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Abstract

In this paper, we propose a spatio-temporal predictive

network with attention weighting of multiple physical Deep

Learning (DL) models for videos with various physical

properties. Previous approaches have been models with

multiple branches for difference properties in videos, but

the outputs of branches have been simply summed even with

properties that change in time and space. In addition, it is

difficult to train previous models for sufficient representa-

tions of physical properties in videos. Therefore, we pro-

pose the design of the spatio-temporal prediction network

and the training method for videos with multiple physical

properties, motivated by the Mixtures of Experts frame-

work. Multiple spatio-temporal DL branches/experts for

multiple physical properties and pixel-wise and expert-wise

attention mechanism for adaptively integrating outputs of

experts, i.e., Spatial-Temporal Gating Networks (STGNs)

are proposed. Experts are trained with a vast amount of

synthetic image sequences by physical equations and noise

models. Instead, the whole network including STGNs is

allowed to be trained only with a limited number of real

datasets. Experiments on various videos, i.e., traffic, pedes-

trian, Dynamic Texture videos, and radar images, show the

superiority of our proposed approach compared with previ-

ous approaches.

1. Introduction

Predicting future scenes has various industrial applica-

tions, such as automatic driving and anomaly detection

in traffic scenes. Recently, various Deep Learning (DL)

models with different architectures have been proposed to

videos with traffic scenes [20] and on-board camera scenes

[44]. However, predicted scenes and objects are suffered

from distorted and blurry vehicles and pedestrians. In or-

der to improve prediction accuracy, state-of-the-art (SOTA)

DL models have been designed multiple branches for dif-

ferent properties in videos, e.g., background and moving

objects [21]. In addition, physics-based DL models with

branches [12] have been developed to follow underlying

physical rules of videos. However, image intensity incre-

ments/decrements are not yet considered. Other SOTA mul-

tiple branches have been summed by static weights even

under dynamic and local image property changes of input

image sequences [17, 36, 42]. However, for designing a

more expressive model, those weights should be determined

adaptively based on input image sequences.

One of the promising approaches for adaptive weighting

is to apply the framework of Mixtures of Experts (MoE).

However, most MoE models consist of multiple non-spatio-

temporal DL models/experts. Moreover, adaptive but scalar

weightings to each expert output have been applied. Be-

sides, in DL models of natural language processing and

computer vision [38, 46], various attention mechanisms

have been implemented to enhance feature representations

of DL models, but no or less attention mechanism for video

prediction has considered local and dynamic changes.

Training these complicated DL models generally re-

quires a large amount of data [1], and end-to-end training

with only real datasets is difficult. Training data augmen-

tation by collection and annotation of real-world videos is

important but expensive. Training methods of DL mod-

els on synthetic datasets have been proposed [15, 37], but

they have not focused on the spatio-temporal dynamics of

videos. Besides, since synthetic datasets are useful but have

a wide deviation from real data, a certain bridge between

them should be offered.

To this end, in this paper, we focus on designing a new

spatio-temporal predictive network for videos with multiple

physical properties, where DL models/experts and Spatio-

Temporal Gating Networks (STGNs) with adaptive atten-

tion mechanism inspired by MoE are implemented. We call

the proposed overall DL network, Spatio-Temporal MoE

(STMoE). Contributions of this paper are four-fold:

1. Novel DL based prediction network, i.e., STMoE, is de-

signed for video prediction, where an extended MoE

consist of DL models/experts and STGNs, the former

for extracting spatio-temporal feature representations of

various local physical properties and the latter for deter-

mining contributions of multiple DL models.

2. STGNs are introduced to adaptively integrate expert-



derived feature representations, where a specific atten-

tion mechanism, i.e., a combination of pixel-wise at-

tention for sub-regions of feature representations and

expert-wise attention for physical property estimation,

has been applied.

3. DL experts in STMoE are trained by synthetic image se-

quences from physical equations with different shapes,

motion speeds, sizes, texture, translation, rotation, and

image intensity increments. For filling the gap between

real and synthetic images, a mix of natural phenomena

driven noise, Perlin noise [14] and normal noise is pro-

posed to efficiently augment training data.

4. A large amount of physics-based synthetic image se-

quences are used for training multiple experts. On the

other hand, a less number of real image sequences are

used to train the whole network. This new training

framework ensures to eliminate costs to augment nec-

essary real image data. Using many challenging scenes,

i.e., dynamic MNIST, moving camera, moving legs, Dy-

namic Texture, and radar images, experimental results

show improvements of proposed STMoE by predicted

image quality over SOTA prediction models.

