
End-to-End Interactive Prediction and Planning with Optical Flow Distillation

for Autonomous Driving

Hengli Wang1, Peide Cai1, Rui Fan2, Yuxiang Sun3, and Ming Liu1

1 The Hong Kong University of Science and Technology
2 University of California San Diego

3 The Hong Kong Polytechnic University

{hwangdf, pcaiaa}@connect.ust.hk, rfan@ucsd.edu, sun.yuxiang@outlook.com, eelium@ust.hk

Abstract

With the recent advancement of deep learning tech-

nology, data-driven approaches for autonomous car pre-

diction and planning have achieved extraordinary perfor-

mance. Nevertheless, most of these approaches follow a

non-interactive prediction and planning paradigm, hypoth-

esizing that a vehicle’s behaviors do not affect others. The

approaches based on such a non-interactive philosophy typ-

ically perform acceptably in sparse traffic scenarios but

can easily fail in dense traffic scenarios. Therefore, we

propose an end-to-end interactive neural motion planner

(INMP) for autonomous driving in this paper. Given a

set of past surrounding-view images and a high definition

map, our INMP first generates a feature map in bird’s-eye-

view space, which is then processed to detect other agents

and perform interactive prediction and planning jointly.

Also, we adopt an optical flow distillation paradigm, which

can effectively improve the network performance while still

maintaining its real-time inference speed. Extensive experi-

ments on the nuScenes dataset and in the closed-loop Carla

simulation environment demonstrate the effectiveness and

efficiency of our INMP for the detection, prediction, and

planning tasks. Our project page is at sites.google.

com/view/inmp-ofd.

1. Introduction

Autonomous driving aims at safely and efficiently ma-

neuvering self-driving vehicles (SDVs) from a starting point

to a target point with the input of sensor data and a pre-built

map [15, 7, 4, 26]. Most existing approaches are designed

to follow a “perception-prediction-planning” paradigm, as

shown in Fig. 1 (a), where the perception module detects

other agents from the sensor data, the prediction module es-

timates possible future trajectories of the detected agents,

and the planning module generates a safe trajectory to drive

Input Sensor

Data and Map

Interactive Prediction

and Planning

Perception Prediction Planning

Input Sensor

Data and Map
Perception

(a)

(b)

(c)

(d)

Non-Interactive Approach

Interactive Approach (Ours)

SDV

Other Agents

Multi-modal Prediction Results

Trajectory Candidates Executed Trajectory

Goal Lane

Figure 1. An illustration of non-interactive and our proposed in-

teractive approaches, where (a) and (c) show the correspond-

ing frameworks; and (b) and (d) show the corresponding driv-

ing performance in a dense traffic scenario. Specifically, the non-

interactive SDV can struggle merging into the left lane, while our

interactive SDV can perform a satisfactory lane merge by reason-

ing about how other agents will react to its behaviors.

the SDV towards the given target location based on the

output from the perception and prediction modules [13].

The approaches designed under this paradigm are non-

interactive, as the planning module is assumed to have no

effects on the results of the prediction module. This im-

plies that each SDV is a passive agent, and its behavior

does not affect the other agents. Based on this philosophy,

these non-interactive approaches typically perform accept-

ably in sparse traffic scenarios but can easily fail in dense

traffic scenarios [25]. For instance, Fig. 1 (b) illustrates a

dense traffic scenario where the non-interactive SDV tries

to merge into the left lane. Since the estimated future tra-

jectories of other agents can cover most of the road in such

a dense scenario, it can be challenging for the SDV to plan

Object

Detection

BEV Feature

Generation

Imagesℐ𝑡𝑡𝑘𝑘 𝑡𝑡=𝑡𝑡0−4,…,𝑡𝑡0𝑘𝑘=1,…,6

Optical Flow𝒪𝒪𝑡𝑡𝑘𝑘 𝑡𝑡=𝑡𝑡0−4,…,𝑡𝑡0𝑘𝑘=1,…,6

HD Map ℳ𝑡𝑡0
Detected Agents Trajectory Predictions Planned TrajectoriesSDV

Student Network (INMP-S)

