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Abstract

Anticipating human actions is an important task that

needs to be addressed for the development of reliable intel-

ligent agents, such as self-driving cars or robot assistants.

While the ability to make future predictions with high ac-

curacy is crucial for designing the anticipation approaches,

the speed at which the inference is performed is not less

important. Methods that are accurate but not sufficiently

fast would introduce a high latency into the decision pro-

cess. Thus, this will increase the reaction time of the un-

derlying system. This poses a problem for domains such

as autonomous driving, where the reaction time is crucial.

In this work, we propose a simple and effective multi-modal

architecture based on temporal convolutions. Our approach

stacks a hierarchy of temporal convolutional layers and

does not rely on recurrent layers to ensure a fast prediction.

We further introduce a multi-modal fusion mechanism that

captures the pairwise interactions between RGB, flow, and

object modalities. Results on two large-scale datasets of

egocentric videos, EPIC-Kitchens-55 and EPIC-Kitchens-

100, show that our approach achieves comparable perfor-

mance to the state-of-the-art approaches while being signif-

icantly faster.

1. Introduction

Anticipating future events is of great importance for

intelligent agents. There are many real-world scenarios,

where apart from recognizing what is happening in the cur-

rent moment, one also needs to make predictions about the

future. For example, autonomous driving systems need to

anticipate pedestrians movement to avoid collisions. An-

other field of application is assistive robotics, where the

ability of robots to anticipate future human activities al-

lows for smoother and more productive interactions. In our

work, we focus on human activity anticipation since it is a

challenging yet crucial task for an intelligent system to be

Figure 1. The short-term action anticipation task predicts the next

unobserved action Ta seconds before it occurs. To address this

task, we propose a multi-modal approach based on temporal con-

volutional networks that achieves state-of-the-art results while be-

ing faster than traditional RNN-based approaches.

deemed as such.

In recent years, the number of works addressing the

task of action anticipation has experienced a substantial in-

crease. Generally, one could subdivide these works into two

categories based on the time horizon of anticipation they

tackle. While some works try to anticipate several actions

into the future (long-term anticipation) [1,11,15,25], others

aim at anticipating only the next action at a fixed antici-

pation time based on the recent observations preceding it

(short-term anticipation) [14, 20, 23, 45]. In our work, we

deal with the second setting as illustrated in Figure 1.

Initially, this task has been addressed by predicting rep-

resentations of the future frames and anticipating the ac-

tions by training a classifier on them [45]. Such approaches,

while being successful on videos shot from the third-person

view, do not perform well on egocentric videos captured

from the first-person view. Egocentric action anticipation

has been addressed in the work of Furnari et al. [14],

who introduced a multi-modal LSTM-based [19] encoder-

decoder network. Recently, several new methods have been



proposed [9, 28, 38, 48] that show improved performance in

the egocentric action anticipation.

While these methods demonstrate better performance in

the egocentric short-term action anticipation, little attention

has been paid to the effectiveness of the training and infer-

ence procedures of the methods. Many of the above men-

tioned works, in particular [9, 14, 48], use recurrent layers

for performing temporal sequence modelling. However, in

recent years it has been repeatedly indicated [3, 16, 27, 44]

that for many sequence processing tasks convolution-based

methods are much faster than canonical recurrent layers

such as LSTMs, and still show a similar or even superior

performance. Convolution-based architectures are also eas-

ier to train, since they do not possess notorious drawbacks

of recurrent layers such as vanishing gradients and inability

to model long-term dependencies. On a different note, some

of the action anticipation works [9, 28] also gather and in-

corporate additional data or annotations into training, which

is a costly and labor intensive process.

In our work, we propose a model that addresses the

previously mentioned limitations. We introduce a multi-

modal network based on a hierarchy of temporal convolu-

tions. Our network consists of three parallel branches where

each branch operates on features extracted from RGB, op-

tical flow or object modalities. To fuse these modalities,

we introduce a multi-modal fusion mechanism that captures

both mutual and pairwise interactions between the differ-

ent branches. In contrast to previous approaches [9, 28],

our model does not require any additional data or annota-

tions. We evaluate our approach on two large-scale datasets

of egocentric videos: EPIC-Kitchens-55 [6, 7] and EPIC-

Kitchens-100 [8]. We show that our model achieves com-

parable results to the state-of-the-art while being at least two

times faster during both training and inference.

