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Abstract

Federated Learning (FL) systems target distributed

model training on decentralized and private local training

data belonging to users. Most of the existing methods ag-

gregate models prioritizing among them proportionally to

the frequency of local samples. However, this leads to un-

fair aggregation with respect to users. Indeed, users with

few local samples are considered less during aggregation

and struggle to offer a real contribution to federated opti-

mization of the models. In real-world settings, statistical

heterogeneity (e.g., highly imbalanced and non-i.i.d. data)

is diffused and can seriously harm model training.

To this end, we empirically analyze the relationship be-

tween fairness of aggregation of user models, accuracy of

aggregated models and convergence rate of FL methods.

We compare a standard federated model aggregation and

optimization method, FedAvg, against a fair (uniform) ag-

gregation scheme, i.e., FairAvg on benchmark datasets. Ex-

perimental analyses show that fair model aggregation can

be beneficial in terms of accuracy and convergence rate,

whilst reducing at the same time fluctuations of accuracy of

the aggregate model when clients observe non-i.i.d. data.

1. Introduction

Federated Learning (FL) systems enable distributed

training of machine learning models in a network of clients

(users) with local data processed only at clients [1, 9, 12,

22]. In FL systems, models are trained across multiple

rounds. At each round, every participating user receives

an initial model from a central server, optimizes the model

on its local training data and sends the updated model back

to the server. The server then aggregates the received local

solutions and updates the aggregate model [16].

A major challenge for convergence of federated opti-

mization is statistical heterogeneity. Whilst in centralized

training data can be assumed independent and identically

distributed (i.i.d.), decentralized data is generally highly im-

balanced (e.g., local data may contain different numbers of

samples for different classes on each device) and non-i.i.d.
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(e.g., samples in remote clients may have large correlation

due to user-specific habits or preferences) [26].

Most of FL methods, moving from [16], aggregates

weights of models according to local dataset size, implicitly

claiming that models trained on more samples are better and

richer compared to models trained with less samples, there-

fore adding more confidence to them. However, this policy

misses other important properties of models and data, caus-

ing issues especially for training convergence. Recently,

some interest has been devoted to aggregation procedures

and several attention methods employing functions of dif-

ference between parameters of local and aggregate models

were proposed [6, 7, 18, 21, 23]. Nonetheless, also these

methods fail in treating each user fairly, since users with few

samples are considered less during aggregation and cannot

bring a real contribution to federated optimization.

While it is known that FedAvg shows competitive results

on i.i.d. data on convex loss landscapes [13, 15], it is clear

that it cannot compete on non-i.i.d. and imbalanced data

[15], as users with fewer samples (but potentially high sta-

tistical variability) are considered less during aggregation.

In this paper, we show a comparative analysis of the

baseline FedAvg, against a fair aggregation scheme from

the user perspective (FairAvg), to explore relationship be-

tween the two schemes in terms of convergence properties

and accuracy of aggregated models. Experimental analyses

over a suite of non-i.i.d. and imbalanced datasets show that

a fair aggregation can be beneficial both for final accuracy

and convergence rate, whilst at the same time reducing fluc-

tuations of accuracy toward the convergence value (mea-

sured via the autocorrelation function). We observe that

FairAvg is especially effective when few reporting clients

participate in the aggregation and when each client sees few

classes (non-i.i.d. split), since a few users with many local

samples can bias the model toward the classes they observe

if frequency-based aggregation is performed.

2. Model Aggregation Schemes in FL

In a FL system consisting of a set of clients

K = {1, 2, . . . ,K}, parameters Wk ∈ Wk of models

Mk : Wk ×Xk → Yk, are optimized at each client k ∈ K



Algorithm 1 FedAvg and FairAvg.

Input: K, T, F,W 0, η,N .

for t = 0 to T − 1 do

A server samples Kt ⊆ K clients and sends them W t.

for k ∈ Kt do

Update W t
k with Lk (2) and step size η to W t+1

k .

Send W t+1

k back to the server.

end for

FedAvg. The server computes at via (4).

FairAvg. The server computes at via (5).

The server computes W t+1 via (3).

end for

using its local dataset to learn feature representations, where

Xk = {xk,j}
nk

j=1
and Yk = {yk,j}

nk

j=1
denote respec-

tively the set of samples and their ground truth labels ob-

served at the client k. In centralized FL systems, a central

server coordinates the optimization of a set of parameters

W of an aggregated model M(W, ·) by minimizing a global

learning objective L(W ) [16] without sharing local datasets

Sk = {sk,j = (xk,j ,yk,j)}
nk

j=1
by solving

min
W∈W

L(W ) = min
W∈W

∑

k∈K

pkLk(W ;Sk), (1)

where the local objective is computed by

Lk(W ;Sk) =
1

nk

nk∑

j=1

lk(W ; sk,j ∈ Sk), (2)

with lk(·; ·) being a user-specific loss function, pk ≥ 0 is

the weight of Lk(·; ·) of the kth client and
∑

k∈K
pk = 1.