Knowledge Distillation

Interactive

Prediction

and Planning

BEV

Featureℱ𝑏𝑏𝑇𝑇
Teacher Network (INMP-T)

Object

Detection

BEV Feature

Generation
Interactive

Prediction

and Planning

BEV

Featureℱ𝑏𝑏𝑆𝑆

Figure 2. An overview of our INMP, which takes a set of past surrounding-view images and an HD map as input to jointly 1) detect other

agents and 2) perform interactive prediction and planning. We also adopt an optical flow distillation paradigm, where the teacher network

adopts a similar architecture to the student network but takes optical flow as an additional type of input. We then distill the knowledge

from the teacher network to the student network, which can effectively improve the student network performance while still maintaining

its real-time inference speed.

a feasible trajectory to the left lane, resulting in a long wait

for the SDV and causing inconvenience to the other agents

behind it.

To address this problem, the SDV needs to be modeled

as an active agent, capable of reasoning about how other

agents will react to its behaviors. In this way, the prediction

module becomes correlated to the planning module, and

they can be formulated as a single interactive prediction

and planning module, as shown in Fig. 1 (c). An iterative

SDV is now capable of considering the possible reactions

of other agents when safely merging into the left lane in

the same dense traffic scenario, as shown in Fig. 1 (d). Re-

searchers have already developed some interactive predic-

tion and planning approaches from different perspectives,

such as game-theoretic planning [14] and reinforcement

learning [35]. However, these approaches mainly depend

on manually designed models or rewards, which may not

be able to accurately model real-world agent dynamics or

human-like driving behaviors. Therefore, there is a strong

motivation to develop a general interactive prediction and

planning approach for autonomous driving.

In this paper, we propose an end-to-end Interactive

Neural Motion Planner (INMP), for autonomous driv-

ing. Our INMP, illustrated in Fig. 2, takes a set of past

surrounding-view images and a high definition (HD) map as

input to jointly 1) detect other agents and 2) perform inter-

active prediction and planning for the SDV. Specifically, we

first lift these images into three dimensions (3-D), and then

combine them with the HD map to generate a feature map

in bird’s-eye-view (BEV) space. This BEV feature map

Fb is then processed to 1) detect other agents via a single-

shot detection header and 2) jointly estimate the future tra-

jectories of the detected agents and produce safe motion

plans for the SDV via an interactive prediction and plan-

ning model with a joint probability distribution and a set of

learnable costs. This paradigm enables the SDV to reason

about how other agents will react to its behaviors, and thus

can effectively improve the driving performance. Please

note that the whole pipeline is differentiable, enabling end-

to-end learning from raw sensor data to the outputs. In

addition, we follow [40] and adopt a similar optical flow

distillation paradigm to further improve the performance.

Specifically, we refer to the above network as the student

network (INMP-S) and additionally develop a teacher net-

work (INMP-T), which adopts a similar architecture to the

student network but further takes optical flow as an ad-

ditional type of input. Optical flow can provide explicit

motion information, leading to significant performance im-

provement for the teacher network. However, the computa-

tion of the optical flow seriously hinders the whole pipeline

to achieve real-time performance [38, 41]. We then distill

the knowledge from the teacher network to the student net-

work, which can effectively enhance the student network

performance while still maintaining its real-time inference

speed. We demonstrate the effectiveness and efficiency of

our approach on the popular nuScenes dataset [2] and in the

closed-loop Carla simulation environment [9]. Our INMP

can achieve competitive performance on the detection, pre-

diction, and planning tasks. Moreover, the adopted optical

flow distillation paradigm enables our student network to

achieve a much faster inference speed than the teacher net-

work with similar driving performance.