2. Related work

This section devotes Deep Learning (DL) based image

and video prediction models and methods, dividing into

four categories: non-physics, physics, multi-architecture,

and attention mechanism models.

2.1. Nonphysics based DL model

The basic principle of image prediction is to obtain the

next single image frame from the past image sequences. In

previous computer vision, the state space equations based

3D Auto-Regressive and Moving Average (ARMA) models

have been used for Dynamic Texture (DT) videos, where

DT is defined as time-varying and physics-rule-driven tex-

ture images/videos, i.e., traffic flow, pedestrian flow, natu-

ral phenomena [34]. Recently, in DL, ConvLSTM (Convo-

lutional Long Short-Term Memory) [32] and its extended

version, TrajGRU [33], PredRNN [41] and PredRNN++

[40] have been introduced. A variational inference model

is also proposed [45]. More recently, ubiquitous U-Net [29]

by collecting a large amount of training image datasets has

been used to predict weather radar images [1]. Unlike col-

lecting and annotating a large amount of real-world videos

[7, 28, 48], this paper proposes to efficiently augment image

sequences by physical equations, special noise, i.e., Perlin

as well as different shapes, texture, and motion speeds.

2.2. Physicsbased DL model

Exploiting prior physical knowledge is another appeal-

ing way to improve DL based prediction models. Among

them, several approaches are dedicated to specific partial

differential equations (PDEs). A specific architecture is de-

signed for predicting and identifying a dynamical system

[24]. PDE-Net [23] discretizes a broad class of PDEs by ap-

proximating partial derivatives with convolutions. Physics-

based DL model, PhyDNet [12], is using a two-branch deep

architecture, but there is no explicit modeling of intensity

increments/decrements. Our proposed DL architecture has

been designed to optimize importance of multiple physical

branches/experts for a wider range of physical and natural

phenomena in videos.

2.3. Multiarchitecture DL model

In order to deal with different properties in videos, mul-

tiple DL architecture models have been proposed [36, 44],

whose prediction accuracy is better than a single DL model.

For the prediction of various motion features, a video pre-

diction framework based on multi-frequency analysis has

been proposed [20]. However, SOTA prediction models are

hard to deal with strong local deformations and image inten-

sity increments [17, 19, 21, 25, 26, 35] unlike our proposed

local and physics based DL models.

2.4. Attention Mechanism

Attention mechanism dynamically determines important

part of feature representations to pay attention to, during

inference in DL depending on different inputs. In SOTA,

multiple branches have been proven to be effective for mul-

tiple different tasks. There have been constant weight-

ings of each branch [44]. Mixtures of Experts models

[2, 3, 11, 16, 31, 39] have been used for scalar weightings

or hard weightings, where multiple experts consist of clas-

sification based DLs. Squeeze and Excitation Network de-

termining attention weights in each feature representation

of multiple channels has achieved high accuracy in object

recognition [18]. A number of papers to pixel-wise atten-

tion mechanisms for image scale [5] and for image/video

context [8, 22, 47] have been succeeded to enhance accu-

racy. By following these avenues, our proposed Spatio-

temporal Gating Networks (STGNs) play a role in pixel-

wisely and expert-wisely weighting in response to input im-

age sequences.

3. Proposed Methods

We propose a framework of designing Deep Learning

(DL) model for video prediction, i.e., Spatio-Temporal

Mixtures of Experts (STMoE). To begin with, we formu-

late a spatio-temporal prediction DL model. Let Yt ∈
R

M×N×CY (M : height, N : width, CY : number of

channels) be an image at time t and input data Xt =
{Yt−1, Yt−2, ..., Yt−l} be temporally consecutive images at

past time t − 1 to t − l. In order to predict a next-time im-

age Yt from Xt, we generally define a spatio-temporal DL



predictor M(· ; θ):

Ŷt = M({Yt−1, Yt−2, ..., Yt−l} ; θ) = M(Xt ; θ), (1)

where θ is a parameter to be trained. For longer frame pre-

diction, an updating output image is recursively used to a

new input image until future time t + n − 1. Suppose that

M(· ; θ) consists of an encoder F (· ; θF ) and a decoder

H(·; θH), where F (· ; θF ) obtains a feature representation

Zt ∈ R
P×Q×CZ (P : height, Q: width, CZ : number of

channels) from Xt and H(·; θH) obtains Ŷt from Zt.

