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Abstract

We develop an Artificial Intelligence (AI) framework for

glaucoma precognition from baseline confocal scanning

laser ophthalmoscopy imaging data, using a convolutional

neural network (CNN) model. The proposed framework ex-

tracts ‘deep features’ from convolutional layers of the CNN

model, which are used as input to the ensemble learning

classifier in order to identify patients that will likely con-

vert to glaucoma after few years. The prediction model

achieved area under the receiver operating characteristic

curve (AUC) of 0.83 using the data from baseline visit.

The model predicted the onset of glaucoma more accurately

than known glaucoma risk factors, Glaucoma Probability

Score (GPS) and Moorfields Regression Analysis (MRA) pa-

rameters of the Heidelberg Retinal Tomograph (HRT) soft-

ware. The proposed AI construct provides a highly specific

and sensitive model that can predict the onset of glaucoma

from baseline HRT parameters and has the potential to pro-

vide clinicians valuable information regarding the onset of

glaucoma.

1. Introduction

Glaucoma, the second leading cause of blindness world-

wide [33], is a chronic eye disorder, characterized by pro-

gressive degeneration of retinal ganglion cells, which in

turn, leads to changes in the optic nerve head and character-

istics patterns of visual field loss [16,23,33]. Affected indi-

viduals are typically unaware of the subtle visual decline in

early stage glaucoma; therefore, identifying those at risk of

developing glaucoma is a major challenge. Due to the lack

of reliable markers, clinicians may be unable to identify

patients that are likely to progress and develop significant

disease. In routine practice, clinicians typically assess the

patient’s glaucoma status through major risk factors con-

tributing to glaucoma onset and progression including older

age, elevated intra-ocular pressure (IOP), African American

ethnicity, decreased central corneal thickness (CCT), and

increased cup-disk ratio [9, 16, 19], along with visual field

tests and evaluation of the optic nerve via ophthalmoscopy

and fundus photography. Fundus photographs captured us-

ing fundus cameras, scanning laser ophthalmoscopy (SLO)

or optical coherence tomography (OCT) provide optic disc

images that may help reduce inter and intra-observer vari-

ability during clinical examinations of glaucomatous optic

neuropathy (GON).

The Confocal Scanning Laser Ophthalmoscopy (CSLO)

is a fast, non-invasive and easy-to-use imaging technique

that provides a high-resolution 3-D photograph of the op-

tic nerve and surrounding retina for precise observation and

documentation of the optic nerve head for glaucoma as-

sessment. The Heidelberg Retinal Tomography (HRT) is

a confocal device that uses a diode laser at 670 nm as

a light source for imaging, and provides 32 subsequent

confocal images [19]. The HRT quantifies CLSO images

and provides parameters such as neuro-retinal rim that can

aid objective assessment of the optic nerve in glaucoma.

The importance of identifying glaucoma-induced structural

changes lies in the fact that structural damage may precede

functional changes [21, 24], thus allowing identification of

early stage glaucoma prior to significant vision loss. How-

ever, manual examination of generated fundus photographs

is subjective and labor-intensive. Moreover, identifying pre-

clinical signs of glaucoma is even more challenging than

identifying clinical signs of glaucoma from fundus pho-

tographs. Therefore, development of the methods that can
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Figure 1. The CNN model along with ensemble learning to predict

the onset of primary open angle glaucoma (POAG) from Confocal

Scanning Laser Ophthalmoscopy (CSLO) parameters.

automatically quantify, synthesize, and analyze the subtle

information existing in imaging data is critical.

To that end, we have developed AI models to recognize

subtle pre-clinical signs of glaucoma from CSLO-derived

parameters of optic disc collected from the first visit (base-

line) and predict the disease before onset. As primary open-

angle glaucoma (POAG) is the most prevalent phenotype

of glaucoma, the proposed model is developed to identify

the likelihood of a subject to develop POAG from baseline

data. Technically, the problem of predicting POAG from

only baseline data is a harder task than detecting POAG be-

cause the latter is based on clinical signs that are already

manifested and obvious, while the former is based on sub-

tle pre-clinical signs that are hard to identify.

There are numerous studies investigating the usefulness

of HRT parameters for assessing and predicting glaucoma.

