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Abstract

Forecasting head pose future states is a novel task in

computer vision. Since future may have many possibilities,

and the logical results are much more important than the

impractical ones, the forecasting results for most of the sce-

narios should be not only diverse but also logically realis-

tic. These requirements pose a real challenge to the current

methods, which motivates us to seek for better head pose

representation and methods to restrict the forecasting rea-

sonably. In this paper, we adopt a spatial-temporal graph

to model the interdependencies between the distribution of

landmarks and head pose angles. Furthermore, we propose

the conditional spatial-temporal variational graph autoen-

coder (CST-VGAE), a deep conditional generative model

for learning restricted one-to-many mappings conditioned

on the spatial-temporal graph input. Specifically, we im-

prove the proposed CST-VGAE for the long-term head pose

forecasting task in terms of several aspects. First, we intro-

duce a gaze-guiding prior based on the physiology. Then we

apply a temporal self-attention and self-supervised learn-

ing mechanism to learn the long-range dependencies on the

gaze prior. To better model head poses structurally, we in-

troduce a Gaussian Mixture Model (GMM), instead of a

fixed Gaussian in the encoded latent space. Experiments

demonstrate the effectiveness of the proposed method for

the long-term head pose forecasting task. We achieve su-

perior forecasting performance on the benchmark datasets

compared to the existing methods.

1. Introduction

Head pose forecasting is to predict the 3D head angles in

the future according to the current state. As a novel task in

computer vision, it gains increasing attention recently due

to widely needs in virtual reality [30], human-computer in-

teraction [54], driving safety assistance [43], etc.

Head pose forecasting is more challenging than the clas-

sical estimation task [36, 59, 16, 58, 33]. Certain methods

view it as a vector-based trajectory prediction problem, and
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Figure 1. Pipeline of CST-VGAE for long-term head pose fore-

casting conditioned on the gaze-guiding prior.

employ regression models to predict the future state. How-

ever, as there are many possibilities in the future, learning

simply one-to-one mapping may leads to amphibolous re-

sults. Recent methods utilize generative models [24, 29] to

obtain future states, e.g., using generative adversarial net-

works (GAN) to generate future images then predict the 3D

poses according to that. These methods can utilize unla-

beled data and introduce the uncertainty into the generation.

However, they heavily dependent on massive face images

with high resolution. As a trade-off, we seek to utilize a

better modality to represent the head pose.

Another challenge is how to achieve the forecasting re-

sults that are logical. The recent success of variational au-

toencoder (VAE) [24] shows evident advantages in learning

latent representation. The VAE is capable of modeling un-

certainties in structured one-to-many mapping by means of

probabilistic inference. This nature is attractive for many

tasks such as future forecasting [49]. However, despite al-

lowing the diverse prediction, the states generated by VAE

are inundated with lots of unrealistic or over-smoothing re-

sults [56], especially in long-term generation tasks. In real-

world problems, the most possible and practical states are

much more important than meaningless richness. A natu-

ral question is thus raised that how could we restrict the

forecasting and achieve plausible results. To this end, we

need a constrained generation to guarantee the diverse and

realistic long-term forecasting.

In this work, we propose to utilize the graph structure to

represent the head pose, and frame the head pose forecast-

ing as the spatial-temporal graph generation. We propose

the conditional spatial-temporal variational graph autoen-



coder (CST-VGAE), a deep generative model to learn re-

stricted one-to-many mappings for graphs prediction. This

model is capable of learning latent representation condi-

tioned on the spatial-temporal graph-structured data. Our

model is trained to maximize the conditional log-likelihood,

and we formulate the variational learning objective of the

CST-VGAE based on stochastic gradient variational Bayes

(SGVB). The proposed CST-VGAE is capable of modeling

a restricted one-to-many mapping to generate diverse and

realistic results. As a result, this model is well-suited for

long-term forecasting problems.

Specifically, we introduce a gaze-guiding prior into the

head pose forecasting task, which is inspired by the phys-

iological research. Furthermore, we apply a temporal self-

attention mechanism to learn the long-range dependencies

on the gaze prior. To better model head poses on three de-

gree of freedom angles, we introduce a Gaussian Mixture

Model (GMM), instead of a fixed Gaussian in our encoded

latent space. Moreover, we leverage the self-supervised

learning to restrain the long-term generation. As a result,

the proposed CST-VGAE achieves superior performance as

compared to most existing methods on this task. In sum-

mary, our contribution is as follows:

• We propose the CST-VGAE, a framework for self-

supervised learning on spatial-temporal graph data,

and introduce a physiology-based gaze-guiding prior

for head pose long-term forecasting tasks.

• We apply a temporal self-attention mechanism and

the self-supervised learning method to learn the long-

range dependencies on the gaze prior.

• We introduce a Gaussian Mixture Model (GMM), in-

stead of a fixed Gaussian in our gaze prior to better

model head poses on three degree of freedom angles.

