save the lives of pa-

tients. In particular, we propose a two-stage approach to

train image representation. In the first stage, we leverage

the available clean image-label pairs from a dataset to learn

an aligned representation. In the second stage, we adapt the

model trained in the first stage with noisy web data.

2.3.1 Stage I: Initial training

We leverage image-label pairs from an annotated dataset to

learn network-based representation. To this end, we use the

symmetric cross entropy, which provides its effectiveness

against various types and rates of label noise.

Lsce = τ × Lce + υ × Lrce (4)

where τ and υ are two hyperparameters, Lce means a stan-

dard cross-entropy loss[49], and Lrce means reverse cross-

entropy loss [40]. Details about Lsce are shown in Ref[40].

In Eq. 4, τ and υ are predefined weights for different

losses. In the first training stage, the reverse cross-entropy

loss is not used (τ = 1 and υ = 0 ) while in the second

stage, both losses are used (τ = 1 and υ = 1).

2.3.2 Noisy Web Data

We use Google Photo API1 to retrieve web images

via inputting tags from the labels from MS-Celeb-1M2,

MS1MV3[2], and Celeb500K[5]. We then query and re-

trieve around 200 images per query, together with their tags.

In this way, we collect about 3, 000, 000 masked face im-

ages with tags. We do not collect more than 5 images

from a single owner. Furthermore, we also collect about

2, 000, 000 original face images with tags. We have de-

veloped a mask wearing software based on Dlib library3 to

perform mask wearing automatically. This software is then

used to wear masks on original face images. Based on this

software, we also can get masked face images from the web.

All in all, we collect about 5, 000, 000 masked face images

with tags in total.

Debias in Web Image-set We use the “Nationality” at-

tribute of FreeBase4 celebrities to directly select Asians and

Indians. For Caucasians and Africans, Face++ API5 is used

to estimate race. The identity will be accepted only if its

most images are estimated as the same race. Otherwise, it

will be abandoned. To avoid the negative effects caused by

1https://developers.google.com/photos
2http://trillionpairs.deepglint.com/overview
3http://dlib.net/
4https://developers.google.com/freebase/data
5https://www.faceplusplus.com/



the biased Face++ tool, we manually check some images

with low confidence scores from Face++. Finally, we con-

struct our web image sets, including four subsets, namely

Caucasian, Asian, Indian, and African.

2.3.3 Stage II: Model Adaptation with Web Data

After Stage I converges, we have the representation of an

image with a learned model. In Stage II, we utilize weakly-

annotated image-tags pairs from our web data to update

the previously learned network. This enables us to trans-

fer knowledge from thousands of freely available weakly

annotated images in learning the representation. We utilize

a smaller learning rate in Stage II, as the network achieves

competitive performance after Stage I and tuning the rep-

resentation network with a high learning rate from weakly-

annotated data may lead to catastrophic forgetting.

As web data is very prone to label noise, we find it is

hard to learn good representation for our task in many cases.

Hence, in Stage II, we adopt a curriculum learning-based

strategy [1, 39, 14] in training. Curriculum learning allows

the model to learn from easier instances first so they can be

used as building blocks to learn more complex ones, which

leads to a better performance in the final task. It has been

shown in many previous works that appropriate curricu-

lum strategies guide the learner towards better local minima

[24, 40]. Our idea is to gradually inject difficult informa-

tion to the learner such that in the early stages of training,

the network is presented with images related to frequently

occurring features in the clean training set. Images related

to rarely occurring concepts are presented at a later stage.

Since the network trained in Stage I is more likely to have

learned well about frequently occurring features, label noise

is less likely to affect the network.

3. Experiments

In this section, we firstly introduce our settings of the

experiment. Then we conduct detailed ablation study over

the vital modules of our model. Further, we show evalua-

tion on the different types of testing datasets and compare

to state-of-the-art methods.

3.1. Experimental Settings

In this subsection, we describe the used datasets and the

implementation details.

Dataset. In our training phase, we use Real-world

Masked Face Recognition Dataset (RMFRD) [41] as the

clean dataset, and use our collected Web Image-set as web

data for Stage II. In our testing phase, our testing datasets

consist of Simulated Masked Face Recognition Dataset

(SMFRD) [41], CFP [28], YTF [45], MegaFace [16], IJB-B

[44], IJB-C [25] and FMA-3D [38]. For compared meth-

ods, we also use RMFRD and Web Image-set for training,

and use the same seven datasets for testing.