2. Related Work

2.1. Action Anticipation in Videos

There are several lines of work in the area of action antic-

ipation that differ in the time horizon of predictions. Some

approaches focus on long-term predictions. That is, given

a subset of observed actions, they aim to predict multiple

actions into the future or even all subsequent actions. In the

work by Abu Farha et al. [1], two approaches for long-term

anticipation have been proposed, based on RNN and CNN.

The RNN-based method predicts labels and lengths of the

upcoming actions by feeding its predicted values back to the

network for future predictions. The CNN-based approach,

unlike the previous one, predicts all future actions in a sin-

gle step. It makes predictions by encoding both its input and

output in a matrix form. To avoid intermediate computa-

tions and accumulation of errors, Ke et al. [25] introduced a

time-conditioned method that anticipates long-term actions

in one shot. Gammulle et al. [15] proposed a network that

models long-term relationships within the input sequence

with the help of a neural memory module, whose refined

output is then used to make action predictions. In [11], a

sequence-to-sequence model is used to predict future activi-

ties and their durations. Additionally, the authors leveraged

cycle consistency over time by predicting past actions on

the basis of the future predictions made by the network. In

contrast to these approaches, we focus on short-term action

anticipation from egocentric videos.

For the task of short-term action anticipation, the goal

is to forecast an action several seconds prior to its occur-

rence. State-of-the-art methods usually take the most recent

observations into account and predict actions up to several

seconds into the future. For example, Vondrick et al. [45]

proposed a mixture of regression networks to learn a repre-

sentation of a frame one second in the future based on the

frame at the current time step. Then, to predict the action,

they categorize the predicted representations with a classi-

fier network. Gao et al. [23] further extended the previ-

ous idea and introduced an encoder-decoder network that

anticipates a sequence of future representations based on

an observed sequence of representations, instead of just a

single representation. In the work of Jain et al. [20], the

authors also used an encoder-decoder network, albeit with

several modalities and a loss that exponentially increases

with time to prevent overfitting and encourage early antic-

ipation. Different from previous works, Damen et al. [6]

leveraged an action recognition network based on TSN [46]

for the task of action anticipation. During training, the

network receives the observed segment preceding the ac-

tion of interest as input, while the corresponding label is

set to the category of the action that needs to be predicted.

Miech et al. [33] proposed to predict future actions by aver-

aging predictions of two complementary modules: predic-

tive and transitional, where the predictive model directly an-

ticipates the upcoming action, and the transitional model is

constrained to at first output the current action and then use

the acquired information to anticipate the future. In [14],

the RU-LSTM network was introduced, that consists of two

LSTM networks. The first LSTM summarizes the past ob-

servations whereas the second one predicts the future ac-

tions. Camporese et al. [5] further proposed to extend the

RU-LSTM with label smoothing to mitigate over-confident

predictions and make their system more uncertainty-aware.

Sener et al. [38] proposed a framework based on non-local

blocks [47], that aggregates multi-scale features from the

video by computing interaction between recent and distant

observations. The resulting features are then used to antic-

ipate both short-term and long-term actions. Liu et al. [28]

explicitly incorporate intentional hand movement as an an-

ticipatory representation of actions. They jointly model and

predict hand trajectories, interaction hotspots and labels of



future actions. Dessalene et al. [10] proposed to use a Graph

Convolutional Network (GCN) to model long-term tempo-

ral semantic relations between actions based on contact in-

formation. They use the constructed graph representations

along with appearance features to make anticipation about

the future actions. In contrast to these approaches, our ap-

proach relies on temporal convolutions to capture depen-

dencies in the input sequence and predict the future action.

