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Abstract

As the request for deep learning solutions increases, the

need for explainability is even more fundamental. In this

setting, particular attention has been given to visualization

techniques, that try to attribute the right relevance to each

input pixel with respect to the output of the network. In

this paper, we focus on Class Activation Mapping (CAM)

approaches, which provide an effective visualization by tak-

ing weighted averages of the activation maps. To enhance

the evaluation and the reproducibility of such approaches,

we propose a novel set of metrics to quantify explanation

maps, which show better effectiveness and simplify compar-

isons between approaches. To evaluate the appropriateness

of the proposal, we compare different CAM-based visual-

ization methods on the entire ImageNet validation set, fos-

tering proper comparisons and reproducibility.

1. Introduction

Explaining neural network predictions has been recently

gaining a lot of attention in the research community, as it

can increase the transparency of learned models and help to

justify incorrect outputs in a human-friendly way. While

there have been diverse attempts to provide explanations

about the inference process in different forms [14, 15, 12],

the graphical visualization of a quantity of interest (e.g. re-

gions of the input) remains the most straightforward and

effective explanation approach.

Because of the effectiveness of visualizations, there has

been a surge of methods to solve the task, including gradient

visualization tools [28, 35], gradient-based [30, 31, 16, 27,

1], and perturbation-based approaches [23, 9, 10, 21, 3, 32].

Among them, Class Activation Mapping (CAM) [36, 26, 4,

11, 33, 22, 19, 18] provides effective visual explanations by

taking a weighted combination of activation maps from a

convolutional layer. The motivation behind the approach is

that each activation map contains different spatial informa-

tion about the input, and when the selected convolutional
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Figure 1. Overview of CAM approaches for explaining predic-

tions: explanation maps are produced via a linear combination of

the activations of a convolutional layer.

layer is close to the classification stage of the network, its

activations are sufficiently high-level to provide a visual lo-

calization that explains the final prediction. Identifying a

proper way of calculating the importance (i.e., the weight)

of each channel is the main issue that has been tackled by

all recent CAM approaches [26, 11, 33].

As it often happens when a new field emerges, the com-

parison of different CAM approaches has been done mainly

in a qualitative way, through the visual comparison of ex-

planation maps, or via quantitative metrics which, however,

are not completely effective and sometimes fail to numer-

ically convey the quality of the explanation. At the same

time, the evaluation has mostly been limited to few back-

bones and using protocols that imply a random selection of

data and are not completely replicable. With the aim of im-

proving the evaluation of CAM-based approaches, in this

paper, we propose a novel set of metrics for CAM analysis,

which provides a better ground for evaluation and simplifies

comparisons. The effectiveness of the proposed metrics is

assessed by comparing a variety of CAM-based approaches

and by running experiments in a fully replicable setting.

2. Preliminaries

Let f be a CNN-based classification model and c a tar-

get class of interest. Given an input image x and a convo-

lutional layer of f , the Class Activation Mapping [36] with



respect to c can be defined as a linear combination of the ac-

tivation maps of the convolutional layer (Fig. 1), as follows:

CAMc(x) = ReLU

(

Nl
∑

k=1

αkAk

)

, (1)

where Nl denotes the number of channels of the convolu-

tional layer, Ak is the k-th channel of the activation, and

αk are weight coefficients indicating the importance of the

activation maps with respect to the target class. Depend-

ing on the specific CAM approach, these weights can be in

scalar or matrix form, so that it is possible to apply a pixel-

level weighting of the activation map. A ReLU activation is

employed to consider only the features that have a positive

influence on the class of interest, i.e., pixels whose intensity

should be increased to increase the score for class c.
Regardless of the particular CAM approach at hand,

CAMc(x) is usually upsampled to the size of the input im-

age to obtain fine-grained pixel-scale representations. From

this, an explanation map Ec(x) can be generated by taking

the element-wise multiplication between CAMc(x) and the

input image itself (see Fig. 1).