Zt = F (Xt ; θF ), (2)

Ŷt = H
(

Zt ; θH
)

= H
(

F (Xt ; θF ); θH
)

. (3)

Since in this paper, multiple local and physical properties,

e.g., rotation and intensity increments, are assumed, and Zt

is approximated by the linear combination of different m

distinct physical properties:

Zt =

m
∑

k=1

Zk
t . (4)

3.1. SpatioTemporal Mixtures of Experts

In this section, methods for obtaining feature repre-

sentations of corresponding physical properties and the

integration of them as in Equation 4, are described in

the framework of proposed STMoE. STMoE consists of

m distinct spatio-temporal DL physical encoders/experts

{F k(· ; θFk), k = 1, ...,m} and Spatio-temporal Gating

Networks (STGNs), {Gk(· ; θGk), k = 1, ...,m} as shown

in Figure 1(a). The physical feature representation Z̃k
t ∈

R
P×Q×CZ corresponding to the the kth physical property

is estimated by F k(· ; θFk) trained with specific physical

dynamics. However, it is difficult for F k(· ; θFk) to extract

only the feature representation necessary for the kth prop-

erty from Xt which includes multiple spatio-temporally

varying physical properties, resulting in Z̃k
t containing spa-

tial sub-regions which don’t respond to the kth property.

Therefore, a pixel-wise attention weight W k
t ∈ R

P×Q

where Zk
t = W k

t · Z̃k
t , 0 ≤ W k

t ≤ 1, is needed to

ensure that only spatial regions that respond to the kth

property are extracted. The design of attention weights

Wt = {W k
t , k = 1, ...,m} is shown in Figure 1(b). Wt are

calculated based on past spatio-temporal changes around

the location to be weighted. First, for attention weights,

a new feature representation Ut ∈ R
P×Q×m′

(m′: num-

ber of channels) with the same height and width of Zt is

caluculated from G′(· ; θG′), the first part of STGNs where

input is Xt, i.e., Ut = G′(Xt ; θG′). The feature vector

at the pixel of position i, j in the physical feature repre-

sentation obtained from F k(· ; θFk) is denoted as Z̃k[i, j],
and the corresponding scalar attention weight is denoted as

W k
t [i, j]. Then the kth attention weight of pixel i, j, i.e.,

W k
t [i, j] are calculated as follows:

W k
t [i, j] = Gk′′(

Ut[R(i, j)]; θGk′′

)

= Gk(Xt; θGk)[i, j],
(5)

where spatial regions around pixel i, j is denoted as R(i, j)
and Gk′′

(· ; θGk′′ ) is the second part of STGN. The func-

tion of proposed STGNs can be thought as a specific atten-

tion mechanism; a combination of pixel-wise attention for

sub-regions of feature representation and expert-wise atten-

tion for physical property estimation. Furthermore, since

physical features are assumed to be similar in neighboring

pixels in Zt, spatial smoothness has been posed to Wt. We

use convolutional neural network and squeeze and excita-

tion network[18] for STGNs for spatial smoothness of Wt

and spatial constraints with R(i, j). From the above, a pre-

dicted image at time t, i.e., Ŷt is given in Equation 6:

Ŷt = H
(

m
∑

k=1

W k
t · Z̃k

t ; θH
)

= H
(

m
∑

k=1

Gk(Xt ; θGk

)

· F k(Xt ; θFk) ; θH).

(6)

3.2. Optimization of STMoE

A two-step optimization for STMoE is explained: local

optimization, which is mainly for training of DL experts,

and global optimization, which is for training of the whole,

including STGNs.

Local optimization: We propose a method for train-

ing multiple experts using newly augmented synthetic

image sequences and a training process for constructing

feature representations that can be integrated by linear

combination as shown in Equation 6. Each of all experts

{F k(· ; θFk), k = 1, ...,m} needs to be trained indepen-

dently to extract the corresponding feature representation.