2.2. Anticipation of other Modalities

While in our work we address the anticipation of human

activities, there are numerous efforts that address the antic-

ipation of other modalities. Anticipation of human trajecto-

ries and motion is a popular task that has been addressed in

many works [2, 12,26, 49]. Another line of work deals with

predictions of future human poses [13, 18, 21, 31]. Also,

many approaches have been proposed for prediction of fu-

ture semantic segmentation maps of images [4, 22, 30, 34]

or even semantic instance segmentation maps [29]. A more

difficult problem of future frame prediction has also been

explored in [32, 36, 41]. Some works have also addressed

the task of generating sentences for describing future frames

or upcoming steps in recipes [39].

3. Proposed Approach

We introduce a multi-modal temporal convolutional net-

work for the task of action anticipation. We start by defin-

ing the task of action anticipation in Section 3.1. Then,

we discuss the video processing procedure in Section 3.2.

Finally, we introduce our uni-modal anticipation branch in

Section 3.3 and discuss the multi-modal fusion strategy in

Section 3.4.

3.1. The Anticipation Task

We adopt the problem definition of action anticipation

from [6]. Let Ta be the anticipation time, i.e. how many

seconds in advance an action is predicted, and To be the

observation time, i.e. the length of the observed video seg-

ment that precedes the action of interest. For a given action

video segment A = [ts, te], let ts and te denote times of ac-

tion start and end respectively. Then, the goal of the action

anticipation task is to predict the action label of A by ob-

serving a video segment of length To preceding the action

start time ts by the anticipation time of Ta seconds, that is

[ts − (Ta + To), ts − Ta]. The action anticipation task is

illustrated in Figure 1.

In our work, the anticipation time Ta is one second. I.e.

an action is anticipated one second before its occurrence.

The observation time To is set to 5.25 seconds. We will

show in the experiments the effect of varying the length of

the observed video segment on the performance.

3.2. Video Processing

We process the observed video segments in the same way

as proposed in [14]. Let the observed video segment be de-

noted by V . As mentioned previously, we set the length

of V to 5.25 seconds (i.e. To = 5.25). During process-

ing, we break V down into snippets that have a duration

of α = 0.25 seconds, which results in a total of N = 21
snippets {V1, V2, . . . , VN}. Since the anticipation time is

equal to 1.0 second, the resulting video snippets are lo-

cated at {6.0, 5.75, . . . , 1.0} seconds before the action of

interest, where the location is defined by the last frame of

the snippet. Each snippet contains several video frames

Vi = {I1i , I
2
i , . . . , I

m
i }, where the exact number of frames

m depends on the frame rate of the videos. From each snip-

pet, we sample one or several frames, depending on the

modality, which are then used to extract features.

In our model, we use three types of modalities: RGB,

optical flow and object features. For extracting the RGB

features, each snippet is represented by its last frame Imi .

For optical flow, the last 5 frames {Im−4
i , . . . , Imi } of hori-

zontal and vertical flow are used. To get object features, as

for the RGB features, the last frame of each video snippet

is used, that is Imi . Having collected the frames, we extract

RGB and optical flow features using TBN [24] pre-trained

for action recognition, while for object features we use the

representation proposed by [14]. We elaborate on the fea-

ture extraction procedure in the implementation details.

3.3. Uni­modal Branch

Our proposed branch for uni-modal action anticipation is

inspired by the temporal convolutional network (TCN) pro-

posed in [27]. Similar to [27], the uni-modal branch stacks

several layers of temporal convolutional residual blocks. An

overview of the uni-modal branch is illustrated in Figure 2.

The first layer of the proposed branch is a one dimen-

sional convolution with kernel size one, that adjusts the

number of channels in the features of the input sequence to

match the number of the features maps in the network. Af-

ter that, the embedded sequence is processed by the residual

block layers, that contain dilated one dimensional convolu-

tional filters. These blocks are applied to the input hierar-

chically, meaning that each layer processes the output of the

previous one.