Gordon et al. [9] used statistical cox proportional haz-

ard models to identify the effectiveness of clinical, demo-

graphic, and other factors to predict POAG in eyes with oc-

ular hypertension. The study was conducted on the OHTS

dataset and showed baseline factors including age, verti-

cal and horizontal cup-disc ratio, pattern standard deviation,

IOP, and CCT as good predictors for development of POAG.

Other prior studies also reported the predictive power of

glaucoma risk factors [12, 14, 35].

Mikelberg et al. [19] discussed different aspects of HRT

and proposed a discriminant analysis to analyze various

HRT parameters in detecting patients with early glaucoma-

tous visual field loss, using a stepwise discriminant analysis.

Bowd et al. [4] used both baseline CSLO parameters (struc-

tural) and standard automated perimetry (SAP) visual field

parameters (functional) for prediction of glaucoma progres-

sion, using relevance vector machines (RVM). The relation-

ship between SAP and CSLO parameters were studied and

investigators identified that CSLO-based parameters detect

glaucomatous loss earlier than visual field-based parame-

ters [26]. In another study, Stefano et al. [18] investigated

the discriminative power of visual field examination and

CSLO-HRT imaging in identifying glaucomatous changes.

Their findings suggest that CSLO-HRT parameters provide

less sensitivity and specificity compared to visual field mea-

surements, using multivariate discriminant analysis and cu-

mulative frequency distribution.

Most of the approaches in the literature develop con-

ventional statistical models for glaucoma onset predic-

tion [1, 34] and the results are usually compared with the

Glaucoma Prediction Score (GPS) and Moorefields Regres-

sion Analysis (MRA) indices of HRT software. Zangwill

et al. [39] studied the association between optic disc to-

pography parameters and clinical factors, and showed that

the HRT parameters are strongly associated with baseline

stereophotographic estimates of horizontal and vertical cup-

disc ratio. Therefore, HRT parameters may also be pre-

dictive of POAG development, as also highlighted by Gor-

don et al. [9] as well. Another related study by the same

team [34] focused on examining the predictive ability of

baseline GPS and MRA, along with other topographic and

stereophotograph based parameters such as, cup-to-disc ra-

tio to predict the onset of glaucoma.

Alencar et al. [1] conducted a comparative study of GPS

and subjective stereophotograph assessment for prediction

of glaucoma progression using a cohort of 223 patients.

They concluded that GPS parameters were highly predic-

tive of POAG progression in patients, and GPS parame-

ters can potentially replace other stereophotograph-based

parameters in predicting progression. Similarly, Salvetat et

al. [28] evaluated the ability of baseline clinical, morpho-

logical, and functional factors to predict POAG conversion

using 116 participants with ocular hypertension. In addition

to studies discussing POAG prediction before onset, other

studies have focused on identifying glaucoma after onset

(diagnosis) using CSLO-HRT parameters [15, 16, 31, 38].

Here, we also focus on predicting glaucoma before onset

using only baseline measurements.

2. Dataset & Pre-processing

The dataset was acquired from the Ocular Hypertension

Treatment Study (OHTS), a multi-center glaucoma clinical

trial aimed to delay or prevent the onset of disease in ocu-

lar hypertensive participants with moderate risk for devel-

oping POAG [9, 39]. The study included comprehensive

eye exams and measurements captured by several instru-

ments. In prospective CSLO ancillary study, HRT was used

to capture 10-degree images from the optic nerve of both

eyes of participants to study the glaucoma-induced struc-

tural changes [39].

We included 873 eyes of 438 participants with reli-

able baseline data and used 175 optic disc topographic and

stereo-metric parameters that were quantified from CSLO

images by the HRT software. The HRT parameters included

different optic disc topographic and stereographic features

such as cup area, cup volume, disc area, disc volume, rim

area, rim volume, cup depth in the temporal, superior, infe-

rior, nasal, temporal inferior, temporal superior, nasal infe-

rior and nasal superior sectors. Out of 873 non-glaucoma



(a) (b) (c)
Figure 2. Features visualization using t-distributed stochastic neighbor embedding (t-SNE) (tSNE1, tSNE2: two virtual dimensions): (a)

raw features (HRT parameters) of normal and POAG samples overlap significantly, (b) deep feature representation for the first dataset, and

(c) deep feature representation for the second dataset.

eyes at the baseline, 59 eyes (from 44 participants) eventu-

ally developed glaucoma. Hence, this subset included 814

and 59 samples from the baseline visit of non-glaucoma

eyes and eyes that eventually developed glaucoma, respec-

tively. As the smaller number of samples included in this

dataset may limit the generalizability of the CNN models

(described in next section), we generated another subset.