Training and Testing Settings The classic pipeline in

meta-learning is first to train a model on a set of base classes

and then to evaluate it on a different set of novel classes

(each set of classes is split into train and validation subsets)

[34]. For our experiments, we use this protocol. In this pa-

per, we resize the images from all datasets to 448×448×3.

For all methods consisting of ours and compared methods,

in the training process, we randomly choose 800 face im-

ages of the 80 subjects for training subsets, and the re-

maining of these 80 subjects are used for validation sub-

sets; We randomly choose 10 times as per the above strat-

egy and take the average recognition performance for com-

parison. For widely comparison, we use the unrestricted

verification protocol on the SMFRD, FMA-3D and YTF

datasets; we use the frontal-profile (FP) protocol on the CFP

dataset; we test on both verification and identification proto-

cols of MegaFace. Specifically, for face identification (Id.),

the Cumulative Matching Characteristics (CMC) curves are

adopted to evaluate the Rank-1 accuracy, and also report the

precision, recall, F1-Measure. For face verification (Veri.),

the Receiver Operating Characteristic (ROC) curves at dif-

ferent false alarm rates are adopted; we test on both verifi-

cation and identification protocols of the two benchmarks:

IJB-B and IJB-C. These comparison principles are same to

the previous works [17].

Our Network Settings. We continue training Stage I for

an initial 120 epochs. Then we start updating the learned

model in Stage I with web images in Stage II for another

120 epochs. Our network architecture is shown in Figure 4.

Our network consists of two parts:

❶ Feature Extraction Model: We employ the ResNet-

50 architecture [12] for learning the feature exaction model.

When meta-learn the transferable feature exaction, we use

Adam optimizer [18] with a learning rate of 0.001 and a

decay for every 40 epochs. We totally train 1000 epochs

and adopt the semi-hard mining strategy [11] when the loss

starts to converge.

❷ Relation Model: We use the 4-layer network archi-

tecture. Taking two feature maps from the spatial domain

network and the frequency domain network, respectively,

as input, we take the concatenation of these features. Then,

we apply the fully connected layer to change into 8192-

dimensional vector. Finally, we use three fully-connected

layers to have 1024, 8 and 1 outputs respectively, followed

by a loss function to get the final similarity scores. Other

network settings are similar to our feature extraction model.

3.2. Ablation Study

In order to verify the reasonableness and effectiveness

of each part of our network, we design the ablation experi-

ment. In Figure 5, “Ours w/o Fusion” means a variant of
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(d) Ablation Study on MegaFace.
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Figure 5: The Results of Ablation Study.
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(b) Comparison Results on YTF.
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(c) Comparison Results on CFP.
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(d) Comparison Results on

MegaFace.
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(e) Comparison Results on IJB-B.
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(f) Comparison Results on IJB-C.
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Figure 6: Comparison Results.

Ours, which removes spatial-frequency fusion architecture;

“ResNet-50” means a variant of Ours, which only using the

spatial domain network; “DCT-ResNet-50” means a vari-

ant of Ours, which only using the frequency domain net-

work. “Ours w/o CL” means a variant of Ours, which re-

moves curriculum learning-based strategy [1] during train-

ing. “Ours (SL in Stage I)” means a variant of Ours, which

use the symmetric cross entropy loss [40] during the train-

ing of Stage I. “Ours(L1)” means a variant of Ours, which

using L1 loss function [10, 8] and not using our loss fun-

tion. “Ours(L2)” means a variant of Ours, which using

L2 loss function [10, 8] and not using our loss function.

“Ours(Cosine)” means a variant of Ours, which using co-

sine similarly function [10, 8] and not using our loss func-

tion. We analyze the following two aspects:

Compared with “Ours w/o Fusion” From Figure 5,

“Ours w/o Fusion” is 0.0927 and 0.0621 higher than

“ResNet-50”, and “DCT-ResNet-50”, on the SMFRD

dataset, in terms of accuracy, respectively. As we can

see, “Ours w/o Fusion” is better than two single networks.

These suggest the importance of making joint use of spatial

domain and frequency domain information.