The concept of CAM has been firstly defined in [36] for

CNNs with a global average pooling layer after the last con-

volutional layer. In this case, weights αk were defined as the

weights of the final classification layer. Subsequently, sev-

eral more sophisticated approaches for computing αk have

been proposed. Grad-CAM [26] generalizes [36] to be ap-

plied to any network architecture. It computes the gradient

of the score for the target class with respect to the activation

map and then applies a global average pooling. Recently, an

axiom-based version [11] has been introduced to improve

Grad-CAM’s sensitivity [31] and conservation [17].

Grad-CAM++ [4], instead, takes a true weighted average

of the gradients. Each weight of the average is in turn ob-

tained as a weighted average of the partial derivatives along

the spatial axes, so to capture the importance of each lo-

cation of activation maps. The approach has been further

extended in [20] by adding a smoothening technique in the

gradient computation. Score-CAM [33], finally, avoids the

usage of gradients and instead computes the weights αk us-

ing a channel-wise increase of confidence, computed as the

difference in confidence when feeding the network with the

input x multiplied by Ak and that of a baseline input.

3. Evaluating CAMs

Ideally, the explanation map produced by a CAM ap-

proach should contain the minimum set of pixels that are

relevant to explain the network output. While this has been

mainly qualitatively evaluated, a quantitative evaluation of

explanation capabilities is still in an early stage, with the ap-

pearance of different evaluation metrics [4, 21, 11], which

although has not been unified throughout the community.

VGG-16 ResNet-50

Method Avg Drop ↓ Avg Increase ↑ Avg Drop ↓ Avg Increase ↑

Grad-CAM [26] 66.42 5.92 32.99 24.27

XGrad-CAM [11] 73.84 4.09 - -

Grad-CAM++ [4] 32.88 20.10 12.82 40.63

Smooth Grad-CAM++ [20] 36.72 16.11 15.21 35.62

Score-CAM [33] 26.13 24.75 8.61 46.00

Fake-CAM 0.15 45.51 0.38 47.54

Table 1. Average Drop and Average Increase values of different

CAM approaches, in comparison with Fake-CAM.

In particular, we focus on the following metrics which have

been recently proposed, and which focus on the change of

model confidence induced by the explanation map.

Average Drop. It measures the average percentage drop in

confidence for the target class c when the model sees only

the explanation map, instead of the full image. For one im-

age, the metric is defined as (max(0, yc − oc)/yc) · 100,

where yc is the output score for class c when using the full

image, and oc the output score when using the explanation

map. The value is then averaged over a set of images.

Average Increase. It computes, instead, the number of

times the confidence of the model is higher when using the

explanation map compared to when using the entire image.

Formally, for a single image it is defined as ✶yc<oc · 100,

where ✶ is the indicator function. The value is then again

averaged over different images.

Insertion and Deletion. Deletion measures the drop in the

probability of the target class as important pixels (given by

the CAM) are gradually removed from the image, while in-

sertion computes the rise in the target class probability as

pixels are added according to the CAM. Both metrics are

expressed in terms of the total Area Under the Curve.

3.1. Limitations

While the rise of quantitative evaluation approaches is

valuable for the field, many of the proposed metrics lack

in providing a proper and affordable evaluation for explain-

ability. From a numerical point of view, having a set of dif-

ferent metrics rather than a single-valued score makes com-

parison between different approaches cumbersome. Sec-

ondly, while average increase is too discrete for evaluating

the rise of model confidence, average drop alone can easily

bring to a misleading evaluation.

To further showcase the limitations of average drop and

average increase, we build a “fake” CAM approach in

which weights αk do not depend on confidence scores.

Specifically, for each activation map Fake-CAM produces

a weight αk in matrix form, in which all pixels are set to

1/Nl, where Nl is the number of activation maps, except

for the top-left pixel, which is set to zero. The result is a

class activation map which is 1 almost everywhere, except

for the top-left pixel which is set to 0. Because the result-

ing explanation map is almost equivalent to the original im-



VGG-16 ResNet-50

Image [26] [11] [4] [20] [33] Image [26] [4] [20] [33]

