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Abstract

With the recent advancement of deep learning tech-
nology, data-driven approaches for autonomous car pre-
diction and planning have achieved extraordinary perfor-
mance. Nevertheless, most of these approaches follow a
non-interactive prediction and planning paradigm, hypoth-
esizing that a vehicle’s behaviors do not affect others. The
approaches based on such a non-interactive philosophy typ-
ically perform acceptably in sparse traffic scenarios but
can easily fail in dense traffic scenarios. Therefore, we
propose an end-to-end interactive neural motion planner
(INMP) for autonomous driving in this paper. Given a
set of past surrounding-view images and a high definition
map, our INMP first generates a feature map in bird’s-eye-
view space, which is then processed to detect other agents
and perform interactive prediction and planning jointly.
Also, we adopt an optical flow distillation paradigm, which
can effectively improve the network performance while still
maintaining its real-time inference speed. Extensive experi-
ments on the nuScenes dataset and in the closed-loop Carla
simulation environment demonstrate the effectiveness and
efficiency of our INMP for the detection, prediction, and
planning tasks. Our project page is at sites.google.
com/view/inmp-ofd.

1. Introduction

Autonomous driving aims at safely and efficiently ma-
neuvering self-driving vehicles (SDVs) from a starting point
to a target point with the input of sensor data and a pre-built
map [15, 7, 4, 26]. Most existing approaches are designed
to follow a “perception-prediction-planning” paradigm, as
shown in Fig. 1 (a), where the perception module detects
other agents from the sensor data, the prediction module es-
timates possible future trajectories of the detected agents,
and the planning module generates a safe trajectory to drive
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Figure 1. An illustration of non-interactive and our proposed in-
teractive approaches, where (a) and (c) show the correspond-
ing frameworks; and (b) and (d) show the corresponding driv-
ing performance in a dense traffic scenario. Specifically, the non-
interactive SDV can struggle merging into the left lane, while our
interactive SDV can perform a satisfactory lane merge by reason-
ing about how other agents will react to its behaviors.

the SDV towards the given target location based on the
output from the perception and prediction modules [13].
The approaches designed under this paradigm are non-
interactive, as the planning module is assumed to have no
effects on the results of the prediction module. This im-
plies that each SDV is a passive agent, and its behavior
does not affect the other agents. Based on this philosophy,
these non-interactive approaches typically perform accept-
ably in sparse traffic scenarios but can easily fail in dense
traffic scenarios [25]. For instance, Fig. 1 (b) illustrates a
dense traffic scenario where the non-interactive SDV tries
to merge into the left lane. Since the estimated future tra-
jectories of other agents can cover most of the road in such
a dense scenario, it can be challenging for the SDV to plan
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Figure 2. An overview of our INMP, which takes a set of past surrounding-view images and an HD map as input to jointly 1) detect other
agents and 2) perform interactive prediction and planning. We also adopt an optical flow distillation paradigm, where the teacher network
adopts a similar architecture to the student network but takes optical flow as an additional type of input. We then distill the knowledge
from the teacher network to the student network, which can effectively improve the student network performance while still maintaining

its real-time inference speed.

a feasible trajectory to the left lane, resulting in a long wait
for the SDV and causing inconvenience to the other agents
behind it.

To address this problem, the SDV needs to be modeled
as an active agent, capable of reasoning about how other
agents will react to its behaviors. In this way, the prediction
module becomes correlated to the planning module, and
they can be formulated as a single interactive prediction
and planning module, as shown in Fig. | (c). An iterative
SDV is now capable of considering the possible reactions
of other agents when safely merging into the left lane in
the same dense traffic scenario, as shown in Fig. 1 (d). Re-
searchers have already developed some interactive predic-
tion and planning approaches from different perspectives,
such as game-theoretic planning [14] and reinforcement
learning [35]. However, these approaches mainly depend
on manually designed models or rewards, which may not
be able to accurately model real-world agent dynamics or
human-like driving behaviors. Therefore, there is a strong
motivation to develop a general interactive prediction and
planning approach for autonomous driving.