The second subset included 1621 and 115 samples (from 44

participants) from the baseline and the immediate next visit

of non-glaucoma eyes and eyes that developed glaucoma,

respectively. As this subset includes a greater number of

samples, we will retest the models using this subset as well

to assure generalizability of the CNN model.

For the sake of simplicity, we refer to the non-glaucoma

group as normal (Class 1) and the “eyes that eventually de-

veloped glaucoma” as POAG (Class 2). For each sample,

we generated a 1-D array of 175 HRT parameters. Simi-

lar optic nerve head parameters such as disc area at differ-

ent sectors, cup volume and rim volume at different sectors

were placed next to each other in the 1-D array to maximize

dependency of the neighboring features.

We performed the study in accordance with the ethical

standards in the Declaration of Helsinki. Initial OHTS in-

vestigators had obtained IRB approval and we signed the

respective data use agreements.

3. Proposed Framework

We developed an AI model, by framing the overall prob-

lem as a binary classification task, that identifies normal

eyes (class 1), and eyes that will likely convert to POAG

(class 2). If successful, the AI model may predict those eyes

that are at-risk of glaucoma development and future vision

loss. Fig. 1 demonstrates the proposed AI framework.

3.1. Convolutional neural network (CNN) to extract
deep features

A 1-D CNN model was designed to learn the intrinsic

structure of HRT data and discover the latent valuable dis-

criminating information [25]. The filter responses from sev-

eral convolution layers of the neural network are used to

generate deep feature representation of raw HRT parame-

ters. HRT parameters were ordered based on their respec-

tive type and sector. For instance, all cup areas and volumes

at different sectors were next to each other to mimic the im-

age contextual characteristics in a 1-D array. Deep HRT

features are hypothesized to provide higher level represen-

tations well-suited for identifying hidden subtle glaucoma-

induced patterns, thus may lead to a more specific and sen-

sitive model, for medical domain also [6, 10]. The custom

CNN included four convolutional (Conv) layers (with 32,

64, 128, and 128 filters respectively) with three dense lay-

ers (Fig. 1). The kernel size in each layer is 3. We divided

the data into non-overlapping training and testing subsets

and trained the CNN to generate deep features from HRT

parameters (raw data).

After training of the CNN model using training subset,

the parameters were held fixed and the model is used to

generate 128 deep representation features extracted from

the CNN. These features are extracted after global aver-

age pooling (GAP) of the filter responses acquired from

last convolution layer. Fig. 2 (a) shows a 2-D visualiza-

tion of raw features on a t-distributed stochastic neighbor

embedding (t-SNE) space. t-SNE is a technique for fea-

ture reduction and visualization of high-dimensional data in

lower-dimensional space (e.g., two dimensions here) [32].

As can be seen, the raw HRT parameters of eyes with POAG

are highly overlapping with raw HRT parameters of normal

eyes highlighting the fact that discriminating normal from



POAG cases is challenging if raw HRT parameters are used.

Fig. 2 (b) and (c) show the t-SNE representation of deep

HRT features extracted from two prediction datasets. Here,

classes are significantly more discriminated in t-SNE space

reflecting the fact that CNN has been effective in generating

more discriminative deep representations.

3.2. Class­imbalance and small sample size

Like other healthcare problems, the HRT datasets were

highly imbalanced with significantly higher number of sam-

ples in the normal compared to the POAG class. Therefore,

it is likely that the training task is biased towards the class

with the majority of samples. To address the data skew

issue, we applied Synthetic Minority Oversampling Tech-

nique (SMOTE) to augment data [5]. Essentially, SMOTE

augments the minority class data by introducing synthetic

samples along the line segments joining some of the k-

minority class nearest neighbors in the hyperspace, and the

number of augmented samples in the POAG class is equal

to the samples of normal class. Moreover, to avoid overfit-

ting, we developed the custom CNN with significantly few

parameters compared to competing out-of-shelf CNN mod-

els as discussed above. We also used dropouts after each

dense layer in the network, which randomly sets activations

to zero during the training to further avoid over-fitting.