2. Related Work

2.1. Trajectory Prediction

Trajectory prediction aims to estimate the future trajecto-

ries of the agents based on their past states. The major chal-

lenges of this task are modeling the interactions between

different agents and generating accurate multi-modal trajec-

tory predictions. Traditional approaches generally achieve

it based on manually designed models, e.g., the Kalman fil-

ter [22]. With the advancement of deep learning techniques,

many data-driven approaches have achieved impressive per-

formance in this field. These approaches typically use the

past states to learn a latent representation for each agent, and

model the interactions between different agents based on

their latent representations [1, 21, 16]. Recently, some re-

searchers have developed a new paradigm that takes the raw

sensor data as input to jointly perform object detection and

trajectory prediction [46, 47, 24]. These approaches usually

use LiDARs, since trajectory prediction is often performed

in BEV space and the point clouds provided by LiDARs

meet this requirement inherently. Considering that images

can provide more semantic information than point clouds

and cameras are much cheaper than LiDARs, we take im-

ages as input in our approach. Extensive experiments have

demonstrated that the proposed vision-based approach can

achieve competitive performance compared with previous

LiDAR-based approaches, as presented in Section 4.

2.2. Motion Planning

The goal of motion planning is to generate a trajectory

to drive the SDV towards its given destination safely and

efficiently. Traditional approaches generally sample a large

set of candidate trajectories based on the input perception

and prediction results [29, 11, 12, 42, 43], and then use a

cost function to select the executed trajectory, which has the

minimal cost [34]. Recently, many end-to-end approaches

that directly map the raw sensor data to the planned trajec-

tories or control commands have been proposed [15, 7, 4].

These approaches are optimized jointly from data, and thus

can compensate the adverse effects caused by the accumu-

lated errors in traditional approaches [23]. However, the

end-to-end approaches are often criticized for their lack

of interpretability, which makes these approaches hard to

explain the generated behaviors and further leads to their

limited applications in practice. To address it, some ap-

proaches have adopted the multi-task learning paradigm,

jointly conducting detection, prediction, and planning tasks

[46, 47, 33]. The generated intermediate results, i.e., detec-

tion and planning results, can effectively help people under-

stand why the model can produce specific motion planning

results. However, these approaches typically follow the

non-interactive prediction and planning paradigm, and can

easily fail in dense traffic scenarios, as mentioned above.

Recently, some researches have proposed the end-to-end

interactive paradigm [31, 37, 25]. These approaches typi-

cally take the point clouds provided by LiDARs as input,

and utilize joint probability distribution models to perform

interactive prediction and planning. In this paper, we follow

this paradigm and explore its feasibility and effectiveness

when images are given as input.

2.3. Knowledge Distillation

Knowledge distillation aims at leveraging the dark

knowledge of a teacher network to improve the performance

of a student network with fewer parameters. This paradigm

was first proposed in [18] for image classification. After

that, researchers have presented more effective and efficient

knowledge distillation techniques [32, 45]. Specifically,

[32] proposed hint training (HT), which aims at training the

intermediate representation of the student network such that

it can mimic the latent representation of the teacher net-

work. [45] defined attention maps for two networks and

then forced the student network to mimic the attention maps

of the teacher network. Knowledge distillation has been

adopted in many other applications, e.g., object detection

[6] and semantic segmentation [17], to improve their per-

formance. In this paper, we follow [40] and adopt a similar

optical flow distillation paradigm for autonomous driving.

Different from [40], we utilize this technique for the detec-

tion, prediction, and planning tasks jointly. In addition, [40]

adopts a non-interactive paradigm, while our INMP can per-

form interactive prediction and planning.

3. Methodology

Fig. 2 illustrates the overview of the proposed approach.

Our INMP first generates a BEV feature map Fb , as in-

troduced in Section 3.1. Fb is then processed to 1) detect

other agents and 2) perform interactive prediction and plan-

ning, as presented in Section 3.2 and Section 3.3, respec-

tively. After that, Section 3.4 elaborates the proposed op-

tical flow distillation paradigm. Finally, we introduce the

training phase in Section 3.5.