In this paper, we propose an end-to-end Interactive
Neural Motion Planner (INMP), for autonomous driv-
ing. Our INMP, illustrated in Fig. 2, takes a set of past
surrounding-view images and a high definition (HD) map as
input to jointly 1) detect other agents and 2) perform inter-
active prediction and planning for the SDV. Specifically, we
first lift these images into three dimensions (3-D), and then

combine them with the HD map to generate a feature map
in bird’s-eye-view (BEV) space. This BEV feature map
¥ is then processed to 1) detect other agents via a single-
shot detection header and 2) jointly estimate the future tra-
jectories of the detected agents and produce safe motion
plans for the SDV via an interactive prediction and plan-
ning model with a joint probability distribution and a set of
learnable costs. This paradigm enables the SDV to reason
about how other agents will react to its behaviors, and thus
can effectively improve the driving performance. Please
note that the whole pipeline is differentiable, enabling end-
to-end learning from raw sensor data to the outputs. In
addition, we follow [40] and adopt a similar optical flow
distillation paradigm to further improve the performance.
Specifically, we refer to the above network as the student
network (INMP-S) and additionally develop a teacher net-
work (INMP-T), which adopts a similar architecture to the
student network but further takes optical flow as an ad-
ditional type of input. Optical flow can provide explicit
motion information, leading to significant performance im-
provement for the teacher network. However, the computa-
tion of the optical flow seriously hinders the whole pipeline
to achieve real-time performance [38, 41]. We then distill
the knowledge from the teacher network to the student net-
work, which can effectively enhance the student network
performance while still maintaining its real-time inference
speed. We demonstrate the effectiveness and efficiency of
our approach on the popular nuScenes dataset [2] and in the



closed-loop Carla simulation environment [9]. Our INMP
can achieve competitive performance on the detection, pre-
diction, and planning tasks. Moreover, the adopted optical
flow distillation paradigm enables our student network to
achieve a much faster inference speed than the teacher net-
work with similar driving performance.

2. Related Work
2.1. Trajectory Prediction

Trajectory prediction aims to estimate the future trajecto-
ries of the agents based on their past states. The major chal-
lenges of this task are modeling the interactions between
different agents and generating accurate multi-modal trajec-
tory predictions. Traditional approaches generally achieve
it based on manually designed models, e.g., the Kalman fil-
ter [22]. With the advancement of deep learning techniques,
many data-driven approaches have achieved impressive per-
formance in this field. These approaches typically use the
past states to learn a latent representation for each agent, and
model the interactions between different agents based on
their latent representations [1, 21, 16]. Recently, some re-
searchers have developed a new paradigm that takes the raw
sensor data as input to jointly perform object detection and
trajectory prediction [46, 47, 24]. These approaches usually
use LiDARSs, since trajectory prediction is often performed
in BEV space and the point clouds provided by LiDARs
meet this requirement inherently. Considering that images
can provide more semantic information than point clouds
and cameras are much cheaper than LiDARs, we take im-
ages as input in our approach. Extensive experiments have
demonstrated that the proposed vision-based approach can
achieve competitive performance compared with previous
LiDAR-based approaches, as presented in Section 4.

2.2. Motion Planning

The goal of motion planning is to generate a trajectory
to drive the SDV towards its given destination safely and
efficiently. Traditional approaches generally sample a large
set of candidate trajectories based on the input perception
and prediction results [29, 11, 12, 42, 43], and then use a
cost function to select the executed trajectory, which has the
minimal cost [34]. Recently, many end-to-end approaches
that directly map the raw sensor data to the planned trajec-
tories or control commands have been proposed [15, 7, 4].
These approaches are optimized jointly from data, and thus
can compensate the adverse effects caused by the accumu-
lated errors in traditional approaches [23]. However, the
end-to-end approaches are often criticized for their lack
of interpretability, which makes these approaches hard to
explain the generated behaviors and further leads to their
limited applications in practice. To address it, some ap-
proaches have adopted the multi-task learning paradigm,

jointly conducting detection, prediction, and planning tasks
[46, 47, 33]. The generated intermediate results, i.e., detec-
tion and planning results, can effectively help people under-
stand why the model can produce specific motion planning
results. However, these approaches typically follow the
non-interactive prediction and planning paradigm, and can
easily fail in dense traffic scenarios, as mentioned above.