• We achieve superior long-term head pose forecasting

performance on two benchmark datasets as compared

to existing models. We also verify the method’s cross-

task generalization on the body pose forecasting task.

2. Related work

Head pose forecasting. Head pose forecasting is to pre-

dict the future 3D head pose vector according to the current

2D information. A closely related task is the head pose esti-

mation, which recognizes the current head pose by means of

facial landmarks[5, 28] or images directly [58, 41]. Despite

the latter are more compact in model size, these methods

call for massive data than landmark-based methods [31],

otherwise they suffer from over-fitting since head pose re-

gression is a fine-grained task. Comparing with head pose

estimation, the head pose forecasting is more challenging

since the future may have many possibilities while we care

more about the situations of higher importance under cer-

tain conditions, e.g., distractions before the traffic accidents.

Although this is a novel problem in computer vision, fu-

ture prediction w.r.t. body poses is studied in recent years

[52, 50]. Most of these methods leverage generative models

to learn one-to-many mappings.

Deep generative models. Along with the recent break-

throughs in unsupervised learning methods, there has been

progress in deep generative models, such as the genera-

tive adversarial network (GAN) [15] and variational au-

toencoder (VAE) [24]. Recently, the advances in inference

and learning algorithms for various deep generative models

[44, 62] significantly enhanced this line of research. Con-

ditional variational autoencoder (CVAE) [46] is proposed

to model the distribution of high dimensional output space

as a generative model conditioned on the input observation.

Variational graph autoencoder (VGAE) [25] is proposed for

unsupervised learning on non-Euclidean, graph-structured

data based on the VAE. In this work, we propose the CST-

VGAE for modeling the prior on Gaussian latent represen-

tations given graph-structured input data. Perhaps the most

similar prior work to our approach is [32] in which the con-

dition is to generate the connection of the nodes, while our

method is to restrict the generation of the nodes’ spatial fea-

tures. Hence, our method falls into the category of spatial-

temporal graph generation [55].

Self-attention. Self-attention stems from the machine

translation [48] and the natural language processing [9, 60].

In recent years, self-attention has been also explored in

computer vision tasks, such as image recognition [67, 2],

image captioning [8, 61], and image synthesis [4, 38, 65].

Han Zhang et al. [65] propose Self-Attention Generative

Adversarial Network (SAGAN) to focus on detailed fea-

tures of the distant portions of generated images. Another

related work [47] applies a self-attention module to cap-

ture the long-range dependencies of point cloud object 3D

shapes for diverse and realistic generation. However, little

work in the literature adopts a self-attention module in long-

term forecasting problems. To the best of our knowledge,

this work is the first to propose a self-attention module in

the long-term head pose forecasting task.

Self-supervised learning. Self-supervised learning is a

subset of unsupervised learning methods. Self-supervised

learning approaches for deep learning have been shown to

be effective in various domains, such as audio and video

analysis [26], image decomposition [21], point clouds [42]

and human pose reconstruction [40]. On long-term fore-

casting tasks, approaches have largely focused on utilizing

either variational autoencoders [49] or autoencoders com-

bined with long-short-term-memory (LSTMs) [19]. Self-

supervised learning is supervised learning without human-

annotated labels. In this work, our proposed model is ap-

plied to forecast the long-term (next one-second) head pose

in a video given past frames. This can be regarded as an in-

stance of self-supervised learning or temporally supervised

learning, where supervision comes from future input data.
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Figure 2. Illustration of (a) VGAE and (b) CST-VGAE. Blue

arrow lines represent the inference process q(·). Gray arrow lines

denote the generation process p(·).

3. Conditional Spatial-temporal VGAE

Preliminary: Variational Graph Auto-encoder. The

variational graph auto-encoder (VGAE) [25] is a framework

for unsupervised learning on graph-structured data based on

the variational autoencoder (VAE) with the Gaussian latent

variables. Given an undirected graph G = (V, E) with n

nodes, a set of latent variable zi ∈ Rm is generated from the

prior distribution p(Z), and the adjacency matrix A of G is

generated by the generative distribution p(A|Z) conditioned

on latent variables zi: zi ∼ p(Z), where zi is summarized

in the matrix Z ∈ R
n×m. Figure 2(a) sketches this pro-

cess. To address intractable posterior inference problems,

the VGAE optimizes the variational lower bound L w.r.t.

the variational parameters. The variational lower bound of

the VGAE is written as follows:

LV GAE = Eq(Z|X,A)[log p(A|Z)]−KL[q(Z|X,A)‖p(Z)],
(1)

where X ∈ R
n×d denotes the node features matrix.

KL[q(·)‖p(·)] is the Kullback-Leibler divergence between

q(·) and p(·). p(A|Z) represents the generative model.

q(Z|X,A) denotes the inference model. Z = g(X,A, ǫ),
ǫ ∼ N (0, I).