All blocks follow the structure depicted in Figure 2. It

consists of a temporal convolution with kernel size K and

C convolutional filters. In our work, we set the kernel size

K = 3 and the number of filters C = 1024. Depending

on the layer number l, the convolutional filters within the

residual blocks have different dilation factors. We increase

the dilation factor for the convolutional kernels linearly with

the number of layers (i.e. 1, 2, 3, 4).

Also, within each block, we normalize the output of

the convolution using batch normalization [42] and apply



Figure 2. Architectural elements of our uni-modal branch. (Left) Our branch consists of a set of dilated temporal convolutions (with

kernel size K) that process the input sequence (of length N ) iteratively allowing our model to learn hierarchical feature representations.

The increasing dilation factor allows to increase the receptive field of the model without increasing its depth. (Right) Overview of the

convolutional block with the residual connection. Since the length of the input and output sequences for the residual blocks differ, we only

consider the most recent elements of the input sequence for residual connections.

dropout [40,43] to avoid overfitting. We also apply dropout

to the input of the first dimension-adjustment layer. Simi-

lar to [3], we used a spatial dropout, that is at each training

step a whole channel across all time steps is zeroed out.

To facilitate the gradient flow, we further introduce resid-

ual connections into the blocks that are followed by ReLU

non-linearity. Since the temporal length of the output of the

convolutional layer is less than the input sequence, we only

use the most recent elements of the input sequence for the

residual connections. Formally, the output at the lth level is

computed as follows:

Z̃l = BN(Wl ∗ Zl−1 + bl)

Ẑl = Dropout(Z̃l)

Zl = ReLU(Ẑl + Z
[Nl−1−Nl+1,...,Nl−1]
l−1 ),

where Zl is the output of layer l, ∗ denotes the convolu-

tion operator with convolutional filters parametrized by a

weight matrix Wl ∈ R
K×C×C and a bias vector bl ∈ R

C ,

Z
[Nl−1−Nl+1,...,Nl−1]
l−1 is the sub-sequence of the most re-

cent Nl elements of the sequence Zl−1, where Nl denotes

length of the sequence at level l.

Overall, the branch contains L layers of the previously

discussed blocks. We set L = 4 for our model. Given an in-

put sequence, we pass it through the hierarchy of the resid-

ual block layers until the whole sequence is summarized

in a single feature vector F at the bottom of the pyramid.

Based on the final feature vector F , we perform action an-

ticipation using a fully-connected layer. In addition to the

action classification layer, similar to [38], we also add two

more layers for verb and noun classification that solve the

auxiliary classification tasks to help anticipation.

3.4. Multi­Modal Fusion

Our approach fuses three modalities for anticipating the

future action: RGB, flow, and object modalities. Figure 3

illustrates the proposed multi-modal fusion strategy. We

fuse the branches by constructing a mutual multi-modal fea-

ture and use it for performing the final future prediction.

To do so, we at first separately pre-train modality-specific

branches for action anticipation. Then, we extract features

Fmod from each modality by taking the output of the last

convolutional block from the pre-trained branches.

We construct a cross-branch multi-modal feature by

combining pairwise and mutual embeddings of the features

computed by individual branches. To compute a pairwise

embedding, we at first apply corresponding fully-connected

layers to the pairwise concatenations of the features from

the three branches. After that, these intermediate represen-

tations are merged by another feed-forward layer. A mu-

tual embedding is constructed by projecting the concatena-

tion of the features from the three branches with a fully-

connected layer. The output dimension of both pairwise

and mutual embeddings is 1024. Finally, the two com-

puted embeddings are combined by taking their element-

wise sum. Based on the resulting feature, three parallel

fully-connected classification layers predict action, verb,



Figure 3. Overview of the multi-modal fusion strategy. Given the

output of the individual uni-modal branches, we construct pair-

wise and mutual embeddings. Finally, these two embeddings are

combined and passed to the final classification layers.

and noun, respectively. We demonstrate the effect of using

different fusion strategies in the experimental section.

4. Experiments

4.1. Implementation Details

4.1.1 Features Extraction

To extract the RGB and optical flow features, we employ

the TBN action recognition network [24]. We use the TBN

pre-trained for action recognition, where for pre-training

we follow the procedure recommended in [24]. After pre-

training, similar to [14], we take RGB frames and stacks

of 5 horizontal and 5 vertical optical flow frames of size

456× 256 and pass them to the network to extract features.