Recently, some researches have proposed the end-to-end
interactive paradigm [31, 37, 25]. These approaches typi-
cally take the point clouds provided by LiDARs as input,
and utilize joint probability distribution models to perform
interactive prediction and planning. In this paper, we follow
this paradigm and explore its feasibility and effectiveness
when images are given as input.

2.3. Knowledge Distillation

Knowledge distillation aims at leveraging the dark
knowledge of a teacher network to improve the performance
of a student network with fewer parameters. This paradigm
was first proposed in [18] for image classification. After
that, researchers have presented more effective and efficient
knowledge distillation techniques [32, 45]. Specifically,
[32] proposed hint training (HT), which aims at training the
intermediate representation of the student network such that
it can mimic the latent representation of the teacher net-
work. [45] defined attention maps for two networks and
then forced the student network to mimic the attention maps
of the teacher network. Knowledge distillation has been
adopted in many other applications, e.g., object detection
[6] and semantic segmentation [ 7], to improve their per-
formance. In this paper, we follow [40] and adopt a similar
optical flow distillation paradigm for autonomous driving.
Different from [40], we utilize this technique for the detec-
tion, prediction, and planning tasks jointly. In addition, [40]
adopts a non-interactive paradigm, while our INMP can per-
form interactive prediction and planning.

3. Methodology

Fig. 2 illustrates the overview of the proposed approach.
Our INMP first generates a BEV feature map ¥, as in-
troduced in Section 3.1. ¥, is then processed to 1) detect
other agents and 2) perform interactive prediction and plan-
ning, as presented in Section 3.2 and Section 3.3, respec-
tively. After that, Section 3.4 elaborates the proposed op-
tical flow distillation paradigm. Finally, we introduce the
training phase in Section 3.5.

3.1. BEV Feature Map Generation

Let 7K € RF*W>3 denote the input RGB image, where
t = ty —4,...,1 denotes the timestamp of the past five
frames; and k£ = 1,...,6 denotes the six cameras used
in our experiments. The six cameras with known extrin-
sic and intrinsic parameters roughly point in the forward,



forward-left, forward-right, backward, backward-left, and
backward-right directions respectively. We also take the HD
map M,, that contains the road, lane and intersection infor-
mation as input, since it can provide a strong prior about
the driving scenario. Then, given all images in the past
five frames {7} }f:té’_';",’f” ;, and the current HD map M,
we aim to generate a BEV feature map 7, as presented in
Fig. 3. ¥} plays an important role in the following object
detection and interactive prediction and planning.
Considering that images are located in perspective-view
space, we first conduct monocular depth estimation for each
I*, which builds a bridge between perspective-view space
and BEV space. To achieve it, we follow [30] and gener-
ate contextual features at all possible depths for each pixel.
Specifically, we associate each pixel with a set of |D]| dis-
crete depths, where D = {dy + Ad, .. .,dy + |D|Ad}. Then,
we use the known intrinsic parameters to produce a point
cloud P that contains H - W - |D| 3-D points for each ZX.
To obtain the contextual feature for each point in P¥, we
first use an image backbone to generate a contextual feature
f € RC and a distribution 7 over the discrete depth set D
for each pixel p. Afterwards, the contextual feature f; € RC
for point p, is computed as a combination of the feature for
the corresponding pixel and the discrete depth inference:

fd =4 'f, (1)

where d € D refers to any discrete depth in D.