3.1. BEV Feature Map Generation

Let Ik
t ∈ RH×W×3 denote the input RGB image, where

t = t0 − 4, . . . , t0 denotes the timestamp of the past five

frames; and k = 1, . . . ,6 denotes the six cameras used

in our experiments. The six cameras with known extrin-

sic and intrinsic parameters roughly point in the forward,

forward-left, forward-right, backward, backward-left, and

backward-right directions respectively. We also take the HD

map Mt0 that contains the road, lane and intersection infor-

mation as input, since it can provide a strong prior about

the driving scenario. Then, given all images in the past

five frames {Ik
t }k=1,...,6

t=t0−4,...,t0
and the current HD map Mt0 ,

we aim to generate a BEV feature map Fb , as presented in

Fig. 3. Fb plays an important role in the following object

detection and interactive prediction and planning.

Considering that images are located in perspective-view

space, we first conduct monocular depth estimation for each

Ik
t , which builds a bridge between perspective-view space

and BEV space. To achieve it, we follow [30] and gener-

ate contextual features at all possible depths for each pixel.

Specifically, we associate each pixel with a set of |D| dis-

crete depths, where D = {d0 +∆d, . . . , d0 + |D|∆d}. Then,

we use the known intrinsic parameters to produce a point

cloud Pk
t that contains H · W · |D| 3-D points for each Ik

t .

To obtain the contextual feature for each point in Pk
t , we

first use an image backbone to generate a contextual feature

f ∈ RC and a distribution π over the discrete depth set D

for each pixel p. Afterwards, the contextual feature fd ∈ RC

for point pd is computed as a combination of the feature for

the corresponding pixel and the discrete depth inference:

fd = πd · f, (1)

where d ∈ D refers to any discrete depth in D.

For the teacher network, we incorporate optical flow

information into Pk
t to enhance the network’s capability

to model dynamic relationships for performance improve-

ment. Specifically, we use an existing optical flow esti-

mation network [38] to compute the backward optical flow

Ok
t ∈ RH×W×2:

Ik
t (u, v) = Ik

t−1

(
u + Ok

t (u, v,1), v + Ok
t (u, v,2)

)
. (2)

Ok
t can be regarded as containing the explicit past motion

information from Ik
t−1

to Ik
t . Then, we use a flow back-

bone to produce a contextual feature f ′ ∈ RC for each pixel

p. After that, we concatenate f ′ with f and produce a new

feature. Please note that the new feature is still denoted as

f for notational simplicity. However, f in the teacher net-

work contains the explicit motion information provided by

the optical flow while f in the student network does not. We

then use (1) to compute a contextual feature fd ∈ RC for

every point pd in the teacher network.

Then, we can use the known extrinsic parameters to ag-

gregate {Pk
t }

k=1,...,6 into a large point cloud Pt for each

timestamp t. After that, we follow [20] to convert Pt into

“pillars”, which refer to voxels with infinite height. To be

specific, we assign each point to its nearest pillar and use

pooling operation to construct a feature map Ft , which con-

tains the information in BEV space and can be processed

Imagesℐ𝑡𝑡𝑘𝑘 𝑡𝑡=𝑡𝑡0−4𝑘𝑘=1,…,6

Images ℐ𝑡𝑡𝑘𝑘 𝑡𝑡=𝑡𝑡0𝑘𝑘=1,…,6
Optical Flow 𝒪𝒪𝑡𝑡𝑘𝑘 𝑡𝑡=𝑡𝑡0−4,…,𝑡𝑡0𝑘𝑘=1,…,6 Only for the

teacher network

Feature

Map ℱ𝑡𝑡0−4
Generation and

Conversion of

Feature Point

Clouds 𝒫𝒫𝑡𝑡0−4
Generation and

Conversion of

Feature Point

Clouds 𝒫𝒫𝑡𝑡0

Image

Backbone

Feature

Map ℱ𝑡𝑡0
BEV

Feature

Map ℱ𝑏𝑏
Flow

Backbone

Image

Backbone

Feature

Fusion

Layers

Map

Backbone
HD Mapℳ𝑡𝑡0 Feature

Map ℱ𝑚𝑚

Figure 3. An illustration of the BEV feature map generation. We

lift the input images into 3-D, and combine them with the HD map

to generate a BEV feature map. The teacher network also uses op-

tical flow to enhance its capability to model dynamic relationships

for performance improvement.

