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Abstract

Few-shot learning (FSL) approaches, mostly neural

network-based, are assuming that the pre-trained knowl-

edge can be obtained from base (seen) categories and trans-

ferred to novel (unseen) categories. However, the black-box

nature of neural networks makes it difficult to understand

what is actually transferred, which may hamper its appli-

cation in some risk-sensitive areas. In this paper, we reveal

a new way to perform explainable FSL for image classifi-

cation, using discriminative patterns and pairwise match-

ing. Experimental results prove that the proposed method

can achieve satisfactory explainability on two mainstream

datasets. Code is available*.

1. Introduction

Few-shot learning (FSL) is of great significance at least

for the following two scenarios [24]: Firstly, FSL can re-

lieve the heavy needs for data gathering and labeling, which

can boost ubiquitous use of deep learning techniques, espe-

cially for users without enough resources. Secondly, FSL

is an important solution for applications in which rare cases

matter or image acquisition is costly because of high oper-

ation difficulty or ethical issues.

There have been lots of FSL methods [22, 19, 14, 10, 5,

21], most of which are based on the assumption that knowl-

edge can be well extracted from base (seen) classes and

transferred to novel (unseen) classes. However, this is not

always the case. The knowledge in a pre-trained backbone

convolutional neural network (CNN), which computes fea-

tures of an input image, may sometimes be useless when

novel categories have significant visual differences from

images of the base categories [26]. What makes matter

worse is that we even have no way to see if the visual differ-

ences between the base and novel categories are significant

*Code is available at https://github.com/wbw520/MTUNet.
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Figure 1. Visualization of each pattern and overall representation

for a sampled task in mini-ImageNet.

for an FSL model. This raises one essential question: Is

there any way to see what is actually transferred?

Actually, in the FSL task, most works [17, 2, 20, 6, 9]

only treat the convolutional layer as the image embedding

tool, and do not pay attention to the reasons for the ex-

tracted features. In this paper, we redesign the mechanism

of knowledge transfer for FSL tasks, which offers an answer

to the above question. Our approach is inspired by what hu-

man beings may do when trying to recognize a rarely seen

object. That is, we usually try to find some patterns in the

object and match them in a small number of seen examples

in our memory.

We adopt a recently-emerged explainable classifier,

called SCOUTER [11], and propose a new FSL method,

named match-them-up network (MTUNet). MTUNet

learns discriminative patterns for a given set of images of

the base categories as shown in Figure 1 and uses all these

patterns to represent both support and query images. With

this representation, pairwise matching scores are computed

among the support and query images, based on which the

prediction for the query image is done. Both the patterns

and the overall representation can be easily visualized to

reveal the reason for the matching scores. The main con-

tributions of our work include: 1) a new FSL method that

can output visual explanations besides classification results

to find potential failures of the method. 2) a new image rep-

resentation based on filtering original image features, given

by a backbone CNN, to keep only informative regions, and

relate the visualization with the model decision.
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Figure 2. Overall structure of MTUNet. One query is processed by CNN backbone and pattern extractor (PE) to provide exclusive patterns

and then turned into an overall attention. Query will be concatenated to each support to make a pair for final discrimination through

pairwise matching (PM). The dotted line represent each support image undergo the same calculation as query.

2. Methodology

2.1. Problem Definition

This paper addresses an inductive FSL task (c.f ., trans-

ductive one [3, 8]), in which we are given two disjoint sets

Dbase and Dnovel of samples. The former is the base set that

includes categories (Cbase) with many labeled images. The

latter is the novel set and include categories (Cnovel) with a

few labeled images. Cbase and Cnovel are disjoint. The FSL

task is to find a mapping from a novel image x into the cor-

responding category y.