For the teacher network, we incorporate optical flow
information into Ptk to enhance the network’s capability
to model dynamic relationships for performance improve-
ment. Specifically, we use an existing optical flow esti-

mation network [38] to compute the backward optical flow
Ok c RH xWx2.
; :

Z',k(u,v) = It]il (u + O,k(u, v,1),v+ O,k(u, v, 2)) . 2)

OF can be regarded as containing the explicit past motion
information from It’i , to Itk. Then, we use a flow back-
bone to produce a contextual feature f* € RS for each pixel
p. After that, we concatenate f’ with f and produce a new
feature. Please note that the new feature is still denoted as
f for notational simplicity. However, f in the teacher net-
work contains the explicit motion information provided by
the optical flow while f in the student network does not. We
then use (1) to compute a contextual feature f; € RE for
every point py in the teacher network.

Then, we can use the known extrinsic parameters to ag-
gregate {PK}*=1-6 into a large point cloud P, for each
timestamp . After that, we follow [20] to convert #; into
“pillars”, which refer to voxels with infinite height. To be
specific, we assign each point to its nearest pillar and use
pooling operation to construct a feature map ¥, which con-
tains the information in BEV space and can be processed
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Figure 3. An illustration of the BEV feature map generation. We
lift the input images into 3-D, and combine them with the HD map
to generate a BEV feature map. The teacher network also uses op-
tical flow to enhance its capability to model dynamic relationships
for performance improvement.

by convolutional layers. We also use a map backbone to
produce a feature map %,, which is then concatenated with
the features of all five past frames {¥; };—), ..., r=1,—4 and pro-
cessed by convolutional layers to generate the BEV feature
map ¥, as shown in Fig. 3.

3.2. Object Detection

Given the BEV feature map ¥, we first detect other
agents via a single-shot detection header. Specifically, fol-
lowing [27], we apply two convolutional layers on 7 sep-
arately, one for classifying the class of a location, the other
one for regressing the position offset, size, heading an-
gle, and velocity of each agent. After that, we use a non-
maximum suppression (NMS) operation [28] to obtain the
bounding boxes and velocities of all other agents, which are
then utilized to perform interactive prediction and planning.

The training loss for object detection Lo is defined as
a summation of a classification loss Lo¢ and a regression
loss Log,i.e., Lo = Loc + Lor- To be specific, in Loc,
we use a cross entropy classification loss and assign the la-
bel of each anchor based on its intersection over union (IoU)
with any agent as follows:

Loc(C,C)=H (é,C), 3)

where H(-,-) denotes the cross entropy; and C and C de-
note the ground-truth and the predicted classification dis-
tribution, respectively. In our experiments, we detect two
kinds of agents, i.e., vehicles and pedestrians. In addition,
Lor is defined as a smooth L; loss between the regression
ground truth Sand regression predictions S as follows:

Lor(S,S) = Z SL (SZ,Sk), 4
%



where SL(-,-) denotes the smooth L; loss; and the regres-
sion state set contains the position offsets in two dimen-
sions, the width and height of the bounding box, the sine
and cosine value of the orientation angle, and the velocities
in two dimensions.

3.3. Interactive Prediction and Planning

Given the object detection results, we then focus on gen-
erating 7 = {19,7,...,7n}, Which contains the planned
trajectory of the SDV 7( and the trajectory predictions of
N detected agents 7, = {11,...,7n}. Considering that
performing prediction and planning in continuous space
can consume much computational resources, we follow
[46, 47, 25] and sample trajectories in a discrete space,
which contains K possible candidate trajectories for each
trajectory T € 7. The adopted trajectory sampler takes the
past trajectories of each agent as input, and generates a set
of straight lines, circular curves and euler spirals as can-
didate trajectories. Now, the generation of each trajectory
7 € 7 is transformed to a classification problem.

