
Inaccuracy of State-Action Value Function For Non-Optimal Actions

in Adversarially Trained Deep Neural Policies

Ezgi Korkmaz

KTH Royal Institute of Technology

Stockholm, Sweden

ezgikorkmazk@gmail.com

Abstract

The introduction of deep neural networks as function ap-

proximator for the state-action value function has led to the

creation of a new research area for self-learning systems

that explore policies from high dimensional input. While the

success of deep neural policies has resulted in the deploy-

ment of these policies in diversified application domains,

there are significant concerns regarding their robustness

towards specifically crafted malicious perturbations intro-

duced to their inputs. Several studies have focused on mak-

ing deep neural policies resistant to such perturbations via

training with the existence of these perturbations (i.e. ad-

versarial training). In this paper we focus on conducting

an investigation on the state-action value function learned

by state-of-the-art adversarially trained deep neural poli-

cies and vanilla trained deep neural policies. We per-

form several experiments in the OpenAI Baselines and we

show that the state-action value functions learned by vanilla

trained deep neural policies have better estimates for the

non-optimal actions than the state-of-the-art adversarially

trained deep neural policies. We believe our study lays out

intriguing properties of adversarial training and could be

critical step towards obtaining robust and reliable policies.

1. Introduction

Advancements in deep neural networks proliferated

leading to expansion in the domains where deep neural net-

works are deployed including image classification [14], nat-

ural language processing [23], speech recognition [8] and

learning systems via exploration. In particular, deep rein-

forcement learning became an emerging field with the intro-

duction of deep neural networks as function approximators

[18]. Hence, deep neural policies have been deployed in

many different domains from pharmaceuticals to self driv-

ing cars [4, 10, 11, 19].

As the advancements in deep neural networks contin-

ued some research focused on their vulnerabilities towards

a certain type of specifically crafted perturbations com-

puted via the cost function used to train the neural network

[24, 7, 16, 15, 5]. While some research focused on pro-

ducing optimal ℓp-norm bounded perturbations to cause the

most possible damage to the deep neural network models,

an extensive amount of work focused on making the net-

works robust to such perturbations [16, 3, 22].

The vulnerability to such specifically crafted perturba-

tions was inherited by deep neural policies as well [9, 13,

20, 12]. Thus, robustness to such perturbations in deep

reinforcement learning became a concern for the machine

learning community, and several studies proposed various

methods to increase robustness [21, 6, 26]. For these rea-

sons, in this paper we focus on adversarially trained deep

neural policies and the state-action value function learned

by these training methods in the presence of an adversary.

In this paper we aim to seek answers for the follow-

ing questions: (i) How accurate is the state-action value

function on estimating the values for non-optimal actions?,

and (ii) Does adversarial training effect the estimates of the

state-action value function for the non-optimal actions? To

be able to answer these questions we focus on adversarial

training and robustness in deep neural policies and make

the following contributions:

• We conduct an investigation on the Q-values and what

they represent for the adversarially trained deep rein-

forcement learning agents and vanilla trained deep re-

inforcement learning agents.

• We perform several experiments in environments with

large state spaces from the OpenAI Atari baselines.

• We find that, for vanilla trained agents, the state-action

value function Q(s, a) has a more accurate represen-

tation of the actions which are not decided as optimal

by the deep neural policy than for adversarially trained

deep reinforcement learning agents.
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2. Background

2.1. Preliminaries

In deep reinforcement learning the goal is to learn a pol-

icy for taking actions in a Markov Decision Process (MDP)

that maximize expected cumulative reward. An MDP is rep-

resented by a tuple M = (S,A, P, r) where S is a set of

continuous states, A is a discrete set of actions, P is a transi-

tion probability distribution on S×A×S, and r : S×A →
is a reward function. The goal in reinforcement learning

is to learn a policy π : S → P(A) which maps states to

probability distributions on actions in order to maximize

the expected cumulative reward R = E
∑T−1

t=0
γtr(st, at)

where at ∼ π(st). In Q-learning the policy is determined

by a learned state-action value function Q(s, a). In partic-

ular, the policy is given by choosing the action a∗(s) =
argmaxa Q(s, a) in state s.

2.2. Adversarial Methods

Szegedy et al. [24] observed that imperceptible pertur-

bations could change the decision of a deep neural network

and proposed a box constrained optimization method to pro-

duce such perturbations. Goodfellow et al. [7] suggested a

faster method to produce such perturbations based on the

linearization of the cost function used in training the net-

work. In particular,

xadv = x+ ǫ ·
∇xJ(x, y)

||∇xJ(x, y)||p
, (1)

in which J(x, y) represents the cost function used to

train the deep neural network, x represents the input, and

y represents the output labels. Kurakin et al. [15] proposed

the iterative version of the fast gradient sign method pro-

posed by Goodfellow et al. [7] inside an ǫ-ball.

x0
adv = x, (2)

xN+1

adv = clipǫ(x
N
adv + αsign(∇xJ(x

N
adv, y))) (3)

While several other methods have been proposed (e.g.

[12]) using a momentum-based extension of the iterative

fast gradient sign method,

vt+1 = µ · vt +
∇sadv

J(stadv + µ · vt, a)

‖∇sadv
J(stadv + µ · vt, a)‖1

(4)

st+1

adv = stadv + α ·
vt+1

‖vt+1‖2
(5)

adversarial training has mostly been conducted with per-

turbations computed by projected gradient descent (PGD)

proposed by Madry et al. [16] (i.e. Equation 3). Majority

of adversarial training methods are based on training with

adversarial examples produced by PGD method.

