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Abstract

Traditional empirical risk minimization (ERM) for se-

mantic segmentation can disproportionately advantage or

disadvantage certain target classes in favor of an (unfair but)

improved overall performance. Inspired by the recently intro-

duced tilted ERM (TERM), we propose tilted cross-entropy

(TCE) loss and adapt it to the semantic segmentation set-

ting to minimize performance disparity among target classes

and promote fairness. Through quantitative and qualita-

tive performance analyses, we demonstrate that the pro-

posed Stochastic TCE for semantic segmentation can offer

improved overall fairness by efficiently minimizing the per-

formance disparity among the target classes of Cityscapes.

1. Introduction and Related Work

Semantic segmentation is a fundamental problem in com-

puter vision and a pivotal step towards content-based im-

age analysis and scene understanding. It has received an

upsurge of attention recently owing to its wide variety of

applications in medical imaging [23, 21], autonomous driv-

ing [15, 3], satellite image processing [26, 7], and robotics

[5, 24], to name a few. Early segmentation methodologies

are mostly developed with clustering algorithms at their core

[10, 18, 20, 16]. Recent advances in deep learning have

revolutionized this field resulting in state-of-the-art (SoTA)

image segmentation algorithms such as DeepLabv3+ [1],

PS and Panoptic DeepLab [11, 2], HRNet [27] and many

other elegant architectures that considerably outperformed

the traditional signal processing-based methods.

The choice of loss function is essential for applicability

of semantic segmentation in different contexts. Therefore,

several studies have investigated the impact of modified loss

functions on the performance of semantic segmentation mod-

els in generic and custom-built datasets. A comprehensive

list of some of these recent loss functions is provided in four

different categories in [8]: i) distribution-based losses such

as binary class cross-entropy (BCE), ii) region-based losses

such as Dice loss [25] and its variants, iii) boundary based

∗Equal contributions.

losses such as Hausdorff distance [22, 9], and iv) compound

losses such Exponential Logarithmic loss [28]. Generic em-

pirical risk minimization (ERM) loss functions such as BCE

or Dice can disproportionately advantage or disadvantage

some classes in favors of an improved average performance.

This results in models that treat certain classes (e.g. with less

presence in training dataset) in an unfair fashion. Somewhat

related to this concern, significant research has been con-

ducted on proposing alternatives to the cross-entropy (CE)

loss for semantic segmentation to handle imbalanced data us-

ing weighted cross entropy [19], balanced cross entropy [30],

and the Focal loss [14]. However, none of these approaches

directly address the fairness problem. Being the most rel-

evant approach among the mentioned solutions, Focal loss

[14] down-weights the contribution of easy examples and

enables the model to focus more on learning hard ones. In

a broader scope of optimization for machine learning, [6]

proposes a solution to ensure different subgroups within a

population are treated fairly and [4] develops a solution with

favorable out-of-sample performance. Most recently, tilted

empirical risk minimization (TERM) has been proposed in

[12] to flexibly address the deficiencies of traditional ERM

with respect to handling outliers and treating subgroups fairly.

It is demonstrated in [12] that TERM can not only efficiently

promote fairness in a multitude of applications, but also out-

performs the likes of Focal Loss [14] and RobustRegRisk [4]

in different settings. Besides, [12] provides efficient batch

and stochastic first-order optimization methods for solving

TERM. Inspired by the flexibility of TERM in promoting

fairness, we have studied the impact of adopting a similar

approach in a new context, i.e., semantic segmentation. To

reiterate, fairness in this context means a less varied perfor-

mance across target segmentation classes.

Our contributions are as follows: i) We propose to employ

tilted cross-entropy (TCE) as a novel loss to promote fairness

in semantic segmentation. ii) We adapt the derivations of

[12] to fit into semantic segmentation setting and reformu-

late the commonly used CE loss as TCE. We then propose a

stochastic non-hierarchical optimization algorithm for solv-

ing TCE. iii) We demonstrate the effectiveness of Stochastic



TCE on promoting fairness in semantic segmentation for

Cityscapes (and ADE20k in supplementary material). 1

2. Tilted CE (TCE) for Semantic Segmentation

In this section, we introduce TCE: an adapted and re-

formulated version of TERM [12] for semantic segmenta-

tion. We then propose a stochastic non-hierarchical batch

solution of TCE. In the following, we denote the cardi-

nality of X as |X |, and the set {1, · · · , n} as [n]. Let

Dt = {(X,Y)1, ..., (X,Y)M} be the training dataset con-

taining M samples with Xm and Ym respectively denoting

the mth image and its corresponding label map (also called

mask). Here, X is of size H ×W × 3 for RGB images with

a total of H ×W = N pixels. The corresponding label map

Y is of size H ×W with elements in [K]. Xm contains a

maximum of K classes each occupying nm,c pixels, where
∑

c∈[K] nm,c = H ×W = N, ∀m. The most commonly

used ERM loss for semantic segmentation is the pixel-wise

loss L =
∑M

m=1 CE(Ym, Ŷm) [1, 29, 27], which is com-

puted using a multi-class CE between the 1-hot encoded

versions of the original label map Y and the inferred one Ŷ:

L = −
1

MN

M
∑

m=1

K
∑

c=1

nc
∑

i=1

ym,c,i log(ŷm,c,i), (1)

where ym,c,i denotes the ith pixel in the cth class of Ym.

[12] proposes to tilt ERMR(θ) = 1/M
∑

i∈[M ] f(xi, θ) as

R̃(θ, t) = 1/t log(1/M
∑

i∈[M ] e
tf(xi,θ)), with loss func-

tion f(xi, θ) and model parameters θ. The tilt parameter t
can be tuned to flexibly promote robustness or fairness. In

theory, setting t = 0 recovers ERM (i.e, R̃(θ, 0) = R(θ)),
and as t→∞, TERM minimizes the worst loss, thus ensur-

ing the model is a reasonable fit for all samples [12]. With

this in mind, there are (at least) two levels around which a

sensible tilting of multi-class CE (MCCE) (1) can be imple-

mented. More specifically, we can tilt (1) at i) image (or

sample) level and ii) class level. Let us start with the image

level. To tilt at image level, we need to reformulate (1) as

L̃img =
1

t
log

( 1

M

M
∑

m=1

etLm

)

,

where: Lm = −
1

N

K
∑

c=1

nc
∑

i=1

ym,c,i log(ŷm,c,i).

(2)

Following the same strategy, to tilt at class level per image

we need to reformulate (1) as

L̃cls =
1

M

M
∑

m=1

1

t
log

( 1

K

K
∑

c=1

etLm,c

)

,

where: Lm,c = −
1

nc

nc
∑

i=1

ym,c,i log(ŷm,c,i).

(3)

1The code will be publicly available soon.

Algorithm 1: Stochastic TCE for Segmentation

Initialize: wc = L̃c = 0, ∀c ∈ [C], θ
Require: γ, t

1 Divide Dt into Dt
c, ∀c ∈ [C]

2 while stopping criteria not met do

3 sample class c ∈ [C] from a categorical

distribution with probabilities wc ∈W
4 sample minibatch B within Dt

c

5 LB ← compute the loss (1) on B

6 tilt the batch loss: L̃B ← etLB

7 L̃c ← (1− γ) L̃c + γL̃B

8 wc ← L̃c/(
∑K

l=1 L̃l), ∀c ∈ [C]
9 Update model parameters: θ ← θ −∇LB

10 end

2.1. Solving TCE for Semantic Segmentation

Depending on the tilt level, one has to replace the pixel-

wise MCCE part of the semantic segmentation loss with

one of the proposed losses in (2) and (3). In our experience,

directly plugging these loss functions into semantic segmen-

tation optimization problem could lead to convergence issues

and caution has to be put in place. An alternative approach

to solve TCE (applicable to both sample and hierarchical

levels) is to follow along the stochastic approach proposed

in [12]. It is proven in [12] that the gradient of the tilted

loss L̃ is a weighted average of the gradients of the original

individual losses, where each data point is weighted expo-

nentially proportional to the value of its loss. This is the

key idea behind the proposed dynamic weight updating and

sampling strategy of Stochastic TCE laid out in Algorithm 1.

Let us dive deeper and walk through the algorithm. For the

sake of simplicity, here we drop the superscript denoting the

tilting level of L̃ in (2) and (3), and use a subscript to refer

to the class L̃c and batch of data within the class L̃B . The

class weights wc are stored/updated in W .

The algorithm starts by dividing the traninig dataset Dt

into C subsets Dt
c each containing the images correspond-

ing to individual classes. Note that an image can contain

multiple classes, and thus, these sets can overlap. One can

also consider forming non-overlapping sets based on Dt.

Per propagation round, one class (let us say c) will be se-

lected from the categorical distribution [C] with probabilities

(weights) W (line 3). These weights are dynamically up-

dated (line 8). Next, a minibatch B is sampled from the

training data of the selected class Dt
c and the tilted batch

loss L̃B is calculated on B (lines 5 and 6). Line 7 proposes

a linear dynamic with rate γ to update the tilted loss of the

selected class L̃c based on its previous value and the current

batch estimate L̃B . The weight of class c, wc, will then be

updated using a normalization applied to all the tilted losses



Table 1: Performance comparison on Cityscapes validation set, sorted based on DLv3+ with MCCE.