CST-VGAE. The aforementioned VGAE simply mod-

els a one-to-many mapping to predict diverse results. How-

ever, in real-world long-term forecasting tasks, the models

are required to generate results that satisfied certain tempo-

ral constrains; otherwise the outputs do not conform to real-

ism. This motivates us to structure the latent space, achiev-

ing by modeling the conditional distribution. Therefore, in

this work, we propose a conditional spatial-temporal varia-

tional graph auto-encoder (CST-VGAE) model for learning

one-to-many mapping conditioned on temporal constraints.

As illustrated in Figure 2(b), for the spatial-temporal

graph [55] (an attributed graph where the node attributes

change dynamically over time), the conditional generative

process of the CST-VGAE is as follows: for given input

IX,A with node features matrix X and an adjacency matrix

A, a set of latent variables Z is sampled from the prior dis-

tribution p(Z|IX,A). In contrast to the VGAE, the output

YX,A with node features matrix X and an adjacency matrix

A is generated from the distribution p(YX,A|IX,A,Z). No-

tice that we follow a typical form of the spatial-temporal

graph [55], meaning that the graph structure is fixed.

The CST-VGAE is trained to maximize the conditional

log-likelihood. Often the objective function is intractable,

and thus we apply the reparameterization trick to train the

model. The variational lower bound of the model is written

as follows:

log p(YX,A|IX,A) ≥ −KL[q(Z|IX,A,YX,A)‖p(Z|IX,A)]

+ Eq(Z|IX,A,YX,A)[log p(YX,A|IX,A,Z)],
(2)

and the variational lower bound LCST−V GAE is written as:

LCST−V GAE =Eq(Z|IX,A,YX,A)[log p(YX,A|IX,A,Z)]

−KL[q(Z|IX,A,YX,A)‖p(Z|IX,A)],
(3)

where p(YX,A|IX,A,Z) represents the conditional genera-

tive model. p(Z|IX,A) represents the prior of the latent vari-

able Z, Z = g(IX,A, ǫ), ǫ ∼ N (0, I). Note that the in-

ference distribution q(Z|IX,A,YX,A) is reparametrized with

a deterministic, differentiable function g(·, ·), whose argu-

ments are input data IX,A, and the noise variable ǫ.

4. CST-VGAE for long-term head pose fore-

casting

We employ the CST-VGAE to address the long-term

head pose forecasting problem. Our experiments (see Sec-

tion 6.2) suggest that the head pose forecasting via the im-

age generation is impractical, especially when the training

data is insufficient. By contrast, the approach that takes ad-

vantage of the sparse and low-dimensional facial landmarks

as well as the topology demonstrates more promising re-

sults. In our work, we select 19 facial landmarks that in-

variable to facial expressions to form the landmark graph

(see Figure 3), and the landmark coordinates are viewed as

the node feature xi.

Figure 3. Visualization of the landmark graph.

Overview. In general, our model is composed of an en-

coder and a decoder (see Figure 4), both of which are con-

structed by the ST-GCNs [57]. The encoder takes facial

graphs as an input, and generates the latent vector Z under

certain conditions. The decoder samples from Z to gener-

ate landmarks and regresses the 3D head pose vectors. The

head pose forecasting task implies important prior knowl-

edge that can help us to improve the vanilla CST-VGAE

effectively on this task. So we have a series of designs in

the improved model. 1) To handle the long-term forecast-

ing issue, we need the temporal restriction. So we introduce



the self-attention mechanism to the vanilla CST-VGAE. 2)

To improve the long-term forecasting performance, we also

adopt the landmarks predicted from the future as temporally

self-supervised learning. 3) For better diversity and inter-

pretability in generation results, we seek to replace the fixed

Gaussian with the Mixture Gaussian prior. 4) In addition to

that, we need a proper condition to restrain the generation.

Inspired by physiology researches, we introduce the gaze-

guiding prior in this work.

4.1. Gaze­guiding prior

In physiology, one interesting phenomenon [12, 35] is

that the human gaze usually predates the head pose in the

real world, i.e., the gaze direction at t − j indicates the fu-

ture head pose at t + l. This phenomenon suggests that the

gaze direction may act as the prior condition. To confirm

this observation, we evaluate the correlation between the

gaze and the head pose. We calculate the Pearson correla-

tion coefficient of gaze vector (θ, φ) and head pose measure-

ments including (yaw, pitch, roll) angles, where the gaze

predates the head pose with time-step 5 frames. We uti-

lize a gaze tracking model [22] to estimate gaze directions

of corresponding frames on the BIWI Kinect Head Pose

database [11]. The output (θ, φ) of the gaze tracking is the

expected gaze direction in spherical coordinates. As shown

in Figure 5 (Left), almost each Pearson correlation coeffi-

cient between (θ, φ) and (yaw, pitch, roll) is larger than

0.7, confirming that the head pose is strongly related to the

gaze direction happening before it. We conduct extensive

experiments (see Section 6.1) to decide the optimal time-

step interval between the gaze direction and the head pose.