Compared with “Ours” From Figure 5, “Ours w/o

CL” has lower performance than “Ours”. This shows



that the curriculum learning-based strategy is effective

for our model. Similarly, “Ours(SL in Stage I)”,

“Ours(L1)”,“Ours(L2)” and “Ours(Cosine)” have lower

performance than “Ours”. This shows that the settings and

utility pattern of symmetric cross entropy loss are effective

for our model. As we can see, “Ours” is better than oth-

ers. These suggest making full use of spatial domain and

frequency domain information helps us to improve the task

of masked face recognition.

From the above, we get the conclusion in the following

two aspects:

(1) It is apparent that the design of our spatial-frequency

fusion architecture improves the task of masked face recog-

nition.

(2) It is manifest that the design of the frequency domain

network is better than the spatial domain network. This sug-

gests that the design of frequency domain network is more

effective.

Moreover, by analyzing the results in Figure 5 on other

datasets, we can get similar conclusions.

3.3. Comparison with StateofTheArt Methods

In this subsection, we compare the state-of-the-art ap-

proaches with our model. “Ours w/o Web Images” means

a variant of Ours, which only using the clean dataset and

without web images.

Baseline We compare ours with the state-of-the-

art approaches, including Center-Loss Face[43],

SphereFace[21], RegularFace[52], CosFace[37],

ArcFace[4], AdaptiveFace[20], BoostGAN[6], PDSN

[32], BroadFace[17], CurricularFace[13], Sub-center

ArcFace[3], Global-Local GCN[51]. The results are shown

in Figure 6.

Effect of Proposed Webly Supervised Training. For

evaluating the impact of our approach, we compare results

reported in row-“Ours w/o Web Images” and row-“Ours”.

Our method utilizes the same loss functions and features

used in row-“Ours w/o Web Images” for a fair comparison.

From Figure 6, we observe that the proposed approach

improves performance consistently in all the cases. For

instance, our method is 0.0057, 0.0013, 0.0016, 0.0014

higher than “Ours w/o Web Images”, in terms of accuracy,

precision, recall, F1-measure, on the YTF dataset, respec-

tively. It is evident that using webly supervised training can

enhance the effectiveness of our approach.

Effect of Our Approach. From Figure 6, it is evident

that our approach is better than others. For example, our

method is 0.0501, 0.0491, 0.0321, 0.0231, 0.0221, 0.0219,

0.0218, 0.0191, 0.0189, 0.0188, 0.019, and 0.0182 higher

than Center-Loss Face, SphereFace, RegularFace, Cos-

Face, ArcFace, AdaptiveFace, BoostGAN, PDSN, Broad-

Face, CurricularFace, Sub-center ArcFace, and Global-

Local GCN, in terms of accuracy, on the YTF dataset, re-

spectively;our method is 0.0457, 0.0453, 0.0286, 0.0186,

0.0173, 0.0179, 0.0175, 0.0153, 0.0150, 0.0157, 0.0147,

and 0.0141 higher than Center-Loss Face, SphereFace, Reg-

ularFace, CosFace, ArcFace, AdaptiveFace, BoostGAN,

PDSN, BroadFace, CurricularFace, Sub-center ArcFace,

and Global-Local GCN, in terms of F1-measure, on the

YTF dataset, respectively. From above, our approach is

more effective and robust than the state-of-the-arts ap-

proaches on these seven benchmark datasets.

3.4. Discussion on the Generalization Ability

The data distributions in different masked face scenarios

could be different from that during model development. To

explore the generalization ability of the proposed method,

we firstly use the RMFRD datasets as sketch datasets to

train our model. We evaluate it with cross-database testing

on the SMFRD dataset. Then, we use the SMFRD datasets

as sketch datasets to train our model. We evaluate it with

cross-database testing on the RMFRD dataset. We run ten

times following the above strategy in this discussion. In

results, the recognition accuracy comparisons of testing on

these datasets are shown in Figure 7. This experiment indi-

cates that the proposed method could achieve good recog-

nition performance in such a challenging scenario.
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Figure 7: Cross-Database Recognition Accuracy of the Pro-

posed Method.

4. Conclusion

In this work, we show how to leverage large scale of

web images with tags to augment knowledge for masked

face recognition models with limited labeled data. We at-

tempt to address the challenge by proposing a two-stage

approach that can augment knowledge through an effective

masked face recognition model with weakly supervised web

data. Extensive experiments demonstrate that our approach

significantly improves the performance in the masked face

recognition task in seven benchmark datasets.
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