To achieve it, we first define a joint probability distribu-
tion over the prediction and planning results 7~ conditioned
on the environmental context X as follows:

1
P(T1X;w) = = exp (=6(T. X; W), )

where N is a normalizer; X includes the BEV feature map
¥, and the past trajectories of each agent; &(7,X;w) de-
notes the defined joint energy of the prediction and plan-
ning results 77; and w denotes the parameters of the model.
To be specific, &(7,X; w) is defined as a summation of an
agent-specific term &, a safety term &, and a goal-directed
term &, as follows:

N
E(T,X;W) = D Ea(1i, Xs W)+ Y E,(1i,7)+E4 (1), (6)

i=0 i.j

where &, is used to evaluate all K candidate trajectories
for each agent; &; is designed to penalize the occurrence
of dangerous cases such as collision; and &, is utilized
to encourage the SDV to follow the input high-level route.
Specifically, the BEV feature map ¥ is combined with the
candidate trajectories and then processed via a multi-layer
perceptron (MLP) to produce a K X (N + 1) matrix of eval-
uation scores for &,. Moreover, we follow [34] and define
&, as a summation of a collision term and a safety distance
violation term. The former will present 1 if the collision
between a pair of future trajectories happens and O if not;
while the latter is defined as a squared penalty within the
safety distance of each agent’s bounding box, scaled by the
velocity of the SDV. Additionally, &, is defined as the av-
erage projected distance between the planned trajectory of
the SDV 1y and the input high-level route.

Then, we can determine the planned trajectory of the
SDV 1y by selecting the candidate trajectory with the mini-
mal cost of a defined cost function f; as follows:

7, = argmin f7(7,X;w). @)
70

Compare with the non-interactive approaches, our INMP
enables the SDV to reason about how other agents will react
to its behaviors, i.e., considering the trajectory predictions
of the other agents 7, conditioned on 7 in the planning ob-
jective. Based on this philosophy, the cost function f; is
defined as an expectation of the joint energy over the trajec-
tory prediction distribution of the other agents conditioned
on the planned trajectory of the SDV, as follows:

fI(T,XH’V) = E‘7}~p(‘7} [70,X;w) [S(T,X;W)] . (8)

By substituting (6) into (8), we can have

N
fi = Ea(10) + Eg(10) + By p( frp.xm ) Ea(T)

i=1

N NN ©)
+Z&~(T0,Ti)+ Z Es(ti,1))]-
=1

i=1,j=1

where f; is short for f;(7,X;w); and &,(1;) is short
for E,(1;,X;w). Since [25] have shown that exclud-
ing the interaction term between the other agents, i.e.,
Zi’i ’]]’Vj:l &s(1,77), does not lead to significant performance
degradation, we follow it and also exclude this term in (9)
for computational efficiency. Then, for any given 7y, we can
compute the expectation directly by simplifying the terms
into the marginal probabilities as follows:

fi = Ealm0) + Eglro) + Y p(ri | 70,X3 W) (i)

0,Ti

+ Zp(r,- | 70, X; W) Eg(10,Ti)-

0,7

10)

Now, we can successfully perform the proposed interactive
prediction and planning, i.e., estimating the future trajecto-
ries of the detected agents and producing safe motion plans
for the SDV jointly, by computing these marginal probabil-
ities via loopy belief propagation (LBP) [44] efficiently.

Considering that the generation of each trajectory 7 €
7 is transformed to a classification problem, we define the
training loss for interactive prediction and planning Lp as
follows:

Lp(T,T) = ) HpE).p)+ ) H (pE5).p( 1))
i i,j
(1n

where T = {70, 71,...,7n} denotes the prediction and plan-
ning ground truth; and p(-) and p(-,-) denote the marginal



probabilities. Please note that we follow [25] and define
U(7;) as a set of the trajectories close to 7;. In (11), we only
compute the loss for 7; ¢ U(T;), since we do not want to
penalize the trajectory close to the ground truth.