Class: Avg Drop: 93.26 Avg Drop: 66.21 Avg Drop: 59.92 Avg Drop: 25.86 Avg Drop: 38.51 Class: Avg Drop: 0.00 Avg Drop: 0.00 Avg Drop: 0.00 Avg Drop: 0.00

tricycle Coherency: 75.13 Coherency: 74.65 Coherency: 91.95 Coherency: 80.50 Coherency: 96.79 carbonara Coherency: 97.39 Coherency: 98.55 Coherency: 95.63 Coherency: 98.41

Complexity: 8.91 Complexity: 8.98 Complexity: 20.24 Complexity: 37.66 Complexity: 9.91 Complexity: 18.57 Complexity: 43.43 Complexity: 58.80 Complexity: 34.30

ADCC: 17.36 ADCC: 55.58 ADCC: 62.03 ADCC: 71.51 ADCC: 79.59 ADCC: 92.17 ADCC: 79.31 ADCC: 67.07 ADCC: 84.79

Class: Avg Drop: 53.52 Avg Drop: 83.78 Avg Drop: 0.00 Avg Drop: 0.00 Avg Drop: 0.05 Class: Avg Drop: 0.00 Avg Drop: 0.00 Avg Drop: 0.00 Avg Drop: 0.00

white wolf Coherency: 73.41 Coherency: 61.60 Coherency: 95.24 Coherency: 78.05 Coherency: 95.14 breakwater Coherency: 65.69 Coherency: 99.01 Coherency: 96.43 Coherency: 99.23

Complexity: 21.79 Complexity: 20.10 Complexity: 28.19 Complexity: 33.04 Complexity: 14.92 Complexity: 21.51 Complexity: 45.68 Complexity: 37.59 Complexity: 38.25

ADCC: 62.60 ADCC: 33.18 ADCC: 87.15 ADCC: 79.48 ADCC: 92.96 ADCC: 79.02 ADCC: 77.91 ADCC: 82.44 ADCC: 82.71

Figure 2. Explanation maps and evaluation scores of different approaches on sample images from ImageNet validation set. We compare

the results of Grad-CAM [26], XGrad-CAM [11] (for VGG-16 only), Grad-CAM++ [4], SmoothGrad-CAM++ [20], and ScoreCAM [33].

age, except for one pixel in the corner which is unlikely to

contain the target class, the average increase of Fake-CAM

is usually very high. When computed on the entire Ima-

geNet validation set [25] surpasses 45% when employing

most backbones – a value that is superior to that of any

true CAM approach (see Table 1). Similarly, the average

drop of Fake-CAM is almost zero, because of the similarity

between the input image and the explanation map. While

Fake-CAM clearly does not help to explain the model pre-

dictions, it achieves almost ideal scores in terms of both

Average Drop and Average Increase.

3.2. Proposed Metrics

In order to define a better evaluation protocol, we start

by defining which properties an ideal attribution method

should verify. The final proposed metric is a combination

of three scores, each tackling one of the ideal properties.

Maximum Coherency. The CAM should contain all the

relevant features that explain a prediction and should re-

move useless features in a coherent way. As a consequence,

given an input image x and a class of interest c, the CAM

of x should not change when conditioning x on the CAM

itself. Formally,

CAMc(x⊙ CAMc(x)) = CAMc(x). (2)

Notice that this is equivalent to requiring that the CAM of

one image should be equal to that of the explanation map

obtained with the same CAM approach. To measure the

extent to which an approach satisfies the coherency prop-

erty, we define a metric that measures how much the CAM

changes when smoothing pixels with a low attribution score.

Following previous works in the comparison of saliency

maps [24, 5, 6, 2, 7, 8], we use the Pearson Correlation Co-

efficient between the two CAMs considered in Eq. 2:

Coherency(x) =
Cov(CAMc(x⊙ CAMc(x)),CAMc(x))

σCAMc(x⊙CAMc(x))σCAMc(x)
,

(3)

where Cov indicates the covariance between two maps, and

σ the standard deviation. Since the Pearson Correlation Co-

efficient ranges between −1 and 1, we normalize the Co-

herency score between 0 and 1 and, following existing met-

rics, we also define it as a percentage. Clearly, Coherency

is maximized when the attribution method is invariant to

change in the input image.