by convolutional layers. We also use a map backbone to

produce a feature map Fm, which is then concatenated with

the features of all five past frames {Ft }t=t0 ,...,t=t0−4 and pro-

cessed by convolutional layers to generate the BEV feature

map Fb , as shown in Fig. 3.

3.2. Object Detection

Given the BEV feature map Fb , we first detect other

agents via a single-shot detection header. Specifically, fol-

lowing [27], we apply two convolutional layers on Fb sep-

arately, one for classifying the class of a location, the other

one for regressing the position offset, size, heading an-

gle, and velocity of each agent. After that, we use a non-

maximum suppression (NMS) operation [28] to obtain the

bounding boxes and velocities of all other agents, which are

then utilized to perform interactive prediction and planning.

The training loss for object detection LO is defined as

a summation of a classification loss LOC and a regression

loss LOR, i.e., LO = LOC + LOR. To be specific, in LOC ,

we use a cross entropy classification loss and assign the la-

bel of each anchor based on its intersection over union (IoU)

with any agent as follows:

LOC(Ĉ,C) = H
(
Ĉ,C

)
, (3)

where H(·, ·) denotes the cross entropy; and Ĉ and C de-

note the ground-truth and the predicted classification dis-

tribution, respectively. In our experiments, we detect two

kinds of agents, i.e., vehicles and pedestrians. In addition,

LOR is defined as a smooth L1 loss between the regression

ground truth Ŝ and regression predictions S as follows:

LOR(Ŝ,S) =
∑

k

SL1

(
Ŝk,Sk

)
, (4)

where SL1(·, ·) denotes the smooth L1 loss; and the regres-

sion state set contains the position offsets in two dimen-

sions, the width and height of the bounding box, the sine

and cosine value of the orientation angle, and the velocities

in two dimensions.

3.3. Interactive Prediction and Planning

Given the object detection results, we then focus on gen-

erating T = {τ0, τ1, . . . , τN }, which contains the planned

trajectory of the SDV τ0 and the trajectory predictions of

N detected agents Tr = {τ1, . . . , τN }. Considering that

performing prediction and planning in continuous space

can consume much computational resources, we follow

[46, 47, 25] and sample trajectories in a discrete space,

which contains K possible candidate trajectories for each

trajectory τ ∈ T . The adopted trajectory sampler takes the

past trajectories of each agent as input, and generates a set

of straight lines, circular curves and euler spirals as can-

didate trajectories. Now, the generation of each trajectory

τ ∈ T is transformed to a classification problem.

To achieve it, we first define a joint probability distribu-

tion over the prediction and planning results T conditioned

on the environmental context X as follows:

p (T |X; w) =
1

N
exp (−E(T ,X; w)) , (5)

where N is a normalizer; X includes the BEV feature map

Fb and the past trajectories of each agent; E(T ,X; w) de-

notes the defined joint energy of the prediction and plan-

ning results T ; and w denotes the parameters of the model.

To be specific, E(T ,X; w) is defined as a summation of an

agent-specific term Ea, a safety term Es and a goal-directed

term Eg as follows:

E(T ,X; w) =

N∑

i=0

Ea(τi,X; w)+
∑

i, j

Es(τi, τj)+Eg(τ0), (6)

where Ea is used to evaluate all K candidate trajectories

for each agent; Es is designed to penalize the occurrence

of dangerous cases such as collision; and Eg is utilized

to encourage the SDV to follow the input high-level route.