The literature typically uses the K-way N -shot episodic

paradigm for training/evaluating FSL models. For each

episode, we sample two subsets of Dbase for training,

namely, support set S = {(xi, yi)|i = 1, . . . ,K ×N} and

query set Q = {(xq
i , y

q
i )|i = 1, . . . ,K×M}. These images

are of the same K categories in Cbase, and we sampled the

same numbers of images (N images for the support set and

M images for the query set). An FSL model is trained so

that it can find a match between images in Q (with abuse of

notation) and S . The image in Q is classified as the category

of the matched image in S .

2.2. Overview

The overall process is illustrated in Figure 2. In each

episode, we extract feature map F = fθ(x) ∈ R
c×h×w

from image x in both S and Q using backbone convolu-

tional neural network fθ, where θ is the set of learnable pa-

rameters. F is then fed into the pattern extractor (PE) mod-

ule, fφ, with learnable parameter set φ. This module gives

attention A = fφ(F ) ∈ R
z×l over F . Our pair matching

(PM) module uses an MLP to compute the score of query

image xq ∈ Q belonging to the category of x’s in S .

PE plays a major role in the FSL task. PE is designed

to learn a transferable attention mechanism. This ends up

in finding common patterns that are shared among differ-

ent episodes sampled from Dbase. Consequently the patterns

are shared also among Dnovel given that Dbase and Dnovel are

from similar domains.

2.3. Pattern Extractor

The basic idea of PE is to find common patterns through

the self-attention mechanism. Input feature map F is firstly

fed into a 1×1 convolution layer followed ReLU nonlinear-

ity to squeeze the dimensionality of F from c to d. Spatial

dimensions of the squeezed features are flattened to form

F ′ ∈ R
d×l, where l = hw. To maintain the spatial infor-

mation, position embedding P [25, 13, 11] is added to the

features, i.e., F̃ = F ′ + P .

The self-attention mechanism gives the attention over F
for the spatial dimension by the dot-product similarity be-

tween a set of z learned patterns W ∈ R
z×d (z is the num-

ber of the patterns) and F̃ after nonlinear transformations

gQ and gK. PE repeats this process with updating the pat-

tern with a gated recurrent unit (GRU) to refine the atten-

tion. That is, given

gQ(W
(t)) ∈ R

z×d, gK(F̃ ) ∈ R
d×l, (1)

for the t-th repetition, the attention is given using certain

normalization function ξ by

Ā(t) = gQ(W
(t))gK(F̃ ) ∈ (0, 1)z×l (2)

A(t) = ξ(Ā(t)). (3)

Patterns W (t) is updated T times (i.e., t = 1, . . . , T ) by

U (t) = A(t)F ′⊤ (4)

W (t+1) = GRU(U (t),W (t)). (5)

PE adopts a different normalization strategy from

SCOUTER. Let SoftmaxR(X) and σ(X) be softmax over



respective row vectors of matrix X and sigmoid respec-

tively. SCOUTER normalizes the attention map only over

the flattened spatial dimensions, i.e.,

A(t) = σ(Ā(t)). (6)

This allows finding multiple patterns in a single image.

MTUNet further modulates this map by

A(t) = σ(Ā(t))⊙ SoftmaxR(Ā
(t)), (7)

which suppresses weak attention over different patterns at

the same spatial location, where ⊙ is the Hadamard product.

This enforces the network to find more specific yet discrimi-

native patterns with fewer correlations among them and thus

ends up with more pinpoint attentions. The learned patterns

can be more responsive in different images with this modu-

lation as an attention map only responds to a single pattern

that does not include its peripheral region.

The input image is finally described by the overall atten-

tion corresponding to the extracted patterns, given by

V =
1

z
A(T )F1z, (8)

where 1z is the row vector with all z elements being 1. A(T )

is reshaped from l into the same spatial structure as F . V
will then undergo an average pooling among spatial dimen-

sion and only keep the channel dimension c.

2.4. Pairwise Matching

An FSL classification can be solved by finding the mem-

bership of the query to one of the given support images.

Learnable distances is a popular choice for the metric

learning-based FSL methods [10, 5, 21]. We use a learn-

able distance with an MLP.