Thus, we introduce the essential gaze-guiding prior as the

condition of the proposed model in the head pose long-term

forecasting task.

4.2. Self­attention temporal condition

To explicitly model the contribution of each current gaze

prior, we introduce a self-attention mechanism to our gaze

prior that is composed of a fixed number (T ) of consecutive

frames. The fixed number of frames is 5 in our experiments.

In order to capture long-range dependencies on the gaze

prior, we adopt a recurrent self-attention module between

the gaze prior ci and the predicted gaze gi at the recurrent it-

eration i, as shown in Figure 4 (dotted arrows). This means

that the predicted future gaze gi will be fed back into our

self-attention module (see Algorithm 1) to form a new gaze

prior ci+1 at recurrent iteration i + 1. As a result, the pro-

posed CST-GVAE model can be used to forecast long-term

head poses recurrently. To the best of our knowledge, we

are the first to propose a self-attention temporal condition

for long-term head pose forecasting tasks.

As Algorithm 1 shows, we apply a multi-head attention

module in our self-attention temporal condition ci, since we

need different attention heads for focusing on different as-

pects of the temporal condition ci. #head represents the

number of heads in Algorithm 1. First, our gaze prior of

dimension size 4 is projected onto a high dimension space

(D). After projection, the gaze prior ci at recurrent iteration

i is used as the query q, and the predicted gaze gi at this

iteration is for the key k and the value v. Then the scaled

dot-product attention is applied to qh, kh, vh in each head.

Finally, the multi-head attention results are concatenated to-

gether and a linear layer is applied to obtain the new gaze

prior ci+1.

Algorithm 1: Self-attention condition module

Input: ci: gaze condition at iteration i

gi: gaze forecasted at iteration i

Output: ci+1: gaze condition at iteration i+ 1
1 ci, ci+1, gi ∈ R

T×4

2 W
q
h ,W

k
h ,W

v
h ∈ R

4×D,W o ∈ R
(#head×D)×4

3 Function Self-attention(ci, gi):

4 while h < #head do

5 qh ← ciW
q
h

6 kh, vh ← giW
k
h , giW

v
h

7 attention h← softmax
(qhk

⊤
h√
D

)

· vh

8 attention← Concat{attention h}
9 ci+1 ← attention·W o

10 return ci+1

4.3. Mixture distribution prior

The head pose states consist of three degree of freedom

angles (yaw, pitch, roll). This prominent knowledge moti-

vates us to introduce a mixture of Gaussian distribution,

instead of a single Gaussian, to model our gaze prior in

the proposed CST-GVAE model. As shown in Figure 4,

the proposed model can explicitly encode the latent space

around three components corresponding to yaw (µy, σy),

pitch (µp, σp), roll (µr, σr), respectively, and combine all

components to create a GMM latent space for head pose

forecasting.

Note that our proposed GMM prior is distinct from one

work [53] in the literature. Specifically, there are two main

differences between ours and their methods. The first thing

is that they create a GMM latent space in the vanilla CVAE

for diverse image description, while we propose the GMM

prior for forecasting graph node features. The second one

is that we use different standard deviation σ for all compo-

nents, but they use the same σ for all components.

4.4. Self­supervised training

In order to forecast the long-term head pose in a video

given past frames, we adopt the landmarks predicted from

the future as temporally supervised learning, where it is

an instance of self-supervised learning and supervision

comes from the future input data [64]. With the landmark
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prior ci+1 for next iteration i+ 1. Therefore, our CST-VGAE model forecasts the long-term head poses in a recurrent way.

based self-supervised learning, our CST-VGAE intends to

forecast the head pose at longer steps in the future.

5. Implementation details

Data structure. In our experiment, we implement FAN

[5], a state-of-the-art face alignment method to extract 19

facial landmarks from each past frame to form the landmark

graph (see Figure 3). For the gaze prior, we utilize Open-

Pose [7, 45] to extract two pupil landmarks. In the training

process, we take a graph (composed of 19 facial landmarks

and 2 pupils) from five past frames to feed into the encoder,

forming an input of shape (B, 5, 21, 2). B denotes the batch

size and 5 is the number of input frames in our experiments.

The dimensionality of latent embeddings is fixed to 32 for

all models (see Section 6.1 for the detailed discussion).

For the gaze prior, we also apply a self-attention module

to the 2 pupils from 5 past frames for allowing a temporal

embedding of shape (B, 2 × 2 × 5). Then we concatenate

the self-attention gaze prior with latent embeddings from

the encoder. The decoder predicts 19 facial landmarks and

2 pupils as self-supervised information to train our model.