Specifically, the BEV feature map Fb is combined with the

candidate trajectories and then processed via a multi-layer

perceptron (MLP) to produce a K × (N + 1) matrix of eval-

uation scores for Ea. Moreover, we follow [34] and define

Es as a summation of a collision term and a safety distance

violation term. The former will present 1 if the collision

between a pair of future trajectories happens and 0 if not;

while the latter is defined as a squared penalty within the

safety distance of each agent’s bounding box, scaled by the

velocity of the SDV. Additionally, Eg is defined as the av-

erage projected distance between the planned trajectory of

the SDV τ0 and the input high-level route.

Then, we can determine the planned trajectory of the

SDV τ0 by selecting the candidate trajectory with the mini-

mal cost of a defined cost function fI as follows:

τ
∗
0 = arg min

τ0

fI (T ,X; w). (7)

Compare with the non-interactive approaches, our INMP

enables the SDV to reason about how other agents will react

to its behaviors, i.e., considering the trajectory predictions

of the other agents Tr conditioned on τ0 in the planning ob-

jective. Based on this philosophy, the cost function fI is

defined as an expectation of the joint energy over the trajec-

tory prediction distribution of the other agents conditioned

on the planned trajectory of the SDV, as follows:

fI (T ,X; w) = ETr∼p(Tr |τ0 ,X;w) [E(T ,X; w)] . (8)

By substituting (6) into (8), we can have

fI = Ea(τ0) + Eg(τ0) + ETr∼p(Tr |τ0 ,X;w)[

N∑

i=1

Ea(τi)

+

N∑

i=1

Es(τ0, τi) +

N ,N∑

i=1, j=1

Es(τi, τj)].

(9)

where fI is short for fI (T ,X; w); and Ea(τi) is short

for Ea(τi,X; w). Since [25] have shown that exclud-

ing the interaction term between the other agents, i.e.,∑N ,N

i=1, j=1
Es(τi, τj), does not lead to significant performance

degradation, we follow it and also exclude this term in (9)

for computational efficiency. Then, for any given τ0, we can

compute the expectation directly by simplifying the terms

into the marginal probabilities as follows:

fI = Ea(τ0) + Eg(τ0) +
∑

i,τi

p (τi | τ0,X; w) Ea(τi)

+

∑

i,τi

p (τi | τ0,X; w) Es(τ0, τi).
(10)

Now, we can successfully perform the proposed interactive

prediction and planning, i.e., estimating the future trajecto-

ries of the detected agents and producing safe motion plans

for the SDV jointly, by computing these marginal probabil-

ities via loopy belief propagation (LBP) [44] efficiently.

Considering that the generation of each trajectory τ ∈

T is transformed to a classification problem, we define the

training loss for interactive prediction and planning LP as

follows:

LP(T̂ ,T) =
∑

i

H (p(τ̂i), p(τi))+
∑

i, j

H
(
p(τ̂i, τ̂j), p(τi, τj)

)
,

(11)

where T̂ = {τ̂0, τ̂1, . . . , τ̂N } denotes the prediction and plan-

ning ground truth; and p(·) and p(·, ·) denote the marginal

probabilities. Please note that we follow [25] and define

U(τ̂i) as a set of the trajectories close to τ̂i . In (11), we only

compute the loss for τi < U(τ̂i), since we do not want to

penalize the trajectory close to the ground truth.

3.4. Optical Flow Distillation Paradigm

As mentioned previously, optical flow can provide ex-

plicit motion information, leading to significant perfor-

mance improvement for the teacher network. However, the

computation of the optical flow seriously hinders the whole

pipeline to achieve real-time performance. We then fol-

low [40] and distill the knowledge from the teacher network

to the student network, which can effectively enhance the

student network while still maintaining its real-time perfor-

mance. The distillation loss LD is defined as follows:

LD = λDOLDO + λDPLDP + λDFLDF , (12)

where LDO, LDP and LDF denote the distillation loss for

object detection, interactive prediction and planning, and

the BEV feature map Fb , respectively; and λDO, λDP and

λDF are the hyperparameters that scale the three loss terms.