As features, we consider the output produced by the global

average pooling layer of the BN-Inception network for the

corresponding modality stream, with the resulting represen-

tation for each modality containing 1024 channels.

For object features, we use the representation proposed

by [14]. They are extracted using a Faster R-CNN [37]

object detector with ResNet-101 backbone [17]. For all

modalities, the corresponding features extraction models

are fixed and not fine-tuned for the anticipation task.

4.1.2 Training Details

We implemented our model using the Pytorch frame-

work [35]. For optimization we use Stochastic Gradient

Descent (SGD) with momentum equal to 0.9 and weight

decay of 5 · 10−4. We trained both the uni-modal branches

and the fusion layers for 80 epochs. At first, we separately

pre-train uni-modal branches for action anticipation. Then,

during fusion, we fix the weights of the individual branches,

and optimize only the paramters of the fusion layers.

For EPIC-Kitchens-55, we use a batch size of 64 exam-

ples. The starting learning rate is set to 0.005 for the object

branch and 0.0005 for the RGB and flow branches as well

as for the fusion layers. At each epoch we adjust the learn-

ing rate l according to the following schedule: (1− e
E
)0.99,

where e denotes the number of the current epoch and E is

the total number of epochs. For the residual blocks within

the individual branches we use a dropout ratio of 0.5. We

also apply dropout of 0.3 to the input sequence, before ap-

plying the first layer. Fully-connected classification lay-

ers for uni-modal and multi-modal predictions have dropout

rates of 0.7 and 0.8, respectively.

For EPIC-Kitchens-100, we use a batch size of 128.

We use the same starting learning rates for the uni-modal

branches, while for the fusion layers we increase the learn-

ing rate to 0.00075. The schedule for the update of the

learning rate remains the same. The dropout ratio for the

blocks within the individual branches is decreased to 0.3
since the dataset is larger and thus the model is less prone

to overfitting. As previously, we also apply dropout of 0.3
to the input sequence. Fully-connected classification layers

for both uni-modal and multi-modal predictions have the

dropout rate of 0.7.

For reporting results on the test sets, we use models that

are pre-trained on both validation and train splits, after op-

timizing for hyper-parameters on the validation split.

4.2. Datasets

We perform our experiments on two large-scale datasets

of egocentric videos: EPIC-Kitchens-55 [6] and EPIC-

Kitchens-100 [8].

EPIC-Kitchens-55 contains videos collected by 32 par-

ticipants, capturing their daily kitchen activities, including

cooking, cleaning, doing laundry, etc. The RGB frames

and pre-computed optical flow frames are publicly avail-

able with the dataset. In total, there are 55 hours of record-

ings and 39596 action annotations. In annotations, there are

125 verb and 352 noun classes. For action classes, similar

to [14], we considered all unique (verb, noun) pairs that are

present in the public training set. This amounts to the total

of 2513 action classes.

For evaluation purposes, the authors of the dataset de-

fined two test splits: seen and unseen kitchens. The seen

split (S1) contains videos from the kitchens present both in

training and test sets, while the unseen test split (S2) con-

tains videos only from such kitchens that have not been

observed during training. As a validation set, we use the



same subset of training videos as proposed by [14], who

created training and validation sets from the publicly avail-

able training set by randomly choosing 232 and 40 videos

for each set, respectively.

EPIC-Kitchens-100 [8] extends upon EPIC-Kitchens-

55 dataset, with the total of 100 hours of footage. Videos

in EPIC-Kitchens-100 were collected by 37 participants in

45 environments. It contains 89977 fine-grained action an-

notations, with 97 verb and 300 noun classes. By using the

same principle as for EPIC-Kitchens-55, there are 3806 ac-

tion classes. All videos in the dataset are split into train, val-

idation and test sets with a ratio of approximately 75/10/15.