Many FL systems have been designed to solve the prob-

lem (1). In our setup, we consider that first a subset Kt ⊆ K
of K ′ clients is randomly selected. Then, selected clients

download the aggregate model W t ∈ Wt from a central

server, perform local optimization minimizing an empiri-

cal objective Lk(W
t;Sk) with learning rate η for F epochs

using a local optimizer such as SGD, and then send the fi-

nal solution W t+1

k back to the server. The server averages

the solutions obtained from the clients with weights propor-

tional to the size of the local datasets by

W t+1 =
∑

k∈Kt

at[k]W t+1

k , (3)

where at is the federated aggregation vector at t which de-

termines the importance of the received local models. The

procedure is iterated for T−1 federated rounds and the final

aggregate model is then identified by WT .

Federated Averaging (FedAvg). The popular federated

optimizer FedAvg, widely used in FL systems, was pro-

posed in [16]. FedAvg simply employs the frequency of

local samples as federated aggregation vector, by setting

at[k] =
nk∑

j∈Kt

nj

, ∀k ∈ Kt, ∀t. (4)

This choice was adopted by many recent methods [4, 5, 10,

13], or replaced by attention values derived from statistical

discrepancy measures of model weights [6, 7, 18, 21, 23].

FairAvg. While FedAvg prioritizes model weights ac-

cording to the local frequency of samples, we argue that an

unbiased fair policy for each user is to contribute equally to

the aggregated model. Hence, we propose to define at by

at[k] =
1

|Kt|
, ∀k ∈ Kt, ∀t. (5)

Fairness has been considered in resource division in

multi-agent systems. A maximin sharing policy improves

performance of the worst agent [24] and a fair-efficient pol-

icy makes variation of utilities of agents as small as possible

[8]. Fairness in FL was examined from the perspective of

ensuring accuracy across clients. Agnostic FL [17] mini-

mizes the maximal loss function of all clients. In q-Fair FL

[14], a more uniform accuracy distribution across clients is

encouraged. In hierarchically fair FL [25], more contribu-

tions lead to more rewards. However, previous works ignore

the fair user contribution. FedAvg and FairAvg approaches

are summarized and compared in Algorithm 1.

3. Experimental Analyses and Discussion

3.1. Federated Datasets
Some statistics of the employed federated datasets are

reported in Tab. 1, inspired from [2, 16]. Synthetic data are

sampled from a logistic regression model [13, 20]. MNIST

[11] and FEMNIST [11] refer to image classification, whilst

Sent140 [3] and Shakespeare [19] to text-classification and

next-character prediction, respectively.

3.2. Experimental Results
In this section, we investigate the relationship between

statistical properties of federated aggregation vectors at, ∀t,
distribution of number of classes among clients, accuracy of

models and their stationarity over aggregation rounds.

Fig. 1 shows the per-round aggregate accuracy (original

accuracy values in row 1 and values smoothed over a win-

dow of 10% rounds for visualization in row 2) and the train-

ing loss (original in row 3 and smoothed in row 4). Further

analyses of accuracy of aggregate models achieved at the

final round are given in Tab. 2 for a different number of re-

porting clients K ′. In these results, FairAvg demonstrates

to be particularly effective when as few as K ′ = 2 reporting

clients are considered and to outperform FedAvg overall.

From first row of Fig. 1, we observe that a fair policy is

especially helpful on synthetic and MNIST datasets, where

it robustly outperforms FedAvg by a large margin. No clear

winner emerges on FEMNIST and Sent140 datasets, and

FedAvg surpasses FairAvg on Shakespeare data.

Beside the improvement in terms of accuracy, we remark

how the fairness policy shows much faster convergence and

higher training stability. We can observe this latter claim by



Table 1. Statistics of the employed datasets (left) and hyper-parameters (right).

Dataset # Classes Clients Samples Samples/Client Model Distribution Central. Start lr Solver F Rounds Batch

Mean Std. Acc. (%) size

Synthetic 10 30 9, 600 320.0 1051.6 2 dense layers Power-law 78.5 0.01 SGD 20 200 10

MNIST 10 1, 000 61, 676 61.7 164.7 2-layer CNN Power-law 99.0 0.01 SGD 20 200 10

FEMNIST 10 200 16, 421 82.1 143.0 2-layer CNN Power-law 99.0 0.001 SGD 20 400 10

Sent140 2 772 40, 783 53 32 Stacked-LSTM Power-law 72.3 0.3 SGD 20 800 10

Shakespeare 80 143 517, 106 3, 616 6, 808 Stacked-LSTM Power-law 49.9 0.8 SGD 20 40 10

