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Abstract

In this supplementary material, we present more details
on the adaptation of the CDNet-2014 dataset for motion
segmentation. Furthermore, we present further experiments
as well as further discuss experiments dscribed in the paper.
Therefore, we show additional plots and tables.

1. Adaptation of the CDNet-2014 Dataset
CDNet-2014 is a dataset to benchmark the task change

detection. This means that moving objects that stop mov-
ing during the sequence remain labeled as motion until the
end of the sequence. This is not suitable to evaluate mo-
tion segmentation as we consider it in our paper. Hence, we
describe an algorithm to re-label that dataset automatically
to label objects that stop as background after some frames.
In addition to the utilization of tracking, Intersection over
Union (IoU), and Center of Mass (CoM), we needed some
further adjustments that are not described in the paper.

When a GT object previously identified as static gets into
contact with another GT object, they get merged and the in-
dividual objects can no longer be distinguished. This causes
the CoM to change significantly, which in turn causes the
object to be detected as being in motion. This causes static
objects to sometimes reappear even though they do not
move. As soon as the objects are separated again, the static
object is identified as being static and is removed from the
GT. This problem only occurs in very few frames of scenes
like sofa of the category intermittentObjectMotion. Objects
that are removed in one frame due to being static, and then
immediately reappear in the next frame because of motion
cause the GT to flicker. Two additional thresholds Ts and
Tr are introduced to adjust the sensitivity of the algorithm
and prevent this flickering effect. Ts is used to adjust how
fast an object is removed from the GT if it stopped. If the

object stops for more than Ts frames, it is removed. In a
similar way Tr is used to decide how fast a static object
should reappear in the GT. If the object is moving in the
next Tr frames, it reappears in the GT.

Table 1. Configuration parameters for our adaption of CDNet-
2014. Ts: Threshold in frames to declare region as static; TCoM :
Threshold how far Center of Mass (CoM) must move to not be
static; TIoU : Threshold for IoU to consider region being static
(proven by TCoM ); Tr: Threshold for how many frames the re-
gion must move to be moving (again).

Scene TIoU TCoM Ts Tr

office 1 0.2 20 2
PETS2006 0.95 0.3 15 5
streetLight 0.99 0.1 20 5

tramstop 0.9 0.1 15 4
parking 1 0.001 22 0

abandonedBox 0.8 0.1 5 2
sofa 0.8 0.2 15 2

tunnelExit 0 35fps 1 0.1 1 3
copyMachine 0.95 0.175 15 3
diningRoom 0.99 0.03 20 5

corridor 0.9 0.004 20 1
lakeSide 1 0.0005 25 1

library 0.99 0.016 15 7
turbulence2 0.875 1 42 5

The final adaptation algorithm requires four parameters
in total that need to be set for each scene individually. These
parameter are:

• The threshold TIoU , which is used to decide whether
an object became static based on the IoU .

• The threshold TCoM , which is used to decide whether
an object became static based on the shift in position
of the center of mass.



Figure 1. Creation of the new semantic GT labels based on majority voting and semantic class separation. Blue pixels indicate cars while
red pixels indicate persons.

• The threshold Ts, to remove objects from the GT if
they are static for more than the specified number of
frames.

• The threshold Tr, to let static objects reappear in the
GT if they move for more than the specified number of
frames.

Especially in scenes without many overlapping objects,
the parameters of the algorithm can be fine-tuned to match
the behavior of the occurring objects. In scenes, where
moving objects overlap with static objects, it happens that
annotations of static objects reappear for a short period of
frames. The big change in bounding box IoU and the po-
sition of the center of mass, causes the annotations of the
static object to reappear for a small number of frames. An
overview of the scene-specific paramterization of the four
parameters is provided in Table 1.

After the preparation of the data set for motion segmen-
tation, an additional version is created that also includes se-
mantic classes of moving objects. Since the GT contains
only things, the object classes are determined by means of
instance segmentation. This has the advantage that stuff ob-
jects are not even considered in the segmentation and, thus,
greatly simplifies the identification of the semantic class for
each object. The terminology things and stuff is taken from
the task of panoptic segmentation [2]. To create the instance
segmentation for the adapted CDNet-2014-MotSeg, a pre-
trained Mask R-CNN [3] is used. This model is chosen