Finally, our pose decoder will output a fixed number (T )

of forecasted frames with three head pose vectors, form-

ing shape (B, 3 × T ). In the training process, we find that

the model suffers from KL divergence vanishing after lim-

ited iterations, leading to generate unstable latent represen-

tations. Motivated by beta-VAE [17, 6] and other KL diver-

gence annealing methods [14, 3], we introduce a coefficient

γ to constrain the KL divergence, thus the objective func-

tion L∗
CST−V GAE is written as follows:

L∗
CST−V GAE =Eq(Z|IX,A,YX,A)[log p(YX,A|IX,A,Z)]

− γ ×KL[q(Z|IX,A,YX,A)‖p(Z|IX,A)],
(4)

where γ represents the weight of the KL divergence term.

Our implementation 1 is built on PyTorch [39]. We use

Adam [23] for the adaptive learning rate scheduling algo-

rithm of gradient descent optimization. The training is ex-

ecuted on NVIDIA GeForce RTX 2080 Ti GPU for 31.2
minutes. We set learning rate = 5e−4, batch size = 1024,

epoch = 300. T = 5 in our experiments.

Inference. Our model forecasts long-term head poses

in a recurrent way. In each recurrent iteration, we use a

fixed number of frames (T = 5) of gaze prior and fore-

cast a fixed number of frames of self-supervised landmarks.

We feed the forecasted future gaze gi at recurrent iteration

i back into our self-attention module to form a new gaze

prior ci+1 at recurrent iteration i+ 1. In this way, the CST-

VGAE model can capture the long-range dependencies be-

tween these gazes for guiding head poses in the future. As a

result, the proposed CST-VGAE model can be used to fore-

cast long-term head poses in a recycled fashion. We test

30, 000 instances from BIWI and UPNA datasets for 5 runs

on one 2080 Ti GPU. The average inference time per in-

stance is 0.1 seconds.

6. Experiments

In this section, we conduct extensive experiments to

evaluate the effectiveness of the CST-VGAE. First, we im-

plement three preliminary experiments w.r.t. the hyper-

parameter γ, the gaze-guiding prior, and the dimensional-

ity of the latent embeddings. Then, we compare our pro-

posed CST-VGAE with the state-of-the-arts on BIWI [11]

and UPNA [1] datasets from quantitative and visualiza-

tion results. Finally, we perform detailed ablation studies

to demonstrate the effectiveness of each module in CST-

VGAE and the cross task generalization of our model.

Dataset. The BIWI Kinect Head Pose Database [11]

contains 24 videos of 20 subjects (a total of roughly 15, 000
frames) in the controlled environment. We compare exist-

ing methods based on the Mean Absolute Error (MAE) of

1https://sites.google.com/view/cst-vgae/



the forecasted head pose. In this protocol, we use 70% of

videos (16 videos) in the BIWI dataset for training, and the

others (8 videos) for testing. In our experiments, we only

consider frames whose head pose rotation angles are within

the range of [−90◦,+90◦]. The UPNA Head Pose Database

[1] contains 10 subjects, where each user has 12 videos and

300 frames per video. This dataset is used for validate the

generalizability of our CST-VGAE.

6.1. Preliminary experiments

First, we conduct the preliminary experiments for ex-

ploring the hyper-parameters in the proposed CST-VGAE.

Hyper-parameter γ. We set γ as a constant in the range

of (0, 1] and adopt state-of-the-art KL divergence anneal-

ing methods [17, 14, 3] to adjust the weights of the KL di-

vergence term. We report the comparison results in Table

1. When we set γ as a constant 5e−2, our model performs

well on both the MAE and KL divergence. By contrast, the

previous annealing methods have relatively poor results on

reducing the MAE in this case.

Optimal time-step interval. Another hyper-parameter

is the optimal time-step interval between the gaze-guiding

prior and the head pose. To determine this time interval,

we set 14 different frame intervals between the head pose

and the gaze direction to test on the BIWI dataset. Figure 5

(Right) describes this trend that the Pearson correlation co-

efficient increases first and decrease later with frame inter-

vals ascending. When the frame interval is approximately

from 5 to 7, the correlation between the head pose and the

gaze direction arrives at the peak 0.861. Accordingly, we

choose 5 as the frame interval.
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Figure 5. Left: Pearson correlation coefficient heat-map of the pre-

dated gaze-guiding prior and head pose. Right: distribution of

Pearson correlation coefficient for 12 different frame intervals (0-

11) between the gaze-guiding prior and the head pose. Red eclipse

part denotes the optimal frame interval.

Dimensionality of the latent embeddings. We explore

six custom dimensionality sizes (16, 32, 64, 128, 256, 512)

to forecast long-term head poses {Ft, Ft+1, ...Ft+29} for

comparison. Table 2 describes the results of this experiment

with the proposed CST-VGAE model. When the dimen-

sionality size is equal to 32, the MAE metric performs the

best. The larger dimensionality size is, the KL divergence

becomes larger. Moreover, neither the MAE performance

nor the model size is acceptable.