3.4. Optical Flow Distillation Paradigm

As mentioned previously, optical flow can provide ex-
plicit motion information, leading to significant perfor-
mance improvement for the teacher network. However, the
computation of the optical flow seriously hinders the whole
pipeline to achieve real-time performance. We then fol-
low [40] and distill the knowledge from the teacher network
to the student network, which can effectively enhance the
student network while still maintaining its real-time perfor-
mance. The distillation loss £ is defined as follows:

Lp =poLpo +AppLpp + AprLpr, (12)

where Lpo, Lpp and Lpg denote the distillation loss for
object detection, interactive prediction and planning, and
the BEV feature map ¥, respectively; and Apo, App and
AprF are the hyperparameters that scale the three loss terms.

Similar to Lo, Lpo is defined as a summation of a
classification distillation loss Lpoc and a regression loss
Lpor, ie., Lpo = Lpoc + Lpor. We follow [18] and
define Lpoc as follows:

Looc = Loc(C".cH = H(c".C5).  (13)

where CT and CS denote the predicted classification distri-
butions of the teacher and student networks, respectively.
Different from C in (3) that can only provide hard informa-
tion, CT can provide useful soft information to effectively
improve the student network. In addition, inspired by [6],
we design Lpor as follows:

T oS\ :¢1o _ oS < _ T
LDOR:Z{ng(Sk,Sk),nf||Sk 81 > 118 = 7 .

% otherwise.

(14)
where || ||; denotes the L; norm; and S” and SS denote the
regression predictions of the teacher and student networks,
respectively. Lpor encourages the student network to be
close or better than the teacher network, but does not push
the student once it reaches the teacher’s performance.

Moreover, we define Lpp as follows:

Lo { Lp(TT,TS)it ¥, D75 > ¥, D),
0, otherwise.

15)
where 77 and 75 denote the prediction and planning re-
sults of the teacher and student networks, respectively; 7;
denotes the trajectory ground truth; TiT* and TZ.S * denote the
trajectories of the teacher and student networks with the
minimal cost of f7, respectively; and D(-,-) measures the

average projected distance between two trajectories. Simi-
lar to Lpor, Lpp also encourages the student network to
perform better than the teacher, network but does not push
the student too much.

Considering that ¥}, of the teacher network incorpo-
rates the explicit motion information provided by the optical
flow while ¥, of the student network does not, we follow
HT [32] and further design LpF as:

Lor =17 - F21h, (16)

where ?'hT and 7‘;5 denote the BEV feature maps ¥, of the
teacher and student networks, respectively. Lpr encour-
ages the student network to mimic the BEV feature map 7
of the teacher network.

3.5. Training Phase

In the training phase, we first use the following teacher
training loss £ to train the teacher network:

LT =20 L] + Ap L], (17)

Loc(C.CT) + Lor(S. STy LI =
Lp(T,77); and Ao and Ap are the hyperparameters that
scale the two loss terms.

After that, we utilize the following student training loss
L5 to train the student network based on the trained teacher
network:

where l% =

L3 =20Ly+Ap Ly + Ap Lo, (18)

Loc(C.C%) + Lor(S.S%), Lh =
Lp(T,75); and o, Ap and Ap are the hyperparameters
that scale the three loss terms.

where £(S3 =

4. Experimental Results and Discussions
4.1. Datasets and Implementation Details

In our experiments, we first evaluate the performance of
our approach for object detection and trajectory prediction
on the nuScenes dataset [2], which contains around 1000
human driving sequences. The dataset is split into a train-
ing, a validation and a test set that consists of 18072, 8019
and 8033 samples, respectively. The best-performing net-
works are selected on the validation set and evaluated on
the test set. We also conduct closed-loop evaluation in the
Carla simulation environment [9]. Specifically, we first col-
lect a large-scale driving dataset on different maps with dif-
ferent weather and illumination conditions, e.g., clear, rainy,
daytime and sunset. We also set random roaming pedestri-
ans and vehicles, which are controlled by the Carla simu-
lator [9]. The dataset is split into a training set with 200K
samples and a validation set with 50K samples. Finally,



Figure 4. Object detection results of MonoDIE], FCOS3D B], our INMP-S, and our INMP-T on the nuScenes datasgtlf is evident
that our INMP-T and INMP-S can produce more accurate results than other approaches.