2.3. Adversaries and Training in Deep Neural Poli­
cies

The robustness of deep neural policies is a great concern.

Thus, imperceptible perturbations were initially applied to

the observations of deep reinforcement learning agents con-

currently by Kos et al. [13] and Huang et al. [9], with both

works utilizing the fast gradient sign method proposed by

[7]. While several works have focused on the optimization

part of producing adversarial perturbations [12, 20], a line

of research has focused on gaining resistance to such pertur-

bations. Madlekar et al. [17] propose adding perturbations

to states in training time in robotics application of deep re-

inforcement learning. Pinto et al. [21] propose a joint train-

ing strategy in the existence of an adversary whose aim is

to minimize the expected cumulative rewards of the agent

based on zero-sum Markov game modelling. Glaeve et al.

[6] considers an adversary limited to take natural actions

in the environment instead of introducing ℓp-norm bounded

perturbations. Authors in this paper model the relationship

between the adversary and the agent as zero-sum Markov

game and solve it via self playing. Quite recently, Huan

et al. [26] modeled this interaction between the adversary

and the agent as a modified MDP called a state-adversarial

MDP, and claimed that their proposed algorithm State Ad-

versarial Deep Q-Network learns theoretically certified ro-

bust policies against natural noise and adversarial perturba-

tions.

3. Experimental Details

Our experiments are conducted in the OpenAI [2] Atari

baselines designed by Bellemare et al. [1]. The vanilla

trained deep neural policy is trained via Double Deep Q-

Network (DDQN) [25] and the state-of-the-art adversarially

trained deep neural policy is trained via State-Adversarial

Double Deep Q-Network (SA-DDQN) [26]. Our results are

averaged over 10 episodes. In all of our figures we have

also included the standard error of the mean. In detail, we

measure the performance drop of an agent as,

P =
Scoreclean − Scoreactmod

Scoreclean − Scorefixed
min

. (6)

where Scoreclean represent the clean run of the game

where no perturbations introduced to the agent’s observa-

tions, Scorefixed
min represents the minimum score available for

a given game, and Scoreactmod represents the run of the game

where the actions of the agent are modified for a fraction of

the state observations.

4. An Analysis on the Inaccuracy of State-

Action Values for Non-optimal Actions

In this paper we examine the state-action value func-

tion of the state-of-the-art adversarially trained deep neu-
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Figure 1: Performance drop with respect to action modification percentage for the state-of-the-art adversarially trained deep

neural policies [26] and vanilla trained deep neural policies.

ral policies and vanilla trained deep neural policies. To

achieve this goal we systematically modify the action taken

by the agent and analyze the effects on the performance of

the trained deep neural policy. In particular, we make the

agent choose non optimal actions for n state observations

in a given episode e consisting of m total state observa-

tions. Formally, let aith be the ith best action decided by

the deep neural policy in a given state s (i.e. Q(s, a) is

sorted in decreasing order, and aith is the action correspond-

ing to ith largest Q-value). We record the scores obtained

by the action-modified deep neural policies at the end of

the episode and compute the impact of the action modifica-

tion on the performance of the deep neural policy. Our aim

is to provide an analysis on how accurate the state-action

value function is in representing values for the non-optimal

actions.

In Figure 1 we show the performance drop as a function

of the fraction of states in which the action modification is

applied for state-of-the-art adversarially trained deep neural

policies and vanilla trained deep neural policies. In particu-

lar, the action modification is set for the second best action

a2nd decided by the state-action value function Q(s, a). As

we increase the fraction of states in which the action mod-

ification set to a2nd is applied, we observe a performance

drop for both of the deep neural policies. However, we ob-

serve that vanilla trained deep neural policies experience

a lower performance drop with this modification. Espe-

cially in BankHeist we observe that the performance drop

does not exceeds 0.55 for even when the action modifica-

tion is applied for a large fraction of the visited states for

the vanilla trained deep neural policies. This gap in the per-

formance drop between the adversarially trained and vanilla

trained deep neural policies indicates that the state-action

value function learnt by vanilla trained deep neural policies

has a better estimate for the non-optimal actions. We hy-

pothesize that the adversarial training places higher empha-

sis on ensuring that the highest ranked action (i.e. the action

that maximizes the state-action value function in a given

state) does not change under small ℓp-norm bounded per-

turbations, rather than accurately computing the state-action

value function. Since historically Q-learning suffered from

overestimation of Q-values, a method which places higher

emphasis on the highest ranked action risks converging to a

state-action value function with overestimated Q-values.

5. Conclusion

In this paper we focused on the state-action value func-

tion for the state-of-the-art adversarially trained deep neural

policies and vanilla trained deep neural policies. We tested

trained deep neural policies with systematic action modifi-

cation in various fractions of the visited states and recorded

the performance drop of the trained policies. In particular,

we made the deep neural policy choose aith , the ith best ac-

tion decided by the deep neural policy, for various fractions

of the observed states. We observe that adversarially trained

deep neural policies experience a larger performance drop

for the same action modification. Thus, our observation in-

dicates that the state-action value function learnt by vanilla

trained deep neural policies have a better estimate for the

non-optimal actions. We believe our investigation lays out

intrinsic properties of adversarial training and can be con-

ducive to building robust and optimal deep neural policies.
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