Due to insufficient training datasets, synthetic image

sequences Dk for the kth property is used for training

F k(· ; θFk). In order to facilitate synthesizing a vast

amount of Dk efficiently, simple but physical equations

have been employed. Moreover, since this paper aims at

predicting complicated videos capturing natural phenom-

ena with mixed physical properties, various noises i.e.,

Gaussian, White, and Perlin noise [14], have been added

to make experts robust to real videos. In particular, Perlin

noise is known as a model of natural phenomena. An

example of generation of synthetic image sequences is

shown in Figure 2. Details are as follows:

• Initial objects are placed in a frame. Objects are gen-

erated from circles, lines, polygons. Initial textures are

generated from a sine wave.



(a) Overall network. STMoE consists of multiple experts corresponding to

physical properties and STGNs which determine attention weights.

(b) Pixel-wise attention mechanism for physical feature representations.

Figure 1. Proposed Spatio-Temporal MoE (STMoE): (a) shows the overall network, and (b) shows details of the designed attention mech-

anism in the orange shaded area in (a).

• Their motions and image intensity changes over time as:

– Translation, rotation: Dk is generated by chang-

ing objects’ velocity/angular velocity, accelera-

tion/angular acceleration and jerk/angular jerk.

– Intensity increments/decrements: Dk is generated

by applying convolution filters to images at each

time step. When the total filter value is higher/lower

than 1, it simulates increments/decrements, respec-

tively.

Figure 2. An example of how to generate synthetic image se-

quences {Dk, k = 1, ...,m}.

In order to obtain feature representations which can be lin-

early combined, a two-stage training process has been im-

plemented as follows:

1. Training of H(· ; θH): A certain spatio-temporal DL en-

coder F 0(Xt ; θF 0), e.g., MIM is prepared for training

of H(· ; θH). By setting Ŷt = H(F 0(Xt ; θF 0) ; θH),
parameters θH and θF 0 are trained using synthetic im-

age sequences including all physical properties, Dall =
{Dk, k = 1...,m}. Generalized model parameters θH
and θF 0 for all physical properties can be obtained.

Only θH is used in the following training process.

2. Training of all experts {F k(· ; θFk), k = 1, ...,m}:

Training of F k(· ; θFk) is conducted by using Dk.

When training any expert, a shared θH is fixed, so that

all experts obtain linearly combinable feature represen-

tations.

The loss function of local optimization follows the usual

loss function of DL experts. Each of experts can be trained

independently and simultaneously, therefore the time cost

is not expensive.

Global optimization: After local optimization, the

whole network including STGNs is trained with a limited

number of real datasets. To optimize the whole network,

we define a loss function which consists of three objecitive:

7:

L = Lreconst + λWs · smo(W ) + λWe · ent(W ). (7)

The first term of Equation 7 is reconstruction error

Lreconst = ‖Ŷ − Y ‖, Y = {Yt, ..., Yt+n−1}. The second

and third term of Equation 7 are constraints on attention

weights W = {Wt,Wt+1, ...,Wt+n−1}. In video predic-

tions, W needs smoothly varying in the temporal direction,

the second term, L1 constraint of consistency in the tempo-

ral direction smo(W ) = ‖ ∂
∂t
W‖1 is introduced. Moreover,

the third term, ent(W ) = −W logW , is introduced for

promoting sparsity of W , i.e., extracting as few important

features as possible. In addtion, to deal with outliers and

limited datasets, a generalized robust function ρ(x, α, c) is

employed [4]. Thus, the final objective function is:

L = ρ(Lreconst, α1, c1)+

λWe · ρ(ent(W ), α2, c2) + λWm · ρ(mag(W ), α3, c3).

(8)

Global optimization is done by minimizing Equation 8 with

respect to parameters θF = {θFk , k = 1, ...,m}, θG =
{θGk , k = 1, ...,m}, and θH . For ensuring convergence,

global optimization has been divided into two stages:

1. Training of G(· ; θG) is conducted by fixing θF =
{θF 1 , ..., θFm} and θH .

2. Training of the whole network is conducted and trained

θF , θG, and θH are obtained.

4. Experiments

We have conducted experiments to justify proposed

Spatio-temporal Mixtures of Experts (STMoE) by compar-



ing with five state-of-the art (SOTA) baseline models: U-

Net [1], Advection Diffusion into DL (ADDL) [6], Pre-

dRNN++ [40], Memory in Memory (MIM) [43] and PhyD-

Net [12]. As examples of STMoE, following models were

used. Since video are assumed to be composed of mul-

tiple physical properties as described in Section 3, three

basic physical properties (m = 3), i.e., translation, rota-

tion, and intensity increments/decrements were used. The

other physical properties in videos were assumed to be rep-

resented approximately by a combination of these proper-

ties. Two models with different DL experts and decoder

H((· ; θH)), i.e., STMoE-Id and STMoE-conv, were used.