Minimum Complexity. Beyond requiring that the CAM

should be coherent in removing features from the input im-

age, we must also require it to be as less complex as possi-

ble, i.e., it must contain the minimum set of pixels that ex-

plains the prediction. Employing the L1 norm as a proxy of

the complexity of a CAM, we define the Complexity mea-

sure as:

Complexity(x) = ‖CAMc(x)‖1. (4)

Complexity is minimized when the number of pixels high-

lighted by the attribution method is low.

Minimum Confidence Drop. An ideal explanation map

should produce the smallest drop in confidence with respect

to using the original input image. To express this third prop-

erty, we directly employ the Average Drop metric, which

linearly computes the drop in confidence.

Average DCC. Finally, we combine the three scores in a

single metric, which we name Average DCC, by taking their

harmonic mean, as follows:

ADCC(x) = 3

(

1

Coherency(x)
+

+
1

1− Complexity(x)
+

1

1− AverageDrop(x)

)−1

(5)

Compared to the usage of separate metrics as done in

the past, Average DCC has the additional merit of being

a single-valued metric with which direct comparisons be-

tween approaches are feasible. From a methodological

point of view, instead, it takes into account the complex-



VGG-16 ResNet-18

Method Avg Drop ↓ Avg Inc ↑ Deletion ↓ Insertion ↑ Coherency ↑ Complexity ↓ ADCC ↑ Avg Drop ↓ Avg Inc ↑ Deletion ↓ Insertion ↑ Coherency ↑ Complexity ↓ ADCC ↑

Fake-CAM 0.15 45.51 32.87 35.70 100.00 100.00 0.01 0.24 45.37 31.12 33.44 100.00 100.00 0.01

Grad-CAM [26] 66.42 5.92 11.12 19.56 69.20 15.65 53.52 42.90 16.63 13.43 41.47 81.03 23.04 69.98

XGrad-CAM [11] 73.84 4.09 11.59 14.95 66.69 13.68 46.29 - - - - - - -

Grad-CAM++ [4] 32.88 20.10 8.82 36.60 89.34 26.33 75.65 17.85 34.46 12.30 44.80 98.18 44.63 74.24

Smooth Grad-CAM++ [20] 36.72 16.11 10.57 31.36 82.68 28.09 71.72 20.67 29.99 12.83 43.13 97.53 43.11 74.20

Score-CAM [33] 26.13 24.75 9.52 47.00 93.83 20.27 81.66 12.81 40.41 10.76 46.01 98.35 41.78 77.30

ResNet-50 ResNet-101

Method Avg Drop ↓ Avg Inc ↑ Deletion ↓ Insertion ↑ Coherency ↑ Complexity ↓ ADCC ↑ Avg Drop ↓ Avg Inc ↑ Deletion ↓ Insertion ↑ Coherency ↑ Complexity ↓ ADCC ↑

Fake-CAM 0.38 47.54 38.06 38.72 100.00 100.00 0.01 0.36 43.98 43.66 41.64 100.00 100.00 0.01

Grad-CAM [26] 32.99 24.27 17.49 48.48 82.80 22.24 75.27 29.38 29.35 18.66 47.47 81.97 22.51 76.40

Grad-CAM++ [4] 12.82 40.63 14.10 53.51 97.84 43.99 75.86 11.38 42.07 14.99 56.65 98.28 43.94 76.34

Smooth Grad-CAM++ [20] 15.21 35.62 15.21 52.43 97.47 42.25 76.19 13.37 37.76 14.32 58.23 97.76 42.61 76.54

Score-CAM [33] 8.61 46.00 13.33 54.16 98.12 42.05 78.14 7.20 47.93 14.63 59.57 98.37 42.04 78.55

ResNeXt-50 ResNeXt-101

Method Avg Drop ↓ Avg Inc ↑ Deletion ↓ Insertion ↑ Coherency ↑ Complexity ↓ ADCC ↑ Avg Drop ↓ Avg Inc ↑ Deletion ↓ Insertion ↑ Coherency ↑ Complexity ↓ ADCC ↑

Fake-CAM 0.34 46.70 41.67 43.31 100.00 100.00 0.01 0.26 42.43 48.90 46.79 100.00 100.00 0.01