Table 1. Object detection results (%) on the nuScenes daidset [ Table 2. Trajectory prediction resultan( on the nuScenes

Best results are shown in the bold type. dataset?]. Best results are shown in the bold type.
Approach ARenicle APpedestrian  MAP Approach Type Lo minMSD
MonoDIS [36] 45.67 36.70 41.19 NMP [46] LiDAR-based 2.36 3.22
CenterNet [ (] 52.06 37.85 44.96 ESP B1] LiDAR-based 2.15 2.93
FCOS3D p] 51.34 39.21 45.28 DSDNet 2 7] LiDAR-based 2.04 2.65
INMP-S-ND 49.79 38.95 44.37 INMP-S-ND Vision-based 2.29 3.10
INMP-S Used 52.58 40.63 46.61 INMP-S Used Vision-based 2.07 2.68
INMP-T 53.81 40.34 47.08 INMP-T Vision-based 1.95 2.59

each network is evaluated thoroughly with 1800 episodes4'3' Trajectory Prediction Results

(around100km) in a closed-loop manner. We use thel, distance at = 4s[47] and the minMSD

For the implementation details, we adopt Ef cientNet- (5 agents an& = 12) [31] for performance comparison be-
BO [39] as the map, ow and image backbones. In addi- tween trajectory prediction approaches. These two metrics
tion, our INMP takes the information of pagt as input both measure the distance between the trajectory prediction
and performs interactive prediction and planning for the fu- and the ground truth for the correctly detected agents, and
ture4s. We adopt the Adam optimizef.§] with an initial the evaluation results are presented in Tabl§V/e can see
learning rate ofLO 4 to train our INMP-T and INMP-S on  that the conclusions in Sectigh2 also hold for the trajec-
two NVIDIA GeForce RTX 2080 Ti GPUs. Moreover, we tory prediction task. Excitingly, our INMP-S and INMP-
train the student network without the proposed optical ow T can even achieve competitive performance compared to

distillation paradigm, referred to as INMP-S-ND, for per- exXisting LIDAR-based approaches, which strongly demon-
formance comparison. strates that our energy-based model can effectively generate

accurate trajectory predictions.

4.2. Object Detection Results 4.4. Closed-loop Evaluation Results

We follow the nuScenes benchmark pnd adopt the We adopt the success rate (SR) and right lane rate (RL)
average precision (AP) at tHen distance threshold as our as our evaluation metric$]. SR is de ned as the propor-
evaluation metric. We compute the AP for vehicles and tion of the successfully nished episodes to the total test-
pedestrians respectively, and also compute its mean valuéng episodes, while RL is de ned as the proportion of the
(MAP) across the two classes. The evaluation results areperiod when the SDV drives in the input high-level route
shown in Tablel. It is evident that the three variants of to the total driving time. To verify the effectiveness of
our INMP all achieve competitive performance compared our INMP, we further develop a non-interactive neural mo-
to the existing vision-based approaches, and our INMP-T tion planner (NINMP) by using the following cost function:
achieves the best performance. In addition, our INMP-S fni T X;WP = Ex. par, jxowe XCHT ;X5 wo% Different from
presents a better performance than INMP-S-ND and a sim-(8), fni considers the trajectory predictions of the other
ilar performance to INMP-T thanks to the adopted optical agentsT, unconditioned on the planned trajectory of the
ow distillation paradigm. The qualitative results in Fig.  SDV . Moreover, we record the inference time of each
also con rm the above conclusions. Moreover, we adopt approach on the NVIDIA GeForce RTX 2080 Ti GPU.
INMP-S in practice due to its real-time inference speed, as Table3 presents the evaluation results, where itis evident
analyzed in Section.4. that the conclusions in Secti@gn2 also hold for the closed-