Similar to LO, LDO is defined as a summation of a

classification distillation loss LDOC and a regression loss

LDOR, i.e., LDO = LDOC + LDOR. We follow [18] and

define LDOC as follows:

LDOC = LOC(C
T
,CS) = H

(
CT
,CS

)
, (13)

where CT and CS denote the predicted classification distri-

butions of the teacher and student networks, respectively.

Different from Ĉ in (3) that can only provide hard informa-

tion, CT can provide useful soft information to effectively

improve the student network. In addition, inspired by [6],

we design LDOR as follows:

LDOR =

∑

k

{
SL1

(
ST
k
,SS

k

)
, if| |Ŝk − SS

k
| |1 > | |Ŝk − ST

k
| |1,

0, otherwise.

(14)

where | | · | |1 denotes the L1 norm; and ST and SS denote the

regression predictions of the teacher and student networks,

respectively. LDOR encourages the student network to be

close or better than the teacher network, but does not push

the student once it reaches the teacher’s performance.

Moreover, we define LDP as follows:

LDP =

{
LP(T

T ,T S), if
∑

i D(τ̂i, τ
S∗
i
) >

∑
i D(τ̂i, τ

T∗
i

),

0, otherwise.

(15)

where TT and T S denote the prediction and planning re-

sults of the teacher and student networks, respectively; τ̂i
denotes the trajectory ground truth; τT∗

i
and τS∗

i
denote the

trajectories of the teacher and student networks with the

minimal cost of fI , respectively; and D(·, ·) measures the

average projected distance between two trajectories. Simi-

lar to LDOR, LDP also encourages the student network to

perform better than the teacher, network but does not push

the student too much.

Considering that Fb of the teacher network incorpo-

rates the explicit motion information provided by the optical

flow while Fb of the student network does not, we follow

HT [32] and further design LDF as:

LDF = | |F T
b − F S

b
| |1, (16)

where F T
b

and F S
b

denote the BEV feature maps Fb of the

teacher and student networks, respectively. LDF encour-

ages the student network to mimic the BEV feature map Fb

of the teacher network.

3.5. Training Phase

In the training phase, we first use the following teacher

training loss LT to train the teacher network:

LT
= λOL

T
O + λPL

T
P, (17)

where LT
O
= LOC(Ĉ,C

T) + LOR(Ŝ,S
T); LT

P
=

LP(T̂ ,T
T); and λO and λP are the hyperparameters that

scale the two loss terms.

After that, we utilize the following student training loss

LS to train the student network based on the trained teacher

network:

LS
= λOL

S
O + λPL

S
P + λDLD, (18)

where LS
O
= LOC(Ĉ,C

S) + LOR(Ŝ,S
S); LT

P
=

LP(T̂ ,T
S); and λO, λP and λD are the hyperparameters

that scale the three loss terms.

4. Experimental Results and Discussions

4.1. Datasets and Implementation Details

In our experiments, we first evaluate the performance of

our approach for object detection and trajectory prediction

on the nuScenes dataset [2], which contains around 1000

human driving sequences. The dataset is split into a train-

ing, a validation and a test set that consists of 18072, 8019

and 8033 samples, respectively. The best-performing net-

works are selected on the validation set and evaluated on

the test set. We also conduct closed-loop evaluation in the

Carla simulation environment [9]. Specifically, we first col-

lect a large-scale driving dataset on different maps with dif-

ferent weather and illumination conditions, e.g., clear, rainy,

daytime and sunset. We also set random roaming pedestri-

ans and vehicles, which are controlled by the Carla simu-

lator [9]. The dataset is split into a training set with 200K

samples and a validation set with 50K samples. Finally,

Figure 4. Object detection results of MonoDIS [36], FCOS3D [8], our INMP-S, and our INMP-T on the nuScenes dataset [2]. It is evident
that our INMP-T and INMP-S can produce more accurate results than other approaches.