Table 1. Comparison results of different annealing methods for ad-

justing the hyper-parameter γ.
Method Yaw Pitch Roll MAE KL

step [3] 2.35 2.64 7.02 4.00 2.45

linear [3] 2.73 2.39 6.96 4.03 8e-5

logistic [3] 2.44 2.57 6.63 3.88 1e-4

cyclical [14] 2.61 2.62 6.46 3.90 1e-3

γ = 10 [17] 2.86 2.94 7.23 4.34 1e-5

γ = 1 2.76 2.7 7.03 4.16 2e-4

γ = 5e−1 2.67 2.58 6.73 3.99 5e-4

γ = 1e−1 2.3 2.23 6.73 3.75 4.29

γ = 5e−2 2.45 2.26 6.23 3.65 7.46

γ = 1e−2 2.87 2.65 6.45 3.99 22.26

γ = 1e−3 3.32 2.97 6.76 4.35 84.92

γ = 1e−4 2.4 2.28 6.15 3.61 756.69

γ = 1e−5 2.68 2.27 5.85 3.60 2674.64

Table 2. Comparison results of different latent embedding sizes

(“Dim” for dimension size, “M-Size” for model size).
Dim Yaw Pitch Roll MAE KL M-Size(MB)

16 3.19 2.91 6.71 4.27 22.68 2.38

32 2.45 2.26 6.23 3.65 7.46 3.47

64 2.51 2.34 6.39 3.75 22.99 8.43

128 2.84 2.61 6.32 3.92 23.55 27.9

256 2.7 2.63 6.27 3.86 25.79 105

512 4.71 5.16 7.51 5.79 26.28 411

6.2. Comparison with the state­of­the­arts

In this section, we implement extensive experiments to

compare the proposed CST-VGAE model with the state-of-

the-arts. There are three main categories for comparison.

The first category is deterministic prediction methods using

facial landmarks as input to regress yaw, pitch, roll directly,

including Linear Regression, Vanilla LSTM [18], GAZE-

LSTM, ERD [13], and SRNN [20],. Vanilla-LSTM is a

standard LSTM encoder-decoder model, and GAZE-LSTM

incorporates the gaze prior. The second category is stochas-

tic and diversity prediction methods utilizing face images

as input. We implement the VAE [24], GMVAE [10],

and CycleGAN [29] to generate long-term faces first and

then estimate head poses from these forecasted faces using

HopeNet [41]. The third category falls into methods using

facial landmark graphs as input. We choose the GAE [25],

VGAE [25] for forecasting landmarks directly using the fa-

cial landmark graph as input. For a fair comparison, we use

a comparable pose estimator [41] to estimate head poses

from our forecasted landmarks. Our goal is to predict head

poses given past frames at the next δ steps, i.e., 1, 10, 20, 25,

and 30. We evaluate those baselines and our CST-VGAE on

the BIWI for long-term head pose forecasting by quantitive

and visualization analysis. We also evaluate on the UPNA

for cross-dataset generalizability validation. We report the

quantitive results in Table 3.

First Category. Although GAZE-LSTM achieves lowest

MAEδ among those baselines, its error score is still larger

than our CST-VGAE’s by a large margin, which validates

the advantage of our method in the long-term forecasting.

We also input history head poses to Linear Regression di-

rectly, but its performance is unsatisfactory.



Table 3. Comparison results with the state-of-the-arts on BIWI and UPNA dataset. MAEδ denotes the mean absolute error for forecasting

future head poses at next δ steps. Bold and underline numbers denote the first and second place.

Methods Landmark Image Graph
BIWI UPNA

MAE1 MAE10 MAE20 MAE25 MAE30 MAE1 MAE10 MAE20 MAE25 MAE30

Linear Regression X 5.56 7.55 9.42 10.86 12.54 6.23 9.85 13.23 16.93 19.26

Vanilla-LSTM X 3.76 5.84 7.57 8.93 9.96 4.82 7.54 10.68 12.89 14.16

GAZE-LSTM X 3.32 5.42 6.89 8.04 9.12 4.32 6.71 8.54 9.86 11.25

ERD X 3.67 5.63 7.24 8.85 9.78 4.67 7.43 9.87 12.65 13.45

SRNN X 3.56 5.56 7.13 8.65 9.64 4.53 7.32 9.75 11.54 12.85

VAE X 17.99 18.06 18.15 18.17 18.00 19.02 21.13 22.04 23.05 25.16

CycleGAN X 13.79 18.48 18.79 18.09 19.04 16.45 21.89 24.43 25.78 27.02

GMVAE X 3.25 5.31 7.01 8.43 9.42 4.23 7.21 9.53 10.62 11.34

GAE X 4.23 5.81 8.39 8.77 9.78 4.53 6.82 8.84 9.82 11.43

VGAE X 3.56 5.71 7.90 8.50 9.21 4.17 6.57 8.45 9.65 11.02

CST-VGAE X 3.08 4.16 4.82 5.80 6.27 3.45 4.56 5.46 6.15 6.56

Second Category. For the second category, the CST-VGAE

model outperforms VAE and CycleGAN by a large mar-

gin in terms of MAE. This is because the human faces are

diverse and high-dimensional. It is impractical to forecast

long-term head poses using the pixel-to-pixel generation.

