
Reconsidering CO2 emissions from Computer Vision

Andre Fu

University of Toronto

andre.fu@mail.utoronto.ca

Mahdi S. Hosseini

University of New Brunswick

mahdi.hosseini@unb.ca

Konstantinos N. Plataniotis

University of Toronto

kostas@ece.utoronto.ca

Abstract

Climate change is a pressing issue that is currently af-

fecting and will affect every part of our lives. It’s becoming

incredibly vital we, as a society, address the climate crisis

as a universal effort, including those in the Computer Vision

(CV) community. In this work, we analyze the total cost of

CO2 emissions by breaking it into (1) the architecture cre-

ation cost and (2) the life-time evaluation cost. We show

that over time, these costs are non-negligible and are having

a direct impact on our future. Importantly, we conduct an

ethical analysis of how the CV-community is unintention-

ally overlooking its own ethical AI principles by emitting

this level of CO2. To address these concerns, we propose

adding “enforcement” as a pillar of ethical AI and provide

some recommendations for how architecture designers and

broader CV community can curb the climate crisis.

1. Introduction

Our Society is experiencing an exponential growth in de-

veloping, training, and using deep-learning pipelines, par-

ticularly within Computer Vision (CV), the rapid growth

has even surpassed human-level cognition [54]. Fueled

by advances in computing, the state-of-the-art (SOTA) CV

models are consistently beating benchmarks, with the most

computationally intensive models achieving SOTA [40].

Consequently, developing and training SOTA models de-

mand an inordinate computational burden, which corre-

sponds to energy and environmental costs. Currently, there

exist two methods for developing CV models, (1) Heuristic

hand-crafted model development; and (2) CV Neural Archi-

tecture Search (CV-NAS) algorithms.

In order to design SOTA models, using either hand-

crafted or NAS methods, some form of searching for an op-

timal architecture is required. With hand-crafted networks,

the search phase is the iterative training for optimization and

with NAS, the search is embedded directly into the archi-

tecture generation pipeline. After architectures get frozen

they are released to the public which leads to wide-scale

adoption of popular architectures such as ResNet [30], VGG

Figure 1: The two phases of CO2 emissions: model development

through search and life-time evaluation. As a model (with high

computational footprint i.e. FLOPS) gets world-wide adoption,

the CO2 emissions increase.

[47], and GoogLeNet [49] just to name a few. Then models

experience an evaluation phase, over the life-time of these

architectures, they are trained and evaluated a great num-

ber of times. Both these phases require enormous computa-

tional costs and equivalently enormous CO2 emissions. As

such, an important area to consider is the CO2 impacts of

the CV community, the ethical considerations of those im-

pacts, and how we can curb the global climate crisis.

Within CV no such analysis of the CO2 has been con-

ducted, and therefore this paper aims to do so; guided by

the following questions:

• During the model-searching phase, how much CO2 is

being emitted, and how can we curb these emissions?
• Over the lifetime of a model, can we quantify the total

amount of CO2 emitted and recommend solutions to

curb these emissions?
• Who are the marginalized communities affected by

CO2 emissions, and how can we better serve them?

2. Methods & Results

We break the total environmental cost of the CV pipeline

into two sub-components: (1) the cost of searching for an

architecture and (2) the evaluation cost of an architecture

over its lifetime. Within this work, the evaluation cost refers

to CV researchers & practitioners training a pre-established

model. We attempt to quantify both types of costs and pro-

duce a quantitative metric for how our actions today are

generating CO2 emissions.

Searching Phase’s CO2 emissions: In order to deter-

mine the amount of CO2 emissions from CV-NAS search-
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ing phase, we used a Strubell et al. [48] inspired methodol-

ogy. We begin by collecting the 45 major CV-NAS papers

in the last three years (2018-2020) [11, 7, 61, 13, 37, 10,

42, 15, 21, 55, 60, 8, 56, 24, 25, 31, 38, 14, 59, 26, 53,

17, 45, 44, 46, 16, 57, 20, 22, 29, 36, 50, 35, 27, 43, 12,

51, 41, 40, 19, 18, 32, 58, 39, 62] finding 157 models. For

every model, we extract the Top-1 Accuracy, Parameters,

FLOPS, GPU hours and GPU type. Using the GPU type,

we found the total power draw for that specific GPU [5] de-

noted as pg . If no GPU type was found, we assumed the

most common GPU type, the Nvidia V100 was used. Of-

ten CPU type and DRAM weren’t included in the papers,

so we disregarded DRAM and assumed the Intel Core i7-

10750H was used as the CPU power draw, denoted pc. We

then multiply the combined power draw by the GPU hours

and by the Power Usage Effectiveness, 1.59 [6] to obtain a

total power metric. We then denote this total power draw as

Pt in Watt-hours by:

Pt [Wh] = 1.59× GPU hours × (pg + pc) (1)

We then convert Watt-hours to CO2 emissions through

the US Environmental Protection Agency’s (EPA) kWh to

CO2 measurement. This value was taken as a national

weighted average of all CO2 emissions across the United

States, giving 0.707 ×10−3 metric tonnes/kWh [4].

CO2 [kg] = Pt × 0.707× 10−3 (2)

Evaluation Phase’s CO2 emissions: As models get

used over time, their FLOPS become a crucial factor in

their computational cost. We can assess a models evalua-

tion cost over time, as the number of times a model is be-

ing trained compared to the CO2-emissions. We denote a

model’s FLOPS as f and quantify the Watt-to-FLOPS ratio

as ω = Watt/f . We then denote the GPU Watt-to-FLOPS

as ωg and the CPU’s Watt-to-FLOPS as ωc. We obtain a

model’s power draw, Pm over training by multiplying the

model’s flops, f by the Watt-to-FLOPS then multiply the

total GPU hours to train, seen below:

Pm [Wh] = f × (ωg + ωc)× GPU hours (3)

Similar to Equation 2 we can then compute the emitted

CO2 by multiplying the power draw from a model by the

EPA’s Wh to CO2 measurement, CO2 = Pm ·0.707×10−3.

2.1. Results

Searching Phase: Using Eq. 1 and Eq. 2 we can quan-

tify CV-NAS’ searching phase’s CO2 cost. These initial

costs can then be amortized over time to observe how the

searched architectures perform compared to the most pop-

ular hand-crafted networks like ResNet [30]. With hand-

crafted networks, the heuristics used are often derived over

multiple trials and iterative training methods until satisfac-

tory. These experiments are often never reported, making it

difficult to quantify the hand-crafted network’s CO2 cost.

CV-NAS as an automated framework must have a trade-

off between the top-1 accuracy compared to the CO2-

emissions and relative FLOPS of a model. We highlight a

few important models below in Figure 2, namely: NAT-M4

[40], DARTS [38], Once-For-All (OFA) [12] and FB-Net

A [53]. These models demonstrate how CV-NAS can trade

off the initial CO2 cost for either accuracy or computational

complexity in terms of FLOPS.

Figure 2: CO2 emissions of CV-NAS optimized models compared

to their initial CO2 searching cost.

In Figure 2 we can see how the average FLOP models

like MileNAS-5 have lower CO2 emissions but also aver-

age top-1 accuracy. Observe how OFA has lower compu-

tational complexity but also has a large initial CO2 cost,

but doesn’t beat the SOTA. Therefore, we can then trade-off

the computational complexity to achieve SOTA by reducing

our FLOP constraint, yielding NAT-M4. Low FLOP mod-

els like FBNet-A [53] and Proxyless-G [14] generally have

average initial CO2 cost but only average accuracy.

Evaluation Phase: When a new model is released and

becomes SOTA, it quickly becomes popular and can amass

thousands of citations. For example, the ResNet architec-

ture [30] published in CVPR 2016 has currently amassed

over 73k citations [3] and is considered the standard for re-

search. Assuming each paper ran their ResNet-backbone

a modest 50 times to determine heuristic optimizations for

their model, ResNet has been trained ≈3.6 million times.

Therefore, model adoption has a huge impact on the to-

tal computational burden required to train a model, and by

consistently using sub-optimal networks, we are incurring a

large CO2 cost from evaluation. These large CO2 costs can

be seen in Figure 3, which was calculated by assuming 250

epochs at 40 mins/epoch for ResNet and 60 mins/epoch for

CV-NAS models. Then, we used Eq. 3 to derive a model’s

power draw and equivalent CO2 emission. The models cho-
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sen to compare to ResNet in Figure 3 were to demonstrate

the trade-offs between CO2-Accuracy-FLOPS.

Figure 3: CO2 emissions of CV-NAS compared to heuristically

optimized networks per 1 million times trained on ImageNet. The

initial searching cost is negligible compared to the enormous eval-

uation cost over time.