STMoE-Id: In STMoE-Id, an identity decoder was used

for H(· ; θH), i.e., Zt = Ŷt. A model excelled in prediction

accuracy of Dk was selected for F k(· ; θFk). The model

that incorporates physical structures of ADDL [6] was used

for the expert of translation. For other experts, MIM was

used [43], where MIM takes a temporal difference in hid-

den states and is useful for non-stationary components.

STMoE-conv: In STMoE-conv, convolution filter was

used for H(· ; θH) in Equation 6. By using convolution

filter for H(· ; θH), it was assumed that spatial distribution

of physical properties would be smooth in Ŷt. In STMoE-

conv, MIM was used for all experts.

Since ADDL and MIM are experts of STMoE, they were

used to compare prediction accuracy between ADDL/MIM

and STMoE. Experiments were conducted using both syn-

thetic data, i.e., Dynamic MNIST, and real data, i.e., traffic

scenes, pedestrian scenes, Dynamic Texture (DT) videos,

and precipitation radar images in Figure 3. All data were

downsampled and cropped to M,N = 112 or 128 and

converted to grayscale (CY = 1) due to computational re-

sources. Synthetic image sequences Dall for local optimiza-

tion of STMoE-Id and -conv were generated totally 30,000

sequences (10,000 sequences per expert). 4 temporally con-

secutive image frames (l = 4) are used in order to estimate

velocity, acceleration and jerk of motions. Other hyper-

parameters were determined based on validation datasets.

All baseline models were trained using only real datasets.

Quantitative evaluations are carried out using two metrics:

Structural Similarity (SSIM) to analyze local structures of

videos and Mean Square Error (MSE) to evaluate image in-

tensities of each pixel especially for precipitation radar im-

ages. Note that minimum MSE (↓) and maximum SSIM (↑)

indicate the best performance in tables.

Figure 3. Datasets used in experiments.

models MSE ↓ SSIM ↑ models MSE ↓ SSIM ↑
U-Net [1] 336 0.920 ADDL [6] 213 0.964

PredRNN++ [40] 205 0.933 PhyDNet [12] 162 0.928

MIM [43] 200 0.963 MIM w/Dall[43] 174 0.964

STMoE-Id 115 0.978 STMoE-conv 120 0.975

Table 1. Quantitative results on Dynamic MNIST.

4.1. Dynamic MNIST

Dynamic MNIST extended Moving MNIST [32] with

translation, rotation, and intensity change was used since

Moving MNIST was not enough for evaluating multiple

physical properties. 6 frames were predicted. The number

of training data was 250. Table 1 shows proposed STMoE-

Id and -conv outperform baseline models. In addition to

baseline models trained only with Dynamic MNIST, MIM

trained with both Dynamic MNIST and synthetic image se-

quences Dall used in local optimization of STMoE (w/Dall:

with Dall) was also examined to eliminate differences in

the number of total training datasets. Input 4-frame im-

ages, ground truth (GT) images, and prediction images of

MIM, PhyDNet, and STMoE model are shown in Figure

4(a), where the middle ’0’ is translating, the right ’8’ is

rotating, and the intensity of the left ’8’ is gradually de-

creasing. Prediction results of STMoE-Id and -conv are

well predicted physical properties compared to prediction

results of MIM and PyhDNet, as blur and intensity degra-

dation have been improved. In order to better understand

roles of three physical experts and Spatio-temporal Gat-

ing Networks (STGNs) with pixel-wise attention weight-

ing, Figures 4(b) and 4(c) show predicted results overlaid

overlaid with importance of each experts for prediction, i.e.,

attention weights {H
(

W k
t ; θH

)

, k = 1, 2, 3}, where high-

lighted spatial regions indicate high importance of corre-

sponding experts. In Figures 4(b) and 4(c) , the middle ’0’,

the right ’8’, and the left ’8’ have high importance of trans-

lation expert (Trans), rotation expert (Rot), and intensity in-

crements/decrements expert (Intensity), respectively. It has

been confirmed that proposed STGNs have functioned as

designed.