Third Category. For the third comparison category, we

find that the GAE performs worse than the VAGE. This is

because the GAE does not incorporate any sampling in the

generation process, making it ineffective for the head pose

forecasting problem. By introducing the latent space for

sampling, the VGAE performs better than the GAE. More-

over, both the performance of GAE and VGAE beat the

VAE and CycleGAN. Therefore, facial landmark graphs are

better suitable as input for long-term head pose forecast-

ing. More importantly, with the introduction of the gaze-

guiding prior, our proposed CST-VGAE model outperforms

the aforementioned four methods in terms of MAE.

Cross-dataset Evaluation. We evaluate the model trained

on BIWI dataset on videos of 10 subjects from UPNA

dataset in Table 3. Our CST-VGAE achieves the lowest

score in terms of all metrics, compared to baselines. This

further shows that our method performs promising general-

ization to other real datasets.

Visualization. We visualize the head pose results on the

original RGB images for GAE, VGAE and our CST-VGAE

model. Instead, we directly show the generated face images

by VAE and CycleGAN. As shown in Figure 6, we draw

the results of 5 frames {Ft, Ft+4, Ft+9, Ft+19, Ft+29} from

forecasted 30 frames {Ft, ..., Ft+29} for one subject. From

Figure 6, the generated face images by VAE and CycleGAN

are coarse and blur, making it hard to detect landmarks. We

use HopeNet [41] to estimate head poses without keypoints.

As a result, neither two ways are suitable for long-term fore-

casting compared to models using facial landmark graphs

as input. By comparison, our CST-VGAE model achieves

competitive long-term forecasting performance.

6.3. Ablation study

Gaze-guiding prior. Table 4 compares the long-term

forecasting performance of CST-VGAE without and with

the gaze-guiding prior in terms of forecasting 20, 25, 30

Ft Ft+4 Ft+9 Ft+19 Ft+29

Ground


Truth

CST-VGAE

VGAE

GAE

CycleGAN

VAE

Figure 6. Visualization of the generated head pose results of one

subject from the forecasted 30 frames. The six rows from top

to bottom represent the VAE, CycleGAN, GAE, VGAE, CST-

VGAE, and Ground-Truth, respectively. The blue, green, red

lines denote the direction the subject is facing, the downward di-

rection, and the side, respectively. Best viewed on screen.

frames of head poses. The CST-VGAE with the gaze guid-

ing prior outperforms the VGAE without the gaze prior in

terms of three different numbers frame numbers of the fore-

casted head poses. This means that our gaze prior plays a

guiding role in forecasting the long-term head poses.

Self-attention. To demonstrate the effectiveness of the

self-attention temporal condition module in CST-VGAE

with the gaze-guiding prior, Table 4 compares the per-

formance of the proposed CST-VGAE with and without

the self-attention module in terms of forecasting 20, 25, 30
frames of head poses. The results show that the CST-VGAE

with the self-attention module achieves better performance

than that without the attention module, which confirms the

effectiveness of our self-attention module in capturing the

long-range dependencies on the gaze prior recurrently.

Mixture distribution prior. Based on the CST-VGAE

with gaze-guiding prior and self-attention module, we

also evaluate the performance of the proposed CST-VGAE

model with single Gaussian prior and mixture Gaussian



Table 4. Ablation study performance on BIWI dataset. GP, TSA, MG, and SSL denote the gaze-guiding prior, temporal self-attention,

mixture Gaussian, and self-supervised learning, respectively.

GP TSA MG SSL
δ=20 δ=25 δ=30

Yaw Pitch Roll MAE Yaw Pitch Roll MAE Yaw Pitch Roll MAE

9.35 8.62 5.74 7.90 9.55 9.63 6.31 8.50 10.58 10.61 6.43 9.21

X 5.13 5.27 5.34 5.25(↓2.65) 6.36 6.56 5.97 6.30(↓2.20) 7.05 6.86 6.23 6.71(↓2.50)

X X 4.76 4.96 5.14 4.95(↓0.30) 6.03 6.26 5.66 5.98(↓0.32) 6.85 6.45 6.03 6.44(↓0.27)

X X X 4.65 4.78 5.04 4.82(↓0.13) 5.86 6.06 5.47 5.80(↓0.18) 6.65 6.28 5.87 6.27(↓0.17)

X X X X 4.41 4.53 4.72 4.55(↓0.27) 5.42 5.62 5.11 5.38(↓0.42) 6.31 6.02 5.43 5.92(↓0.35)

prior in terms of forecasting 20, 25, 30 frames of head

poses. Table 4 reports the detailed comparison performance

results. The results show that incorporating mixture Gaus-

sian prior further improves our model.