Method wall train rider fence terrain truck m.cycle pole bus t. light

MCCE [1] 48.46 53.66 61.12 62.23 62.98 66.21 67.72 69.19 71.53 74.33

Focal loss [14] 49.11 79.55 67.56 60.75 62.31 73.16 67.71 64.53 85.02 68.92

TCE t = .1 49.36 76.75 66.64 60.38 65.69 72.03 69.09 69.34 75.61 73.64

TCE t = 1 53.47 79.32 65.67 59.25 63.74 64.32 69.45 69.54 66.05 74.51

continued bicycle t. sign person sidewalk vegetation building sky car road mIoU

MCCE [1] 79.23 81.22 83.19 84.95 92.52 93.04 95.00 95.45 98.06 75.79

Focal loss [14] 77.71 77.62 81.23 81.56 91.54 91.89 93.71 94.67 97.14 77.14

TCE t = .1 79.89 81.77 84.00 86.24 92.43 93.16 95.34 95.47 98.27 78.16

TCE t = 1 79.92 81.04 83.96 86.22 92.44 92.92 95.11 94.53 98.28 77.35

Table 2: Performance comparison on Cityscapes validation set, sorted based on SoTA DLv3+.

Method wall fence rider terrain m.cycle pole t. light bicycle t. sign train

SoTA MCCE [1] 57.26 62.18 62.76 63.38 64.50 65.11 68.41 77.26 78.78 80.90

TCE t = .1 49.36 60.38 66.64 65.69 69.09 69.34 73.64 79.89 81.77 76.75

continued person sidewalk truck bus vegetation building sky car road mIoU

SoTA MCCE [1] 82.14 84.7 85.31 89.07 92.65 92.69 95.29 95.31 98.13 78.73

TCE t = .1 84.00 86.24 72.03 75.61 92.43 93.16 95.34 95.47 98.27 78.16

(line 8). These dynamically updated weights, wc ∈W , will

be used in the next iteration to decide from which class to

sample. Finally, model parameters in θ are updated.

3. Experimental Setup

Here, we assess the impact of TCE on one of the most

commonly adopted datasets for semantic segmentation,

Cityscapes [3]. The evaluation results for ADE20k [31]

can be found in the appendix. Cityscapes contains 2, 975
train and 500 validation images from 19 main target classes.

Training strategy and baselines. Our trainings are

run separately on standard Microsoft Azure 4-GPU P100

Tesla nodes, each with 16GB of memory. For experiments

on Cityscapes, we used DeepLabv3+ (also referred to as

DLv3+) [1] with ReseNet-101 backbone as our reference

implementation of multi-class CE (MCCE), and on top of

that we have implemented TCE. DLv3+ is among the top

performing model architectures for Cityscapes. Following

[1], we used minibatch SGD with learning rate lr = 0.01
and momentum 0.9 for all models, and adjusted for a total

minibatch size of 8 (2 per GPU). The reported results of

[1] are based on our own trainings, for the sake of a fair

comparison. Image crop size and other pre/post-processing

parameters are set per default as suggested in [1]. We also

compare our performance against the Focal loss for semantic

segmentation [14] with the best parameters γ = 2 and (class

weights) α set to the inverse (normalized) class pixel counts

computed across the whole dataset.

Fairness and its evaluation criteria. The notion of fair-

ness in this setting is promoting a more consistent (and less

varied) performance across different classes. This is to en-

sure that there are less (or ideally no) classes that have been

significantly disadvantaged, due to for instance less presence

or difficult characteristic features, for the sake of a higher

average performance. Promoting fairness by minimizing

performance disparity is also a core idea of TERM [12], and

resonates with other recent approaches to fairness [6, 13, 17].

More concretely, i) best worst-case performance [6, 17],

and ii) least variance across clients/classes [13] are recently

proposed to promote/evaluate fairness across a set of tasks

or networked clients. We investigate both measures as our

key criteria. More specifically, besides the overall mean-

intersection-over-union (mIoU), we compare the models on:

i) sorted (w.r.t MCCE) bottom and top 25% mIoUs; ii) bot-

tom and top 25th percentiles; and iii) standard deviation and

worst case performance (in IoU) across classes. Note that

the overall mIoU does not have to be improved when apply-

ing TCE; the goal is to minimize performance disparity by

boosting the low-performing and difficult classes. This can

sometimes come at the cost of lower overall mIoU and/or

degradation of the high-performing target classes.