because it is pre-trained on the MS COCO dataset, which
includes all necessary object classes that appear in CDNet-
2014. The instance segmentation of the model are con-
verted to semantic segmentation since only this information
is needed. The model produces accurate segmentation re-
sults of all relevant objects. However, the segmentation dif-
fers slightly from frame to frame. For higher consistency,
the result of the instance segmentation is combined with
the GT of the adapted CDNet2014-MotSeg. This is done
by using the semantic segmentation of the input frame and
merging it with its motion GT of the CDNet2014-MotSeg
dataset. For each pixel that is annotated as motion in the GT,
the predicted semantic class is transferred into the motion
GT. Usually, one GT object represents a single object. In
this case a majority voting based on the pixels that are part
of each GT object is used to determine the semantic class of
each object. By reusing the exact shape of the original GT
pixels that were not classified by the semantic segmentation
are filled in and the new semantic GT stays consistent.

This approach works for most of the scenes, in which
multiple different types of objects occur. However, in some
scenes, several different types of objects may partially oc-
clude each other. In these scenes, majority-based relabel-
ing does not provide satisfactory results. For example, it
sometimes happens that a person is partially occluded by a
passing car. Due to the much larger area of the car, major-
ity voting decides that the GT object represents a vehicle.
To prevent this, an object separation based on the results of



the semantic segmentation is applied to the GT. By adding
a border around each individual object class, GT objects
that belong to different semantic classes are separated from
each other. After this separation the new GT objects are
annotated by applying the initial majority based strategy to
determine the semantic class of each object. Figure 1 shows
the different results of both methods.

2. Further Experimental Results
In this section, we present further experimental results.

This can be more evaluation measures for the same exper-
iment already presented in the paper or experiments not
mentioned on the paper.

2.1. Frame Differencing Ablation Study

The ablation study on frame differencing in the paper
only considers the F1-score as evaluation measure. In Ta-
ble 2, we see the same evaluation for all CDNet-2014 mea-
sures. It can be seen that none of the two-frame differ-
encing approaches performs best on any measure. Interest-
ingly, the large structuring element (SE) for the morpholog-
ical operations seems to be beneficial for reduction of false
positives, which is indicated by top performances in case
of Specificity, False Positive Rate, Percentage of Wrong
Classification and Precision. The reason could be that the
large structuring element significantly reduces the number
of false negatives in the difference image before training
the DCNN.

2.2. Optical Flow Experiments

Table 3 shows the results of our optical flow experiments
for all measures. As can be seen the approach using two
consecutive frames for optical flow calculation and the dif-
ference image used for our baseline approach does not only
perform best on F1-score, but on all measures. Interest-
ingly, its FPR is only 0.5 %, which underlines the very high
Specificity of 99.4 %.

2.3. Hybrid vs. Late Fusion

The hybrid fusion approach in the paper was not properly
discussed. Instead of the hybrid fusion at multiple stages of
the modality-specific ResNet-50 backbone, we could sim-
ple collect and concatenate the feature maps at the end of
each encoder. Such an architecture for late fusion is shown
in Fig. 2. Table 4 shows the comparison of our hybrid fu-
sion DCNN with the late fusion DCNN. As expected, the
model trained with hybrid fusion strategy performs better
on all evaluation measures. Especially on the more chal-
lenging categories, the hybrid fusion model benefits from
the richer fusion features and outperforms the late fusion
approach. Both models use the same difference image in-
put calculated using three-frame differencing with 5 frames
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Figure 2. Overview of the modified architecture to perform a
late fusion with the concatenated feature maps from both encoder
streams taken only from the conv 4 stage.

gap, summation of difference images, and small structuring
element for the morphological operations.

2.4. Comparison with the State-of-the-Art

To further compare our approach against state-of-the-
art approaches, we provide a category-wise comparison in
Fig. 3 to show identify potential weaknesses of our ap-
proach. As can be seen our baseline performs best on all
categories, which underlines its generalization ability. In-
terestingly, for the two challenging categories camera jit-
ter and low frame rate Short Term Background Subtraction
(STBGS) is our strongest competitor, while for most other
categories it’s the 3D convolution based DCNN based ap-
proach [1].

2.5. Detailed Comparison with [1]

Figure 4 shows a comparison of our approach against
Bosch’s [1] DCNN based approach, for different threshold
values from 0.1 to 0.9. The radar chart shows a large margin
in F1-score for our approach. Furthermore, it can be seen
that our approach is more robust regarding the choice of the
confidence threshold as most threshold values show similar
or even equal performance, while the compared approach
seems to be more dependent on the chosen threshold.