Synthetic MNIST FEMNIST Sent140 Shakespeare
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Figure 1. Classification accuracy (%), training loss and their respective smoothed versions over a window of 10% rounds (which are

smoothed for visualization). Last row reports the correlogram of the accuracy (reported as first row), i.e. a plot of the autocorrelation

function (ACF) for sequential values of lag. Different datasets are considered over the columns and K′ = 10 reporting users.

visually inspecting the amount of fluctuations of accuracy

(related to stationarity). While FedAvg (blue curve) shows

many bursts and irregular peaks and pitfalls, FairAvg (or-

ange curve) generally shows a more smoothed path toward

the convergence value. This is due to the tailed distribution

of local samples on non-i.i.d. and imbalanced datasets. We

quantitatively measure stationarity computing the correlo-

gram, i.e., a plot of the autocorrelation function (ACF) for

sequential values of lag. Given a time-series accuracy vec-

tor f t (i.e., the series of accuracy values computed at each

round and reported in first row of Fig. 1), its autocorrelation

function at lag l is defined by

ACF (r, l) ,
r[l]

r[0]
, ∀l, (6)



Table 2. Accuracy (%) of the aggregate model on the final round for different number of reporting clients K′.
Synthetic MNIST FEMNIST Sent140 Shakespeare

K′
2 5 10 2 5 10 2 5 10 2 5 10 2 5 10

FedAvg 75.9 70.4 70.6 85.1 88.8 92.6 66.2 77.0 82.3 63.3 67.2 69.5 36.1 41.1 42.4

FairAvg 76.4 78.7 78.9 86.5 89.9 92.8 70.9 77.6 81.5 63.6 67.5 69.3 36.1 40.5 42.1

where r[l] represents the vector computed using the sample

autocovariance function for lag l defined by

r[l] =
1

T

T−l∑

t=1

(f t − f̄)(f t+l − f̄), (7)

where f̄ = 1

T

∑T

t=1
f t denotes the average value.

The correlogram, then, shows stationarity of the time se-

ries or change of fluctuations in the convergence of model

parameters during federated optimization. Higher values

of ACF denote lower fluctuations, which are adverse to

a smoothed convergence of the aggregate model parame-

ters to the final accuracy. From the plots, we observe that

FairAvg robustly shows much higher ACF values and thus

lower fluctuations while reaching the final accuracy value.

Distribution of federated aggregation values at[k], ∀k, ∀t
used by FedAvg is reported in the left column of Fig. 2

against the value employed by FairAvg. We remark that

distribution of aggregation values computed by FedAvg re-

flects information on the distribution of local number of

samples across clients by definition. More precisely, we ob-

serve tailed distributions (as a direct consequence of power-

law data splitting over the clients) where a large number

of users have fewer local samples compared to the case

where datasets are distributed following a balanced split-

ting scheme. Thereby, model parameters of most users are

weighted by lower federated aggregation values while ag-

gregating models using FedAvg, compared to their aggre-

gation by the FairAvg scheme. As a result, a small number

of users with many local data tend to influence more, and

eventually dominate, the resulting aggregated model.

This can be further verified in the right column of Fig. 2,

showing the distribution of clients having a certain amount

of classes within their local data. In particular, we no-

tice that the total number of classes for Synthetic, MNIST,

FEMNIST, Sent140 and Shakespeare datasets is 10, 10, 10,

2 and 80, respectively (see Tab. 1). In the reported plots, in-

stead, we can visualize how each device observes much less

classes in its local samples, thus hindering optimal conver-

gence. On synthetic data, users only see up to 4 classes (i.e.,

40% of the total number of classes), on MNIST up to 2 (i.e.,

20%), on FEMNIST up to 3 (i.e., 30%), on Sent140 up to 2
(i.e., 100%) and on Shakespeare up to 61 (i.e., 76.3%). Ex-

cluding binary classification on Sent140, where results are

overall even, then we observe that FairAvg approach outper-

forms FedAvg especially when each client sees a lower per-

centage of number of classes (e.g., on Synthetic and MNIST
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Figure 2. Distribution of federated aggregation values

a
t[k], ∀k, ∀t (left) and distribution of number of classes into

clients (right), over different datasets for K′ = 10 reporting users.

datasets), while it is surpassed when each client observes a

higher percentage (e.g., on Shakespeare data).

4. Conclusion

In this work, we proposed a set of experiments to empir-

ically explore the relationship between fairness of aggrega-

tion schemes, accuracy of aggregated models and conver-

gence rate of federated optimization methods.

Experimental results on non-i.i.d. data showed that a fair

aggregation scheme is beneficial compared to FedAvg for

both final accuracy and convergence rate, whilst reducing

at the same time fluctuations of accuracy of the aggregate

model. Following experimental evidence, we believe that

FL models could employ federated aggregation values cen-

tered around the value employed by FairAvg for uniform

treatment of user contributions.
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