Grad-CAM [26] 28.06 29.42 20.73 50.30 82.72 25.57 76.09 24.12 36.37 20.47 61.04 82.94 25.45 77.62

Grad-CAM++ [4] 11.12 41.38 17.07 56.05 97.30 48.66 73.16 9.74 42.63 17.63 62.90 95.05 46.27 74.61

Smooth Grad-CAM++ [20] 12.70 36.58 16.90 56.76 97.32 47.48 73.58 9.49 40.43 17.67 64.16 96.81 49.24 73.03

Score-CAM [33] 7.20 45.70 15.59 57.92 98.00 46.86 75.38 5.37 47.70 17.30 63.61 97.03 46.83 75.60

Table 2. Evaluation of different CAM-based approaches with existing and proposed metrics, on six different backbones.

ity of the explanation map as well as the coherency of the

CAM approach to be evaluated.

4. Experiments

Experimental Setup. Differently from previous works

which conducted the evaluation on randomly selected im-

ages, we conduct experiments on the entire ImageNet vali-

dation set (ILSVRC2012) [25] consisting of 50 000 images,

each representing one of the 1 000 possible object classes.

To increase the generality of the evaluation, we use six dif-

ferent CNNs for object classification – i.e., VGG-16 [29],

ResNet-18, ResNet-50, ResNet-101 [13], ResNeXt-50, and

ResNeXt-101 [34], applying each CAM approach on the

last convolutional layer. According to the original pa-

per [11], XGrad-CAM is equivalent to Grad-CAM when

applied to ResNet models and for this reason, we report the

results of this method only on VGG-16. All images are re-

sized and center cropped to 224×224, using mean and stan-

dard deviation values computed over the ImageNet training

set to normalize the results.

Experimental Results. Fig. 2 shows the scores obtained

by the proposed metrics on some sample images, using

both VGG-16 and ResNet-50. As it can be seen, the three

metrics are complementary in evaluating explanation maps

and are equally weighted in the final ADCC score. For in-

stance, in the top-left example, the map produced by Score-

CAM [33] achieves the best ADCC score, as it performs

favorably in terms of reduced confidence drop while main-

taining high levels of coherency and being less complex

than other maps. On the contrary, the map produced by

SmoothGrad-CAM++ [20] has a lower drop in confidence,

but it is less coherent and more complex. Turning to the

carbonara example, the maps reported by all approaches

have the same drop in confidence (i.e., 0), and similar co-

herency values. The map produced by Grad-CAM [26] has

the lowest complexity, thus obtaining the best final score.

In Table 2 we report the values obtained with existing

and proposed metrics on all six backbones, on the entire

ImageNet validation set. As it can be seen, the results of

Fake-CAM are better than true CAM approaches on aver-

age drop and average increase for all considered backbones.

On the contrary, the proposed ADCC score correctly penal-

izes the complexity of explanation maps generated by Fake-

CAM, thus confirming the appropriateness of the proposed

evaluation metric. Comparing true CAM methods, gener-

ally Score-CAM [33] achieves the best results on almost all

metrics, except for complexity. It shall be noted, also, that

Score-CAM [33] performs favorably on VGG and ResNet

backbones, while Grad-CAM [26] achieves the best ADCC

score when employing ResNeXt models – something which

was never tested in literature before. In terms of complex-

ity, Grad-CAM [26] produces less complex but less coher-

ent maps, and with higher confidence drops. The ADCC

score jointly accounts for all three properties, providing a

single-valued metric from which different approaches can

be easily compared.

5. Conclusion

We presented a novel evaluation protocol for CAM-

based explanation approaches. The proposed ADCC score

takes into account the variation of model confidence, the

coherency, and the complexity of explanation maps in a

single score, providing an effective mean of comparison.

Experiments have been conducted on the entire ImageNet

validation set, with six different CNN backbones, testifying

the appropriateness of the proposed score and its generality

across different settings.



References

[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Good-

fellow, Moritz Hardt, and Been Kim. Sanity checks for

saliency maps. In Advances in Neural Information Process-

ing Systems, 2018.

[2] Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Torralba,
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