Table 1. Object detection results (%) on the nuScenes dataset [2].
Best results are shown in the bold type.

Approach APvehicle APpedestr ian mAP

MonoDIS [36] 45.67 36.70 41.19
CenterNet [10] 52.06 37.85 44.96
FCOS3D [8] 51.34 39.21 45.28

INMP-S-ND 49.79 38.95 44.37
INMP-S (Used) 52.58 40.63 46.61
INMP-T 53.81 40.34 47.08

each network is evaluated thoroughly with 1800 episodes
(around1000km) in a closed-loop manner.

For the implementation details, we adopt Ef�cientNet-
B0 [39] as the map, �ow and image backbones. In addi-
tion, our INMP takes the information of past2s as input
and performs interactive prediction and planning for the fu-
ture4s. We adopt the Adam optimizer [19] with an initial
learning rate of10� 4 to train our INMP-T and INMP-S on
two NVIDIA GeForce RTX 2080 Ti GPUs. Moreover, we
train the student network without the proposed optical �ow
distillation paradigm, referred to as INMP-S-ND, for per-
formance comparison.

4.2. Object Detection Results

We follow the nuScenes benchmark [2] and adopt the
average precision (AP) at the1m distance threshold as our
evaluation metric. We compute the AP for vehicles and
pedestrians respectively, and also compute its mean value
(mAP) across the two classes. The evaluation results are
shown in Table1. It is evident that the three variants of
our INMP all achieve competitive performance compared
to the existing vision-based approaches, and our INMP-T
achieves the best performance. In addition, our INMP-S
presents a better performance than INMP-S-ND and a sim-
ilar performance to INMP-T thanks to the adopted optical
�ow distillation paradigm. The qualitative results in Fig.4
also con�rm the above conclusions. Moreover, we adopt
INMP-S in practice due to its real-time inference speed, as
analyzed in Section4.4.

Table 2. Trajectory prediction results (m) on the nuScenes
dataset [2]. Best results are shown in the bold type.

Approach Type L2 minMSD

NMP [46] LiDAR-based 2.36 3.22
ESP [31] LiDAR-based 2.15 2.93
DSDNet [47] LiDAR-based 2.04 2.65

INMP-S-ND Vision-based 2.29 3.10
INMP-S (Used) Vision-based 2.07 2.68
INMP-T Vision-based 1.95 2.59

4.3. Trajectory Prediction Results

We use theL2 distance att = 4s [47] and the minMSD
(5 agents andK = 12) [31] for performance comparison be-
tween trajectory prediction approaches. These two metrics
both measure the distance between the trajectory prediction
and the ground truth for the correctly detected agents, and
the evaluation results are presented in Table2. We can see
that the conclusions in Section4.2 also hold for the trajec-
tory prediction task. Excitingly, our INMP-S and INMP-
T can even achieve competitive performance compared to
existing LiDAR-based approaches, which strongly demon-
strates that our energy-based model can effectively generate
accurate trajectory predictions.

4.4. Closedloop Evaluation Results

We adopt the success rate (SR) and right lane rate (RL)
as our evaluation metrics [5]. SR is de�ned as the propor-
tion of the successfully �nished episodes to the total test-
ing episodes, while RL is de�ned as the proportion of the
period when the SDV drives in the input high-level route
to the total driving time. To verify the effectiveness of
our INMP, we further develop a non-interactive neural mo-
tion planner (NINMP) by using the following cost function:
fN I ¹T ;X; wº = ETr � p¹Tr jX;wº »C¹T ;X; wº¼. Different from
(8), fN I considers the trajectory predictions of the other
agentsTr unconditioned on the planned trajectory of the
SDV � 0. Moreover, we record the inference time of each
approach on the NVIDIA GeForce RTX 2080 Ti GPU.

Table3presents the evaluation results, where it is evident
that the conclusions in Section4.2also hold for the closed-