The validation and test splits contain two subsets, on which

the results are reported separately: unseen participants and

tail classes. The unseen subset contains videos of partici-

pants that are not present in the train set. The subset of tail

classes for verbs and nouns contains the set of classes that

have the fewest instances and that account for 20% of the in-

stances in the whole dataset. An action class is considered

to be a tail class, if it contains either a tail noun or verb.

Overall, there are 86/228/3729 verb/noun/action classes.

4.3. Evaluation Metrics

For both EPIC-Kitchens-55 and EPIC-Kitchens-100, we

evaluate our approach using the official dataset metrics.

For EPIC-Kitchens-55, we use top-1 and top-5 verb, noun

and action accuracy (the prediction is deemed correct if

the ground-truth action falls into the top-1 or top-5 pre-

dictions, respectively). For EPIC-Kitchens-100, we report

class-mean top-5 recall.

4.4. Anticipation Results on EPIC­Kitchens­55

We compare our proposed model to the state-of-the-art

methods on the test splits of the EPIC-Kitchens-55 dataset

in Table 1. In our model, the RGB and optical flow

features are extracted using TBN. For a fair comparison

with the methods that use TSN features proposed by [14],

namely [14, 38, 48], we also trained a separate model for

which we used appearance and motion features provided by

the authors. As one can see, both models perform similarly

on the unseen test split, with the top-1 action accuracy of

8.9%, while on the seen test split, the model trained with

the TBN features outperforms the model trained with the

TSN features by a margin of 0.5%. Comparing to other

methods, on the seen test split, both models trained with

TSN and TBN features outperform LSTM-based methods

in top-1 action accuracy: RU-LSTM by 0.5% and 1.0% ac-

cordingly and ImagineRNN [48] by 0.2% and 0.7%. On the

unseen test split, we outperform RU-LSTM by 0.7%, while

ImagineRNN performs better by 0.4%.

Apart from achieving similar or better accuracy, our pro-

posed model is also more efficient during training and infer-

ence stages. In Table 2 we compare average training time

per epoch and time required for inference on the validation

set for our RGB branch and that of RU-LSTM. For measur-

ing training and inference times of the RU-LSTM network,

we used the official code made publicly available by the au-

thors. Since RU-LSTM makes predictions at several time

steps, to ensure a fair comparison, we performed an experi-

ment where we modified the RU-LSTM training procedure

to make predictions at the anticipation time of one second

only. This however, resulted in a decrease of both Top-1

and Top-5 accuracy of the model. Therefore, we compare

the training time of our method to the original setup of RU-

LSTM. Then, for measuring the time required for inference,

we considered predictions made by RU-LSTM only for the

anticipation time of one second, without performing com-

putations for different anticipation times. To further mini-

mize the effect of factors not related to the direct effective-

ness of the models, for both methods we used TSN features,

identical training and validation sets, as well as the same

GPU and data loading procedure. We conducted the exper-

iments using an Nvidia Titan Xp GPU.

As shown in Table 2, our method is more than two times

faster than RU-LSTM during training and almost two times

faster during inference stage. Apart from shorter per-epoch

training time, our method also does not use an additional

teacher-forcing pre-training stage, as well as the total num-

ber of epochs required for convergence is 80 compared to

100 for the RU-LSTM. So, all things considered, our pro-

posed branch can be trained approximately five times faster.

ImagineRNN builds upon the RU-LSTM baseline by ex-

tending it with contrastive learning, while the underlying

architecture, along with training and inference procedures

are identical to those of RU-LSTM, except for the absence

of the additional pre-training stage. Therefore, based on the

measurements made for the RU-LSTM, we can expect that

both methods require a similar amount of time per-epoch

for training and inference. Thus, we can also expect our

method to be faster than ImagineRNN. Finally, our model

is also more effective than LSTM-based models in terms

of memory-usage. Our model needs less than 60% of the

memory requirement for RU-LSTM. Higher memory effi-

ciency of convolution-based networks over RNNs has also

been discussed in [3].