3.3. Classification task

We input 128 deep HRT features into a random forest

(RF) classifier [2], which essentially consists of a set of un-

correlated decision-trees, to predict eyes that will likely de-

velop POAG. RF ensemble learning scheme selects a sub-

set of input features randomly and aggregates the response

from each decision-tree classifier, operating as a committee,

to come up with the final class label for test samples. The

low correlation among the learners in RF classifier leads

to a less cumulative error and a high generalization ability,

which makes it appropriate for most applications. To pro-

vide an end-to-end model, we also used the CNN as a clas-

sifier. The filter responses extracted from the Conv layer

(deep HRT features) were fed to the dense layer to make

an end-to-end network. We compared the outcome of this

CNN network with combined CNN and RF based classifier

and other existing models.

4. Evaluation Measures and Results

4.1. CNN and Ensemble learning parameters

We applied 5-fold cross validation for accuracy evalu-

ation and computed performance metrics i.e., specificity,

sensitivity, Area Under the Receiver Operating Character-

istic (AUC) curve and Matthews Correlation Coefficient

(MCC). AUC provides a robust indication of the degree of

separability between normal and POAG classes and MCC

Table 1. Baseline Demographics and Clinical Characteristics of

the participants (Both in number and % (in bracket)).

Participants at POAG endpoint

Yes No

Race Number (%) Number (%)

Native-American/Alaskan 0 1 (100)

Asian 1 (20) 4 (80)

African American 11 (15) 63 (85)

Hispanic 3 (14) 18 (86)

White, non-Hispanic 29 (9) 301 (91)

Other 0 7 (100)

Gender Number (%) Number (%)

Male 28 (15) 154 (85)

Female 16 (6) 240 (94)

Ocular Factors Mean (SD) Mean (SD)

Age (Years) 58.8 (9.8) 54.4 (7.3)

IOP (mmHg) 25.4 (2.6) 24.9 (2.4)

CCT (µm) 565.3 (36.7) 577.4 (37.5)

Disc Area (mm2) 1.87 (0.38) 1.98 (0.43)

Horizontal cup-disc ratio 0.54 (0.21) 0.49 (0.21)

Vertical cup-disc ratio 0.45 (0.21) 0.38 (0.21)

generates a balanced evaluation measure [3] by giving equal

weights to all components of a confusion matrix, as shown:

MCC =
TP.TN − FP.FN

√

((TP + FP )(TP + FN)(TN + FP )(TN + FN))
(1)

Here, TP, TN, FP, and FN refer to the true positive, true

negative, false positive, and false negative samples, respec-

tively. We used Python Keras libraries to implement both

deep features and classification tasks. For RF, we used 10

decision-tree classifiers with the maximum depth of 5. All

the hyper-parameters of the classifiers are selected empiri-

cally. The entire feature extraction and classification task is

done on NVIDIA TITAN RTX GPU device (64 GB RAM).

4.2. Moorfields Regression Analysis (MRA) and
Glaucoma Probability Score (GPS)

Moorfields Regression Analysis (MRA) and Glaucoma

Probability Score (GPS) are two algorithms integrated in

the HRT instrument to improve the diagnostic characteris-

tics of the HRT [13, 20]. Essentially, MRA and GPS fo-

cus on capturing the differences in the optic disc area dur-

ing the quantitative evaluation of the rim area. For MRA

estimation, a contour line is drawn around the optic nerve

head (ONH) by the operator, in order to compare the overall

neuro-retinal rim area, for prediction in healthy individuals.

On the other hand, GPS is not dependent upon manually

drawn contour, hence it estimates the participant’s ONH

structure, via 3-D modeling of optic disc and peripapillary

retinal nerve fiber layer (RNFL). Since both these parame-

ters are considered as important estimations regarding the

structural aberrations in healthy and diseased eyes, the cur-

rent study also analyzes the effectiveness of the proposed

pipeline with respect to the MRA and GPS values.