4.2. Pedestrian and Traffic scenes

In this section, experiments were conducted using four

scenes: pedestrian scenes from KTH [30] (Pedestrian), traf-

fic scenes with pedestrians and vehicles from the public

dataset DT videos [13] (Traffic 1), and traffic scenes with

the on-board camera from KITTI [10, 27] (Traffic2, 3). 6

frames or 4 frames were predicted. STMoE-Id was used

for prediction. The number of training data was from a few

hundred to 1500. Table 2 shows that STMoE-Id has the

best performance among all in terms of SSIM. Figure 5(a)

shows that STMoE-Id is able to capture cars and pedestrians

well on Traffic1 scene. Enlarged car regions show that the

blurring and distortion of car in the baseline has been im-

proved when STMoE-Id is applied. For better analyzing lo-



(a) Comparative results of Dynamic MNIST predic-

tion.

(b) Attention weights in STMoE-

Id

(c) Attention weights in STMoE-

conv

Figure 4. Experiment on Dynamic MNIST.

models Pedestrian ↑ Traffic 1 ↑ Traffic 2 ↑ Traffic 3 ↑
U-Net [1] 0.807 0.867 0.375 0.364

ADDL [6] 0.872 0.904 0.422 0.386

PredRNN++ [40] 0.875 0.890 0.452 0.402

MIM [43] 0.865 0.890 0.431 0.405

PhyDNet [12] 0.827 0.846 0.461 0.419

STMoE-Id 0.877 0.909 0.467 0.427

Table 2. Evaluation by SSIM on pedestrian and traffic scenes.

(a) Predicted images of STMoE-Id, PredRNN++ and

MIM. Pink dotted regions show enlarged images

around the car.

(b) Evaluation of pedestrian’s legs’ motions by Optical Flow in

orage rectangular region of (a).

Figure 5. Experiment on Traffic1 scene.

cal legs’ motions of the pedestrian, we applied Optical Flow

(OF) [9] to prediction results and used MSE of OF in Figure

5(b). As shown quantitatively by local MSE of OF, whereas

baseline models do not capture legs moving downward to

the right, STMoE-Id captures them. It has been confirmed

that STMoE-Id, which takes multiple physical features into

account pixel-wisely, is better able to capture local motion

and intensity changes than baselines.

Bubble ↑ Fish ↑ Fire ↑ River ↑
U-Net [1] 0.859 0.701 0.414 0.715

ADDL [6] 0.903 0.782 0.488 0.697

PredRNN++ [40] 0.950 0.854 0.402 0.745

MIM [43] 0.956 0.858 0.432 0.741

PhyDNet [12] 0.834 0.761 0.411 0.729

STMoE 0.970 0.863 0.489 0.741

Table 3. Quantitative results on DT videos by SSIM. Note that

better results in STMoE-Id or -conv are shown.

(a) Predicted images.

(b) Local evaluation and enlarged

images of orange rectangular re-

gions in (a).

Figure 6. Comparative results of STMoE-Id and MIM prediction

using Fish.

4.3. Dynamic Texture Videos

Dynamic texture is a scene where objects with tex-

ture changes spatio-temporally in response to physical

phenomena, four challenging videos were used from DT

videos [13]: Bubble (semi-transparency, elastic body), Fish

(school, elastic body), Fire (semi-transparency, fluidity),

and River (rough wave, fluidity). The number of training

data was from 200 to 1,000. Table 3 presents STMoE su-

perior to baseline models except for River. Note that better

results in STMoE-Id or -conv are shown in Table 3. Figure

6(a) shows prediction images of MIM and STMoE-Id on

Fish and Figure 6(b) presents magnified images of orange

rectangular regions of Figure 6(a). Image quality degrada-

tion such as white extra spots around fish is observed in

MIM’s prediction results; however, such image degradation

is reduced in proposed STMoE’s prediction results. SSIM

in this local region supports these results.

4.4. Precipitation Radar Images

In this section, precipitation radar images have been

used as a challenging example of DT with intensity incre-

ments/decrements, i.e., growth/decay of precipitation inten-

sity. Furthermore, the frame rate is 10 minutes, which is

longer than that of other videos. The high intensity of pre-

cipitation radar images is important because it corresponds

to heavy rainfall, which can lead to major disasters. 4

frames were predicted. The number of training data was



models MSE ↓ B-MSE/10 ↓
U-Net [1] 53.0 112

ADDL [6] 58.3 117

PredRNN++ [40] 58.0 115

MIM [43] 57.9 117

PhyDNet [12] 59.7 120

STMoE-conv 51.6 103

Table 4. Quantitative results on precipitation radar images.