Furthermore, we can also compare how hand-crafted net-

works compare to each other over their lifetimes so far. We

do so by multiplying Eq 3 by the number of citations and

50 times trained per citation yielding Figure 4 below.

Figure 4: CO2 emissions of hand-crafted models over their life-

times so far. The common architectures are ordered from left-to-

right as lowest-to-highest number of citations

3. Discussion

To quantify the total amount of CO2 emissions emitted,

we isolated two components: (1) the initial searching phase

and (2) the evaluation phase. By addressing how each phase

of a model’s life-cycle can be optimized to reduce CO2

emissions, we can lower the overall CO2-cost. We first

identify how CO2 emissions tie into the global climate cri-

sis, and identify marginalized groups who will be adversely

affected by our actions. We then suggest some possible so-

lutions to the CV-NAS and broader CV community.

The Current Climate Crisis: According to the Inter-

governmental Panel on Climate Change (IPCC) [1] we are

currently encountering a climate crisis that must be capped

at a 1.5◦C change. They highlight that while 1.5◦ C is the

ideal goal, we are currently not on track to reach a limit of

1.5◦C. In 2016, we emitted 52 GtCO2 and by 2030 we will

have 52-58 GtCO2, while we should be at 25-30 GtCO2

within the same timeframe. This crisis highlights how vital

it is that we, within the CV-community enact change as any

reduction in CO2 emissions can help curb the climate cri-

sis. Additionally, the IPCC [1] highlights the unprecedented

level of cooperation required between inter-government and

inter-personal to reduce CO2 output to desirable levels.

The natural question underpinning this paper is the im-

pact the CV community has on the CO2 emissions and if

we can even make a substantive change to our environmen-

tal future. We believe that this question is valid, but mis-

takes the core idea behind curbing climate emissions, that

everyone has a role to play, even the CV community.

Stakeholders: CO2 emissions are becoming a severe is-

sue within society with considerable affect on the future, as

demonstrated by the IPCC report. While everyone today

and in the future is affected by the climate crisis, we scope

this discussion to a rarely discussed marginalized group:

our future generations. In identifying this group we dis-

cover subgroups who will have concrete impacts due to our

CO2 emissions. Two such subgroups that will be impacted

are those in the coastal and equatorial regions. In equatorial

Africa, between 75 and 250 million people will be experi-

encing increased water-stress and rain-fed agriculture will

be reduced by up to 50%. [1] Those in coastal regions will

experience between 1 to 8 feet of sea level increase, engulf-

ing their homes and livelihoods. These subgroups of fu-

ture generations require immediate changes to our current

CO2 emissions to minimize the effects of the climate cri-

sis on them, and our role within as researchers within the

CV community, should be to attempt to curb our emissions

where possible.

Ethical considerations: Within the Ethical AI commu-

nity, we’ve adopted [33, 28, 52] Principalism’s [9] four pil-

lars: Respect for autonomy, Beneficence, Non-maleficence

and Justice to analyze ethical concerns that have risen from

computer-vision based dilemmas such as dataset bias and

identifying marginalized communities. Through principal-

ism, we can also analyze how stakeholders are unintention-

ally being affected by our actions today. In particular how

we are overlooking all four pillars for the future generations,

in effect showing that the ethical AI frameworks within CV

are ill-enforced. Firstly, by emitting this level of atmo-

spheric CO2, we overlook the future generation’s capacity

to be self-determining by forcing them to cope with incred-

ible amounts of agricultural stress and increased risk for ex-

treme weather events. Secondly, we are currently disregard-

ing beneficence by not acting in the benefit of future gener-

ations. Our unintended actions aren’t only non-benevolent

but also maleficent. By causing harm to future generations
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despite the warnings, we are inadvertently acting in direct

contraposition to the ethical framework we’ve established.

Finally, by emitting CO2 today that will have severe neg-

ative implications for future generations, we’re taking on

the benefit while shifting the environmental cost to the fu-

ture generations thus violating Justice. As such, we can see

that despite establishing principalism as our working ethi-

cal framework, our unforeseen actions in emitting CO2 are

going against those values.