Concerning the other methods, our model performs on

par with Liu et al. [28] on the seen test split, while Ego-

OMG and Sener et al. [38] outperform our approach in top-

1 action accuracy by 0.6% and 1.2% respectively. On the

unseen test split, Liu et al. [28], Ego-OMG and Sener et

al. [38] perform better than our model by 1.0%, 2.9% and

1.2% respectively. Notice, however, that both Ego-OMG

[10] and Liu et al. [28] use additional annotations to train

their proposed approaches. Ego-OMG uses additional su-

pervision in the form of progression time of directed hand

movements, as well as ground truth segmentation masks of



Top-1 Accuracy (%) Top-5 Accuracy (%)

Method Verb Noun Action Verb Noun Action

S1

TSN [6] 31.8 16.2 6.0 76.6 42.2 28.2

Miech et al. [33] 30.7 16.5 9.7 76.2 42.7 25.4

RU-LSTM [14] 33.0 22.8 14.4 79.6 50.9 33.7

ImagineRNN [48] 35.4 22.8 14.7 79.7 52.1 34.9

Liu et al. [28] 36.3 23.8 15.4 79.2 51.9 34.3

Ego-OMG [9] 32.2 24.9 16.0 77.4 50.2 34.5

Sener et al. [38] 37.9 24.1 16.6 79.7 54.0 36.1

Ours (TSN) 36.7 22.9 14.9 79.6 51.2 33.6

Ours (TBN) 37.2 23.7 15.4 79.5 51.9 34.4

S2

TSN [6] 25.3 10.4 2.4 68.3 29.5 6.6

Miech et al. [33] 28.4 12.4 7.2 69.9 32.2 19.3

RU-LSTM [14] 27.0 15.2 8.2 69.6 34.4 21.1

ImagineRNN [48] 29.3 15.5 9.3 70.7 35.8 22.2

Liu et al. [28] 29.9 16.8 9.9 71.8 38.9 23.7

Sener et al. [38] 29.5 16.5 10.1 70.1 37.8 23.4

Ego-OMG [9] 27.4 17.7 11.8 68.6 37.9 23.8

Ours (TSN) 29.3 15.2 8.9 71.2 36.8 21.0

Ours (TBN) 30.7 14.9 8.9 72.0 36.7 21.7

Table 1. Results for action anticipation on the EPIC-Kitchens-55 seen (S1) and unseen (S2) test splits at anticipation time Ta = 1 second.

Time (sec)

Method Training Inference

RU-LSTM [14] 27.7 3.8 ·10−4

Ours 12.4 2.0 ·10−4

Table 2. Average training time per epoch and inference time on

EPIC-Kitchens-55. ‘Training’ represents training time on the

training split. ‘Inference’ represents average inference time per

sample on the validation split.

interaction objects, while Liu et al. [28] use additional an-

notations for interaction hotspots and hand trajectories.

4.5. Anticipation Results on EPIC­Kitchens­100

We compare our proposed model to the baseline meth-

ods on the test set of the EPIC-Kitchens-100 dataset in Ta-

ble 3. Since EPIC-Kitchens-100 has been introduced only

recently, for many of the previously mentioned methods no

evaluation results are available. Therefore, we compare our

method to the officially reported baselines.

As the table shows, our approach performs on par with

RU-LSTM on both overall and tail-class splits. The per-

formance is also consistent using different types of features

and our model works well with both TBN and TSN features.

Furthermore, our approach shows better generalization be-

havior as indicated by the results on the unseen environ-

ments. Our approach outperforms RU-LSTM in the mean

top-5 action recall on the unseen split by 2.5% and 1.4%

using TBN and TSN features, respectively.

4.6. Ablation Study

In this section, we provide a set of ablation experiments

to analyze the different components of our approach. As our

main motivation is to develop a model that has a good trade-

off between accuracy and efficiency for the task of action

anticipation, we verify how much past is really necessary

for the network to achieve a good accuracy. Additionally,

we also study different fusion strategies for the uni-modal

branches. For the ablation experiments, we report results

on the validation set of the EPIC-Kitchens-55 dataset us-

ing TBN features. As previously, we use the validation set

constructed by [14].