(a) Predicted image results.

(b) Temporal variation of the histogram of image inten-

sity, i.e., precipitation intensity, in orange rectangular re-

gions in (a).

(c) Attention weights of intensity increments/decrements

experts in the orange rectangular region in (a).

Figure 7. Comparative results of STMoE-conv and U-Net predic-

tion using precipitation radar images.

about 9,000 samples. STMoE-conv was used to predict.

Balanced-MSE (B-MSE) is added to evaluate heavy rain-

fall used in [32]. Table 4 shows that STMoE-conv outper-

forms in terms of prediction error in two metrics. In predic-

tion results of Figure 7, locally high image intensity is suc-

cessfully predicted by STMoE-conv, whereas blurred image

without high image intensity is predicted by U-Net. Figure

7(b) shows the temporal changes of distribution of image

intensities, i.e. precipitation intensities, in extracted orange

rectangular regions of Figure 7(a). Ground truth and pro-

posed STMoE-conv show an increase of image intensities

in the range of 30 to 50, whereas the U-Net does not cap-

ture it. As can be seen in Figure 7(c), attention weights of

intensity increments/decrements experts are applied in the

orange rectangular region, indicating that intensity changes

are captured by proposed STMoE.

methods Pedestrian Precipitation

MSE SSIM MSE B-MSE/10

STMoE w/local and global optimization 59.6 0.877 51.6 103

STMoE w/end-to-end 61.3 0.873 52.7 109

Table 5. Quantitative evaluation of two different optimization

methods on pedestrian scene and precipitation radar images.

4.5. Ablation Studies

We provide detailed analysis of four contributions

of proposed STMoE: 1) training expert with physical

synthetic image sequences, 2) adding noise to synthetic

image sequences, 3) pixel-wise attention weighting of

expert-derived physical feature representations, and 4)

training on a limited number of real datasets.

Training Expert with Physical Synthetic Image Se-

quences: In order to verify the effectiveness of training

of multiple experts with synthetic images sequences,

i.e., local optimization, experiments were performed on

Pedestrian scene and precipitation radar images with two

methods: STMoE with local and global optimization

(STMoE architecture with local and global optimization,

proposed STMoE), and STMoE with end-to-end optimiza-

tion (STMoE architecture with end-to-end optimization

using only real datasets). Table 5 shows that the prediction

accuracy of STMoE with local and global optimization is

better than that of STMoE with end-to-end. It has been

suggested that STMoE with training of multiple experts

with physical synthetic image sequences is effective to

improve prediction accuracy and to solve the difficulty of

training DL prediction models using only real datasets.

Adding Noise to Synthetic Image Sequences: This

paper proposes to add noise to synthetic image sequences

when training experts in local optimization in order to

obtain robust experts to real datasets. Experiments for

this were conducted with precipitation radar images.

STMoE-conv was used and the number of training datasets

was about 800. We prepared three types of data with ratio

of the total intensity of the added mixed noises (Gaussian,

White, and Perlin noise) to that of the synthetic image

sequences: {0, 0.26, 0.70}. As a result, B-MSE was

{1.05 × 103, 1.02 × 103, 1.00 × 103} for noise ratios

{0.00, 0.26, 0.70} respectively. The highest noise ratio

0.70 stands for the best prediction accuracy. It has been

suggested that additive noise can enhance the prediction ac-

curacy of real datasets. Moreover, for better understanding

of the effect of additive noise, the convergence in training

is taken into account. Figure 8 shows results by comparing

convergence with three noise levels. Also, in a two-stage

global optimization of STGNs and the whole network, the

fastest convergence is obtained when noise-0.70 in green

and lowest when noise-0.00 in blue, showing over 10 times



(a) MSE during training (b) Enlarged version of (a)

Figure 8. Comparison of convergence in training STGNs and the

whole network with three noise levels to synthetic image data.

Attention methods MSE ↓ SSIM ↑
No attention 75.0 0.864

Uniform attention 70.2 0.870

Pixel-wise attention 59.6 0.877

Table 6. Quantitative results with three cases of attention.

improvement. These results have suggested that robust

experts generalized to real datasets can be obtained by

training experts on synthetic image sequences with mixed

noise in local optimization.