3.1. Future Design Considerations

While the AI community has adopted principalism as a

foundational tenet of ethical AI, the four pillars don’t nec-

essarily reflect current societal and environmental consider-

ations. As researchers, we have an obligation to maintain

ethical considerations for marginalized groups. Therefore,

we propose a fifth pillar for ethical AI, enforcement. En-

forcement is the idea that our obligation to the marginalized

groups should be included within our research, and these

obligations should permeate our work. By holding our-

selves accountable, we can act responsibly and attempt to

minimize the global climate crisis.

CV-NAS community: Within the CV-NAS community

we can adopt enforcement by incorporating CO2 consider-

ations, providing models that not only minimize CO2 dur-

ing search, but also ones that minimize over lifetime of the

model. During initial searching, these models trade off ac-

curacy at any computational and environmental cost.

By incorporating both types of CO2 cost into the opti-

mization, newer models can balance CO2-emissions to the

generated architecture’s optimization. We further highlight

that while CV-NAS models have an initial searching cost

(Fig. 2) it is often dwarfed by the life-time evaluation cost

(Fig. 3). Therefore, by optimizing on CO2 for searching,

but prioritizing low FLOP models, CV-NAS can have a con-

siderable impact on CO2 emissions as a whole. In particu-

lar we note how the 3 branches of CV-NAS can better op-

timized: (a) NAS-RL, building on hardware-aware NAS to

include a CO2/FLOP objective, (b) Gradient-based, includ-

ing a CO2/FLOP constraint on the chosen-operations level

of the bi-level [38] and (c) Evolution, adding a CO2/FLOP

regularization parameter to the fitness function.

CV-NAS, like most of deep-learning, suffers from a lack

of explainability. Often, the models are generated through

black-box approaches, which may optimize for different

criteria. We suggest that further research be done into CV-

NAS explainability, as a glass-box approach to model opti-

mization would allow the community to directly manipulate

optimization parameters, meaning a greater focus on FLOP

reduction which curbs long-term CO2 emissions. Further-

more, by incorporating FLOPS as a constraint we can also

reduce the total cost over a lifetime seen in Figure 3. We can

enforce optimizing on FLOPS by refusing to use high FLOP

networks, thereby communally penalizing researchers pub-

lishing these types of models. Optimizing on FLOPS has

the added bonus of reduced evaluation computational power

making them ideal for mobile, edge and low-power devices.

CO2 (tons)
Cars

Driven

Homes

Powered

ResNet [30] 326.6 70.6 55.3

VGG [47] 181.7 39.8 30.8

GoogLeNet [49] 65.1 14.1 11
Table 1: To contextualize CO2 costs from the 3 most popular hand-

crafted models (numeric values from Fig. 4), we contrast with cars

driven & homes powered over 1 year. [2].

Broader CV community: In Figure 3 and Table 1 we

can see that over time, choosing a sub-optimal model to

conduct experiments has a severe and quantitative impact

on the total CO2 produced. In line with enforcement we

propose that the broader CV community adopt searched ar-

chitectures from CV-NAS as baseline models in order to

curb the amortized CO2 cost. If reviewers question why

high FLOP models, like ResNet, was used as the optimized

model over a lower FLOP cost model, our community can

enforce the ethical AI principles. By adopting lower FLOP

models such as FBNet-A or OFA, we can reduce the CO2

cost over a lifetime, allowing the broader CV community to

also curb CO2 emissions.

One of the main reasons behind high-FLOP network de-

velopment is image-scaling. Popular datasets like ImageNet

[23] dominate research as the standard for generalization,

but it come with high-FLOPS. Therefore, in order to curb

the life-time evaluation CO2 cost, we encourage the CV-

community to consider downscaled benchmarks for training

& development such as Tiny-ImageNet [34].

4. Conclusion

Through this paper, we investigated a vitally important

problem that is threatening our lives: Climate Change, and

how the CV-NAS and broader CV community are contribut-

ing to the climate crisis. We then investigated the two main

components behind CV CO2 emissions, (1) the initial archi-

tecture creation and (2) the evaluation of the network over

its lifetime. We then provide a novel analysis of the CO2

emissions from CV-NAS and the CV-community, demon-

strating that emissions are non-negligible. We then dis-

cuss which communities are at most risk and discuss how

our community is inadvertently disregarding the Ethical AI

principles. Therefore, we proposed a set of recommenda-

tions for the CV-NAS and broader CV community in order

to curb the climate crisis. Further work can be done in this

domain, linking environmental racism to CO2 output and

the unintended consequences of the climate crisis.
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