4.6.1 Observation length

We report the top-1 action accuracy of our RGB branch

trained on observation intervals of different lengths in Ta-

ble 4. We vary the observation length starting from 0.75

seconds up to 7.75 seconds. As shown in the table, the ac-

curacy of the predictions increases with the length of the

observation interval until it saturates at 5.25 seconds. Sim-

ilar findings have been reported in [38]. Based on this ob-

servation, we fix the length of the observed interval to 5.25

seconds which corresponds to an input sequence of 21 snip-

pets.

4.6.2 Fusion strategy

We report the top-1 action accuracy of the individual

branches and different multi-modal fusion strategies in Ta-



Mean Top-5 Recall

Overall (%) Unseen (%) Tail (%)

Method Verb Noun Act. Verb Noun Act. Verb Noun Act.

Random 6.2 2.3 0.1 8.1 3.3 0.3 1.9 0.7 0.03

RU-LSTM [14] 25.3 26.7 11.2 19.4 26.9 9.7 17.6 15.9 7.9

Ours (TSN) 20.4 26.6 10.9 17.9 26.9 11.1 11.7 15.2 7.0

Ours (TBN) 21.5 26.8 11.0 20.8 28.3 12.2 13.2 15.4 7.2

Table 3. Results for action anticipation at anticipation time Ta = 1 on the EPIC-Kitchens-100 test set.

No. of Snippets Obs. Time (sec) Top-1 Act. Acc (%)

3 0.75 11.1

7 1.75 11.5

13 3.25 11.8

21 5.25 12.4

31 7.75 12.4

Table 4. Effect of the observation length on the prediction accu-

racy. We report top-1 action accuracy for the RGB branch using

TBN features on the validation set of EPIC-Kitchens-55.

ble 5. Among the uni-modal branches, the appearance

branch has the highest top-1 action accuracy, whereas the

flow branch has the lowest. All fusion schemes improve

over the performance of uni-modal branches. In total, we

experimented with five different fusion methods:

• Late fusion: Averaging predictions made by individ-

ual branches.

• Attention fusion: Learning weights for predictions of

the individual branches based on the final features from

the three branches: {FRGB , FFlow, FObject}.

• Mutual fusion: Applying only the mutual fusion path

from the proposed fusion scheme (see Figure 3).

• Pairwise fusion: Applying only the pairwise fusion

path from the proposed fusion scheme (see Figure 3).

• Mutual + Pairwise: Applying both pairwise and mu-

tual fusion paths and merging them with element-wise

addition (see Figure 3).

We observed that merging predictions of individual

branches either via late fusion (top-1 action accuracy

14.1%) or attention fusion (top-1 action accuracy 14.3%)

achieves lower results than merging individual features of

the uni-modal branches and making a cross-branch predic-

tion based on the constructed representations. Furthermore,

learning both pairwise and mutual embeddings of the uni-

modal features and combining them via the element-wise

addition is better than making the final prediction based

only either on the pairwise or mutual embeddings.

Fusion Top-1 Act. Acc (%)

RGB 12.4

Flow 8.9

Obj 10.9

Late fusion 14.1

Attention 14.3

Mutual feature fusion 14.7

Pairwise feature fusion 14.6

Mutual + Pairwise feature fusion 14.9

Table 5. Comparison of different multi-modal fusion methods on

the EPIC-Kitchens-55 validation set.

5. Conclusion

In this work, we proposed a multi-modal architecture

based on temporal convolutional layers for the short-term

action anticipation task. Instead of relying on recurrent

layers for temporal modelling, we use a stack of tempo-

ral convolutional layers, which allows our approach to per-

form anticipation faster. We further proposed a multi-modal

fusion strategy that combines both mutual and pairwise in-

teractions between the different branches. Results on two

large-scale datasets of egocentric videos, EPIC-Kitchens-55

and EPIC-Kitchens-100, show that our approach achieves

performance comparable to the state-of-the-art approaches

while being at least two times faster and more efficient com-

pared to RNN-based approaches.
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