Self-supervised Learning. In order to validate the effec-

tiveness of the landmark based self-supervised learning in

the long-term forecasting, we evaluate the performance of

our CST-VGAE with and without the self-supervised learn-

ing in Table 4. We can observe an obvious performance

improvement in terms of 20, 25, 30 frames of head poses

forecasting. This infers the significance of the landmark

based self-supervised learning in the proposed CST-VGAE.

Table 5. Error analysis w.r.t. landmark & gaze errors.
Detector MLE MGE MAE20 MAE25 MAE30

DAN [27] 4.30 - 4.87 5.87 6.35

FAN[5] 4.06 - 4.82 5.80 6.27

HRNetV2 [51] 3.85 - 4.79 5.82 6.22

GazeNet [66] - 5.50 4.72 5.65 6.14

GazeML [37] - 4.50 4.65 5.57 6.08

OpenPose [7] - 6.52 4.82 5.80 6.27

6.4. Error analysis and failure cases

We implement three SOTA facial landmark estimator

and three gaze estimation methods to analyze how much the

Mean Landmark estimation Error (MLE) and Mean Gaze

estimation Error (MGE) affect the final forecasting accu-

racy in Table 5. Even though DAN’s MLE is 0.24 larger

than FAN’s MLE, the differences between their MAEδs

are 0.05, 0.07, 0.08. This validates the robustness of our

method to facial landmarks. However, the final accuracy

becomes higher with the decrease of MGE, which further

shows the importance of the proposed gaze-guiding prior.

We show some failure cases in Figure 7. Our model some-

times misses the cases where the face and the gaze stay in

the middle for a period longer than 3 seconds.

History frames Forecasting GT

t − 5 t − 3 t − 1 t + 29 t + 29

Figure 7. Failure cases analysis.

6.5. Cross task evaluation

In order to evaluate the generalizability of our proposed

CST-VGAE to the field of body pose forecasting, we imple-

ment Linear Regression, Vanilla-LSTM, GAE, VAGE, and

take body landmarks as input for fair comparison. We also

compare our CST-VGAE with other previous work focusing

on human pose forecasting, including ERD [13], LSTM-

3LR [13], SRNN [20], Residual [34], GMVAE [10] and

DLow [63]. Specifically, we evaluate those methods on the

Kinetics-skeleton dataset [57] to predict the future 18 body

landmarks given past frames at the next δ steps, i.e. 1, 10,

20, 25, and 30, and use the mean absolute error MAEδ for

evaluation. In our CST-VGAE, we incorporate the motion

fields of past frames extracted by a motion encoder [56],

as our prior. The quantitative results are reported in Ta-

ble 6. From Table 6, our CST-VGAE performs comparably

to DLow in terms of MAE20 and MAE25, and achieves bet-

ter results in terms of other metrics. This implies an excel-

lent generalizability performance of our CST-VGAE to the

body pose forecasting task.

Table 6. Comparison of performance of body pose forecasting on

Kinetics-skeleton dataset.
Method MAE1 MAE10 MAE20 MAE25 MAE30

Linear Regression 6.86 9.45 11.92 13.66 16.43

Vanilla-LSTM 5.86 7.23 8.87 10.04 12.16

GAE 6.31 8.42 9.95 11.37 13.58

VGAE 5.24 6.87 8.98 10.14 12.67

CST-VGAE(ours) 5.01 6.23 7.85 9.36 10.32

DLow 5.11 6.25 7.83 9.22 10.48

GMVAE 5.52 6.68 8.35 9.46 11.42

Residual 5.64 6.78 8.48 9.53 11.53

SRNN 5.67 6.85 8.56 9.62 11.68

LSTM-3LR 5.71 7.09 8.69 9.76 11.82

ERD 5.82 7.18 8.76 9.87 11.94

7. Conclusions

In this work, we propose the conditional spatial-

temporal variational graph auto-encoder for learning con-

strained one-to-many mappings conditioned on spatial-

temporal graph input. We introduce the gaze-guiding prior

as the condition in the CST-VGAE model for long-term

head pose forecasting problems. We apply the temporal

self-attention and self-supervised mechanism to learn the

long-range dependencies on the gaze prior. We use a mix-

ture Gaussian prior to explicitly encode the latent space

around yaw, pitch, roll component, respectively. Our ex-

tensive experiments demonstrate that the proposed method

achieves competitive long-term forecasting performance on

the benchmark datasets. The detailed ablation studies also

show the effectiveness of each module in our model and the

generalization on the body pose forecasting task.
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