Moreover, we also evaluated the cumulative probability

of developing POAG in all participant’s eyes, using the out-

put of our framework, along with the MRA and GPS, via a

Kaplan-Meier survival curve [27, 34]. This curve provides

an estimate of the fraction of participants survival for a cer-

tain amount of time after treatment. Here, the X-axis of the

curve denotes the time of the sample acquisition in the com-

plete OHTS study, defined in months and Y-axis shows the

proportion of participant’s eyes that developed glaucoma.

4.3. Results

About 30% of the 1,636 OHTS participants were in-

cluded in the CSLO ancillary study, with same demographic

characteristics as of the overall participants of the study.

The average age of the participants in the normal group

was 54 years (±7.38) and the average age of the participants

in the POAG group was 59 (±9.84). The average time to

POAG onset for the eyes in the first dataset was 7 years and

the average time to POAG onset for the eyes in the second

dataset was 6 years. Table 1 shows the demographic and

clinical characteristics of the first data set in our study.

The Table 2 shows the accuracy of different models using

RF classifier with both raw and deep features, in terms of

sensitivity, specificity, MCC, and AUC. The time required

for execution of each classification experiment is also pro-

vided. Deep feature extraction takes only about 0.4 second.

It is worth mentioning that the accuracy of the end-to-end

CNN network was lower than the CNN with RF model, and

the AUCs were 0.73 and 0.81 on the raw HRT features de-

rived from the first and second subsets, respectively.

5. Discussion

Our study is an attempt to evaluate the effectiveness of

HRT parameters in glaucoma precognition. The work fo-

cuses on extracting a high-level feature representation, ac-

quired via a custom-designed CNN, followed by a random

forest classifier. Importantly, the study is designed to pre-

dict the likelihood of occurrence of POAG in participants,

using only baseline data, consisting of the first two visits

only. Our findings confirm the effectiveness of the deep

feature extraction, along with ensemble learning, to iden-

tify eyes that will likely convert to POAG.

The model applied to raw HRT parameters generated a

high specificity but relatively low sensitivity (Table 2) in-

dicating that while raw HRT parameters (features) capture

the characteristics of normal eyes effectively, these param-

eters are unable to distinguish eyes that will eventually de-

velop POAG. Nevertheless, this model outperforms the re-

ported statistical models in the literature using a similar

HRT dataset of the OHTS study [1,39]. These findings mo-

tivated us to seek even more sensitive models.

Deep learning models have received extraordinary atten-

tion over the past few years and have been applied in nu-

Table 2. Classification performance of raw and deep HRT features

with random forest (RF) classifier.
Features Cases Sensitivity Specificity MCC AUC Time (sec)

Raw (RF) First dataset 0.39 0.87 0.21 0.71 5

Raw (RF) Second dataset 0.33 0.95 0.31 0.77 6

Deep (RF) First dataset 0.62 0.98 0.64 0.83 5.5

Deep (RF) Second dataset 0.90 0.99 0.94 0.94 6

merous ocular conditions [11,17,22,29,30,36,37]. We thus

developed CNN models to generate deep HRT features for

identifying eyes that likely convert to POAG rather than us-

ing raw features only. In fact, CNN was able to capture

the latent low- and high-level discriminating information

from raw HRT parameters and provided a significant im-

provement in identifying those suspected eyes that eventu-

ally converted to glaucoma using two datasets (Fig. 3 (b)).

We chose to use DNNs, based on their ability to learn the

intrinsic structure of the data and discover the latent valu-

able discriminating information [25]. CNNs use both local

and global information from the data, representing the inter-

relationships among data points. The custom CNN model

was trained using data from baseline visits, in order to by-

pass use of any pre-trained model built using irrelevant im-

age datasets, such as ImageNet [8]. We observed a signif-

icant improvement in the performance of the proposed AI

model using the second dataset with AUC of 0.94 (95% CI:

0.92-0.95), compared to the first dataset with AUC of 0.83

(95% CI: 0.80-0.86); (Table 2 and Fig. 3). There could be

several reasons for such improvement. First, there was a

greater number of eyes in the second dataset compared to

the first dataset (about two-fold), therefore, the AI model

may have been exposed to a more representative dataset

leading to improved accuracy. Second, the larger sample

size in the second dataset may have prevented the AI model

from becoming biased or somehow overfitted. Third, as

the average time to POAG onset for the eyes in the first

dataset was about 7 years and the time to POAG onset for

the eyes in the second dataset was about 6 years (about one

year less), this likely lead to greater manifested glaucoma-

induced signs thus making prediction easier. Nevertheless,

the improved performance of the AI model using the dataset

with a greater number of samples may also indicate the crit-

ical role of samples size in deep learning models.

The AI construct composed of CNN and RF led to the

highest accuracy compared to a RF model alone without

deep feature representation (Table 2). Also, the proposed

model outperformed an end-to-end artificial neural network

(ANN) model. An ANN model was also developed to com-

pare with the proposed hybrid model, which achieved AUCs

of 0.65 and 0.69 based on the first and second datasets, re-

spectively. The superiority of the proposed construct may

be explained by the involvement of significantly fewer pa-

rameters compared with end-to-end ANN or end-to-end

CNN models, thus providing improved optimization com-



(a) (b)
Figure 3. ROC curves of AI models. (a) represents the ROC curves of ensemble learning applied on raw HRT, (b) ROC curves of ensemble

learning applied on deep HRT features.

pared with those models. Hence, the AI construct with deep

HRT features along with ensemble learning achieved the

highest accuracy for glaucoma precognition based on base-

line HRT data.

There are some studies that have used baseline HRT data

to predict PAOG [1, 4, 28, 34, 39]. Most of these models are

statistical predictive models such as GPS and MRA, avail-

able in the HRT software [20]. Hence, we also compared

the proposed AI model with GPS and MRA parameters in

the HRT software (Table 3). We obtained sensitivity and

specificity of 0.16 and 0.96 using MRA, respectively. This

is in agreement with MRA outcome reported in the litera-

ture (with 0.30 sensitivity and 0.78 specificity, using a sub-

set of OHTS dataset) [34]. Similarly, the estimated sen-

sitivity and specificity of GPS using the first dataset were

0.22, and 0.89, which is in agreement with the previously

reported findings [34]. However, the AI construct led to a

sensitivity and specificity of 0.62 and 0.98 (using the first

dataset as is the case in most previous studies), respectively,

which significantly outperforms the conventional statistical

models in the literature. The AUC of the AI construct using

the first dataset was 0.83 while the highest reported AUC in

the literature using same dataset is about 0.73 [1]. Hence,

we showed that the proposed methodology outperforms the

built-in measures of the HRT software, i.e., GPS, and MRA.

We also compared our model with model proposed by Bowd

et al. [4], that applied RVM classifier on raw HRT parame-

ters for glaucoma prediction and achieved an AUC of 0.64.

We also evaluated the accuracy of several other classi-

cal machine learning models and observed that most are not

well-suited for discriminating between normal and POAG

eyes using HRT parameters. The best performing machine

learning classifier based on our study was an RF classifier

that achieved an AUC of 0.71 on the raw HRT parameters

from the first dataset. In order to compare the AI con-

Table 3. Comparison of proposed framework with GPS and MRA

parameters of HRT software.

S. No. Approach Sensitivity Specificity

1 GPS 0.22 0.89

2 MRA 0.16 0.96

3 Proposed (deep features) 0.62 0.98

struct with other state-of-the-art machine learning classi-

fiers, deep HRT features were integrated with an XGBoost

classifier [7]. XGBoost, an ensemble of gradient boosted

decision trees, is one of the widely used classifiers with

competing accuracy in most applications. While XGBoost

performed similar to the RF classifier using raw HRT fea-

tures (AUC of 0.82), its performance was lower than RF

using deep HRT features (AUC of 0.83).

Salvetat et al [28] also highlighted the significance of

baseline clinical, morphological, and functional factors in

prediction of glaucoma. Similarly, we assessed the predic-

tive power of age, CCT, and IOP only and obtained AUCs

of 0.60, 0.53, 0.51, respectively. Our findings were in

agreement with Gordon et al. [9], which suggests a require-

ment for employing more appropriate models for combining

glaucoma risk factors with other imaging factors to predict

glaucoma from baseline data.