2.6. Additional Qualitative Evaluation

In this section, we show some more example images to
show strong results but also weaknesses of our approach.
Figure 5 shows good examples for a variety of scenes and
challenges. Among them is thermal imagery (upper left),
panning motion (lower left), and camera jitter (lower right).
All moving objects present in the scene are segmented well.

The scene port 0 17 fps is one of the most challenging
scenes of the dataset. The extremely low frame rate in com-
bination with low contrast between the very small-scale per-
sons walking across the jetty and the constant swaying of



Table 2. Ablation study on frame differencing variants as input for the multi-modal DCNN. The best performing approach for each measure
is indicated in bold font.

Diff.
frames ∆F Fusion

Morph.
SE

Conf.
thrs. Re Sp FPR FNR PWC Pr F1

3 5 sum small 0.4 0.751 0.993 0.006 0.242 1.146 0.774 0.745
3 2 sum small 0.3 0.750 0.993 0.006 0.249 1.190 0.755 0.717
3 1 sum small 0.3 0.722 0.993 0.007 0.277 1.291 0.766 0.710
3 5 sum large 0.4 0.73 0.994 0.005 0.264 1.102 0.781 0.733
3 2 sum large 0.4 0.756 0.993 0.006 0.243 1.178 0.768 0.739
3 1 sum large 0.5 0.710 0.992 0.007 0.289 1.386 0.749 0.687
3 5 min small 0.3 0.755 0.994 0.005 0.244 1.160 0.776 0.735
3 2 min small 0.3 0.732 0.992 0.007 0.267 1.274 0.756 0.708
3 1 min small 0.3 0.706 0.990 0.009 0.293 1.542 0.720 0.658
3 5 min large 0.3 0.760 0.993 0.006 0.239 1.200 0.776 0.738
3 2 min large 0.4 0.726 0.991 0.008 0.273 1.411 0.770 0.709
3 1 min large 0.4 0.707 0.991 0.008 0.292 1.376 0.735 0.668
2 10 small 0.4 0.712 0.994 0.005 0.287 1.231 0.771 0.700
2 5 small 0.3 0.742 0.992 0.007 0.257 1.261 0.761 0.720
2 1 small 0.4 0.695 0.993 0.006 0.304 1.262 0.734 0.681
2 10 large 0.2 0.701 0.989 0.011 0.298 1.658 0.734 0.662
2 5 large 0.5 0.707 0.992 0.007 0.292 1.441 0.715 0.677
2 1 large 0.5 0.674 0.992 0.008 0.325 1.496 0.737 0.641

Table 3. All evaluation measures for our experiment using optical flow as input for the DCNN.

∆F
last

channel
Conf.
thrs. Re Sp FPR FNR PWC Pr F1

1 Mag 0.3 0.665 0.979 0.020 0.334 2.642 0.646 0.604
1 Diff 0.3 0.758 0.994 0.005 0.241 1.157 0.779 0.743
5 Mag 0.5 0.639 0.985 0.014 0.361 2.299 0.690 0.595
5 Diff 0.3 0.745 0.992 0.007 0.254 1.343 0.736 0.712

the surrounding boats make it exceptionally difficult to dis-
tinguish between actual and irrelevant motion. Even for a
human, it is difficult to see the moving foreground objects
in this scene. Figure 6 shows two examples, where motion
is present. In the lower example image our approach misses
the moving person.
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Table 4. Overall results of the baseline hybrid fusion and late fusion model. The best results are denoted in bold font.

Model Conf.
Thrs. Re Sp FPR FNR PWC Pr F1

Baseline (Hybrid Fusion) 0.4 0.757 0.994 0.006 0.243 1.147 0.775 0.745
Late Fusion 0.3 0.709 0.993 0.007 0.291 1.267 0.755 0.693
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Figure 3. Comparison of the category-wise F1-scores of each method. Dotted lines represent the overall average F1-score of each method.
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Figure 4. Category-wise F1-score of the baseline model and the approach by Bosch [1] for different confidence thresholds.



Figure 5. Examples of motion segmentation created by our approach. Images are taken from the scenes Thermal - corridor, Baseline -
highway, PTZ - continuousPan and Camera Jitter - badminton. Green pixels indicate true positives, red pixels indicate false positives, and
blue pixels indicate false negatives.



Figure 6. Examples of the scene port 0 17 fps. The walking person in the lower row is missed by our approach. Green pixels indicate true
positives, red pixels indicate false positives, and blue pixels indicate false negatives.