4. Evaluation Results

Table 1 compares the sorted mIoU breakdown of DLv3+

with ResNet-101 backbone [1] trained with the standard

multi-class cross-entropy (MCCE) against the same model

retrained with the Focal loss and the proposed TCE for

t = 0.1 and 1. Even though we are not necessarily expecting

an improvement in the overall mIoU, here for all t’s, the over-

all performance with TCE has improved beyond same model

trained with MCCE (+2% for t = 0.1) and Focal loss (about

1% for t = 0.1). TCE with t = 1 is expected to push more to-

wards minimizing performance disparity and thus promoting

fairness (as is also shown in Table 3), and it shows the best

improvement in the least performing classes such as “wall”

and “train”. The same model architecture, DeepLabv3+ (ab-



Figure 1: Impact of TCE on improving low-performing classes of MCCE. Best view in color with 300% zoom.

Table 3: Fairness criteria for Cityscapes [3]

sorted 25% (25thperc., mIoU) overall

Method bottom top bottom top worst std.

MCCE [1] 57.69 94.81 (64.60, 57.69) (88.74, 94.81) 48.46 14.96

Focal loss [14] 63.86 93.79 (67.64, 60.85) (88.28, 93.79) 49.11 13.35

TCE t = .1 63.76 94.93 (69.22, 62.23) (89.34, 94.93) 49.36 13.34

TCE t = 1 64.29 94.66 (65.86, 61.29) (89.33, 94.66) 53.47 13.57

breviated to DLv3+ here), reports better performance results

with a more complex backbone Xception-65 [1]. We could

not reproduce those results because we did not have access

to large enough nodes on Microsoft Azure to accommodate

this backbone with batch sizes larger than 8. Nonetheless,

we were curious to know how TCE implemented on top

of a model with a weaker backbone would compare with

the the state-of-the-art (SoTA) results reported in [1]. This

comparison is summarized in Tables 2. Interestingly, even

compared to the SoTA model with improved backbones,

TCE is still improving on several low-performing classes

(such as “rider”, “terrain”, “motorcycle”, etc.) in favor of

promoting fairness across target classes.

These two tables illustrate promising improvement in low-

performing classes the extent of which is further investigated

and is summarized in Table 3. Here, the following three mea-

sures are presented. First, the sorted bottom and top 25%
mIoU. To compute this, the target classes are sorted based

on the IoU performance breakdown of the the model trained

with MCCE. Then for each model the mIoU of the bottom

and top 25% (5 classes out of 19) are taken into account.

This is to demonstrate the impact of TCE compared to the

reference MCCE. Here, improved mIoU for bottom classes

(even at cost the of lower mIoU for the top ones) indicates

more fairness. Second, in a tuple, the IoU threshold corre-

sponding to (bottom and top) 25th percentile of each model

and the mIoU of the classes falling within the percentile are

presented. Note that in this case each model will be sorted

according to its own target class IoU’s. The idea is that

improvement in bottom percentile threshold and correspond-

ing mIoU could be indicative of improved fairness. Again,

we do not expect improvement but potential drop in the top

percentiles; they are reported to provide a more complete

picture. Third, the overall fairness measures [6, 13, 17], i.e.,

the worst performance among target classes and the standard

deviation across class IoU’s (denoted respectively as worst

and std. in the table) are presented.

The results show that on all three metrics TCE offers

improved fairness when compared to MCCE and Focal loss.

Let us focus on t = 1. In sorted bottom 25%, we gain +6%
and +0.4% beyond MCCE and Focal loss, respectively. For

25th percentiles, +5% and +0.4% beyond MCCE and Focal

loss, respectively. The TCE with t = 0.1 seems to do better

(+1% beyond Focal) which could be due to different sorting

per model, and thus, different classes falling in those per-

centiles. In the overall metrics [6, 13, 17], the worst-case IoU

(among target classes) is 5% and +4% better (higher) than

MCCE and Focal loss, respectively. The standard deviation

across classes is improved (decreased) by +1% compared to

MCCE and remains in the same regime as Focal loss. Finally,

qualitative results in Fig. 1 further corroborate the impact of

TCE in comparison with MCCE and Focal loss. The top two

rows highlight improvement in “rider”, “bus”, and “truck”,

and the next two rows show improvement in “tram” and

“sidewalk”, most of which associate to the low-performing

classes of the model trained with MCCE.

Concluding remarks. There is plenty of room for ex-

tending this work. An avenue to explore is different imple-

mentations of TCE, especially (in a non-stochastic fashion)

by directly plugging in (2) and (3) as the optimization loss

function. In doing so, remedies have to be put in place to

circumvent convergence issues. Further results on ADE20k

dataset are provided in the supplementary material.
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