We also computed the cumulative probability of develop-

ing POAG over time using the Kaplan-Meier survival anal-

ysis (Fig. 4). We observed that the predicted output of the

proposed model has the most similar pattern to that of the

ground truth compared to other models. In fact, the model is

both sensitive and specific in identifying POAG and normal

eyes, however, MRA tends to be specific but not as sensitive

and GPS tends to be sensitive but highly non-specific.

We used a 5-fold non-overlapping cross validation to

train the CNN model for extracting deep HRT features. To

ensure the robustness of the model and the framework, an-



Figure 4. Kaplan-Meier plot of cumulative probability of develop-

ing POAG by the proposed model, Moorfields Regression Analy-

sis (MRA), and Glaucoma Probability Score (GPS) along with the

ground truth.

other experiment is also performed by setting 20% of sam-

ples aside (in the patient level), as a re-test data, while devel-

oping the CNN model. As such, 5-fold cross validation is

used to select the best classification model. The best model

is then further re-tested using the unseen re-test subset. We

achieved AUCs of 0.75, and 0.86 using 20% held-out sam-

ples from the first and second datasets, respectively. The ac-

curacy using re-test subset was comparable with that of the

initial experiment. A slight drop of accuracy could be ex-

plained by the relatively smaller sample sizes that we used

for training the CNN models. Thus, the AI construct is ro-

bust in prediction using unseen data as well. Additionally,

from the computational time perspective (Table 2), the pro-

posed AI construct provide the same level of computational

complexity while its accuracy exceeds other models.

The clinical novelty of the proposed AI construct is its

capability in synthesizing information from different topo-

graphical and stereoscopic baseline optic nerve head char-

acteristics quantified by CSLO imaging technology. The

technical novelty is that the AI construct provides a more

specific and sensitive model for recognizing subtle patterns

that may lead to glaucoma development. In other words, the

AI construct may likely recognize the pre-clinical signs of

the disease that are either not obvious to clinicians or not

recognizable based on current routine clinical guidelines.

In addition to several significant aspects, this study also

has some limitations. Since about 30% of all OHTS partic-

ipants had been included in the ancillary study, this led to

a smaller sample size compared to the overall OHTS study.

While this may not be a major issue for statistical modeling,

it may pose a major challenge to machine learning models.

However, we generated the second dataset by including the

second visit of eyes (provided the visit was before POAG

onset) to generate a larger dataset for deep and machine

learning models. The other limitation was that the origi-

nal CSLO images were not accessible to this study, thus we

were unable to investigate a full AI model on HRT images

in addition to HRT parameters. Follow up studies are de-

sirable to analyze the effectiveness of an end-to-end CNN

model with input HRT images. We also used CNN on HRT

parameters (features) that may not inherently correlated to

each other (as is the case for 2-D images or 1-D signals) but

deep features provided the highest accuracy even compared

to an ANN model. While the interpretability issue remains

as a concern here, this challenge exists for the simple ANN

model that how features are combined.

In summary, this study proposes a hybrid AI construct

using both deep learning and conventional machine learn-

ing to predict which suspected eyes with ocular hyperten-

sion will likely convert to glaucoma using CSLO-derived

optic nerve head parameters. We demonstrated that the AI

construct could predict those who will convert to glaucoma

after about five years with relatively high accuracy. The

framework could be used in glaucoma research or clinical

practice in order to predict glaucoma development.

6. Conclusion

In this study, we developed an AI construct using a cus-

tom designed CNN and a random forest classifier to predict

POAG before onset, using baseline HRT-derived imaging

parameters of the optic nerve head. The approach extracts

deep HRT features from the last convolutional layers of a

previously trained CNN model and inputs the features to

the random forest classifier to identify eyes that will likely

develop POAG in the future. The model significantly out-

performed MRA, GPS, and other proposed statistical and

machine learning approaches reported in the literature. The

model has the potential to be used in glaucoma clinical prac-

tice to aid physicians in identifying eyes with higher risk of

developing glaucoma. Additional, independent study is de-

sirable to validate and generalize the findings in this study.
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