Pixel-Wise Attention of Expert-derived Physical

Feature Representations: In order to verify the effects

of pixel-wise attention to experts-derived feature represen-

tations in STMoE, experiments have been conducted with

three attention cases to STMoE-Id: with no attention to

experts (i.e., no gating networks), with uniform attention

(i.e., conventional MoE), and with pixel-wise attention (i.e.,

proposed STMoE). Pedestrian datasets were used. Table 6

shows that pixel-wise attention case is the best result over

no attention and uniform attention cases. Figure 9 shows

the visualization of experts’ outputs and attention weights

in the space of Yt, i.e., {H
(

Z̃k
t ; θH

)

, k = 1, 2, 3} and

{H
(

W k
t ; θH

)

, k = 1, 2, 3} in experiment using Pedestrian

scenes. Figure 9(a) shows no attention case, where only

one expert is used. Figure 9(b) shows uniform attention

case, where two experts are used with scalar weights.

Compared to the above two attention cases, pixel-wise

attention case in Figure 9(c) is the most expressive, where

translation expert is used for the body part, and rotation and

intensity increments/decrements experts are used for legs.

Thus, proposed pixel-wise attention mechanism has been

shown to be effective in predicting local physical properties.

The Number of Real Datasets in Training: Exper-

iments were conducted to verify the prediction accuracy of

proposed STMoE with a small number of training datasets

on Traffic 1. Proposed STMoE-Id, MIM, and MIM with

Dall whose prediction results are second best in Table

2 were used. Figure 10 shows SSIM when the number

of real videos used for training is varied. STMoE shows

less degradation in SSIM with decreasing the number of

real videos in training than MIM and MIM with Dall. In

(a) No attention (b) Uniform attention

(c) Pixel-wise attention

Figure 9. Visualization of decoded images of three experts, i.e.,

{H
(

Z̃k

t ; θH
)

, k = 1, 2, 3} (upper row) and attention weights,

i.e., {H
(

W k

t ; θH
)

, k = 1, 2, 3} (bottom row) on Pedestrian ex-

periment.

Figure 10. SSIM when using different number of real-datasets for

training among three prediction models.

addition, SSIM of STMoE is better than that of MIM with

Dall, indicating that STMoE is more effective with limited

real videos in training than other baseline models even

when the same synthetic image sequences are used.

5. Conclusion

This paper has proposed a adaptive network with at-

tention weighting to multiple physical Deep Learning

models/experts, i.e., Spatio-Temporal Mixtures of Experts

(STMoE), for real-world video prediction. Image se-

quences with multiple local and dynamic time-varying

physical properties are pixel-wisely and expert-wisely taken

into account by using proposed Spatio-Temporal Gating

Networks, whereas SOTA DL models have used static or

scalar weightings to branches with different experts. Exper-

imental results on both synthetic and real data have shown

the superiority of our STMoE in comparison with SOTA

approaches in terms of less blur and distortion, in particu-

lar, representations of local dynamics. In future work, more

complicated video scenes under time-varying illumination

or with periodic motions will be addressed.
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pages 515–524, 2018. 1, 2

[18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-Excitation

Networks. Proceedings of the IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition, pages

7132–7141, 2018. 2, 3

[19] Yue Hu, Siheng Chen, Ya Zhang, and Xiao Gu. Collabo-

rative motion prediction via neural motion message passing.

In IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 2

[20] Beibei Jin, Yu Hu, Qiankun Tang, Jingyu Niu, Zhiping Shi,

Yinhe Han, and Xiaowei Li. Exploring spatial-temporal

multi-frequency analysis for high-fidelity and temporal-

consistency video prediction. In IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2020. 1, 2

[21] Jianping Lin, Dong Liu, Houqiang Li, and Feng Wu. M-lvc:

Multiple frames prediction for learned video compression.

In IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 1, 2

[22] Nian Liu, Junwei Han, and Ming-Hsuan Yang. Picanet:

Learning pixel-wise contextual attention for saliency detec-

tion. In 2018 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,

June 18-22, 2018, pages 3089–3098. IEEE Computer Soci-

ety, 2018. 2

[23] Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learn-

ing pdes from data with a numeric-symbolic hybrid deep net-

work. Journal of Computational Physics, 399, Dec. 2019. 2

[24] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong.

Beyond finite layer neural networks: Bridging deep archi-

tectures and numerical differential equations. In Jennifer G.



Dy and Andreas Krause, editors, Proceedings of the 35th In-

ternational Conference on Machine Learning, ICML 2018,
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