Let V q and Vkn be features of query image xq ∈ Q and

support image xkn ∈ S respectively, where the subscripts

k and n stand for the n-th image of category k. For n > 1,

the average over the n images are taken to generate repre-

sentative feature V̄k; otherwise (i.e., n = 1), V̄k = Vk1.

For computing the membership score s of query image xq

to category k, we use MLP fγ with learnable parameters γ:

s(xq,Sk) = σ(fγ([V
q, V̄k])), (9)

where [·, ·] is concatenation of two vectors for the one-to-

one pair and Sk ⊂ S contains images of category k. xq

is classified into the category with maximum s over Sk for

k = 1, 2, . . . ,K.

For Q and S sampled from Dbase for each episode, we

train the model with the binary cross-entropy loss:

L = −
∑

(xq,yq)∈Q

yq⊤ log(s̄(xq,S)), (10)

where s̄(xq,S) = (s(xq,S1), . . . , s(x
q,SK))⊤.

Table 1. Average accuracy of 10000 sampling 5-ways task on test

set of mini-ImageNet and tired-ImageNet.

mini-ImageNet tiered-ImageNet

Approach One shot Five shots One shot Five shots

MetaLSTM [16] 43.44±0.77 60.60±0.71 - -

MAML [4] 48.70±1.84 63.11±0.92 51.67±1.81 70.30±0.08

ProtoNet [19] 49.42±0.78 68.20±0.66 53.31±0.20 72.69±0.74

Meta SGD [12] 50.47±1.87 64.03±0.94 62.95±0.03 79.34±0.06

Reptile [15] 49.97±0.32 65.99±0.58 48.97±0.21 66.47±0.21

R2-D2 [1] 51.20±0.60 68.20±0.60 - -

RelationNet [21] 52.48±0.86 69.83±0.68 54.48±0.93 71.32±0.78

SimpleShot(UN) [23] 57.81±0.21 80.43±0.15 64.35±0.23 85.69±0.15

LEO [18] 61.76±0.08 77.59±0.12 66.33±0.05 81.44±0.09

MTUNet+ResNet-18 55.03±0.49 70.22±0.35 61.27±0.50 77.82±0.41

MTUNet+WRN 56.12±0.43 71.93±0.40 62.42±0.51 80.05±0.46

3. Experiments

3.1. Experimental Setup

We evaluate our approach on two commonly-used

datasets, mini-ImageNet [22] and tiered-ImageNet [17].

They are split into train, validation and test sets. We eval-

uate MTUNet on 10,000 episodes of 5-way classification

created by first randomly sampling 5 categories from Dbase

and then sampling support and query images of these cat-

egories with N = 1 or 5 and M = 15 per category. We

report the average accuracy over K × M = 75 queries in

the 10,000 episodes and the 95% confidence interval. We

employ two CNN architectures as our backbone fθ, which

are namely WRN-28-10 [27] and ResNet-18 [7].

For pre-training of PE module, we used the same pa-

rameter setting as [11]. The number z of the patterns is

empirically set to 1/10 of the train set categories, which is

7 in mini-ImageNet. The importance of this choice is dis-

cussed in Section 3.4. For training the whole MTUNet, the

learnable parameters in backbone CNNs and PE are frozen.

In a single epoch of training, we sample 1,000 episodes of

5-way tasks. The model is trained for 20 epochs with an

initial learning rate 10−3, which is divided by 10 at the 10-

th epoch. We use the model with the best performance with

2,000 episodes sampled from the validation set.

3.2. Results

For comparison, we exclude ones in semi-supervised and

transductive paradigms [8, 3], which use the statistics of the

novel set. We report our best model by randomly sampling

10,000 1-shot and 5-shot tasks over the test set in Tables 1.

3.3. Explainability

MTUNet is designed to be explainable in two different

aspects. Firstly, MTUNet’s decision is based on certain

combinations of learned patterns. These patterns are local-

ized in both query and support images through A(T ), which

can be easily visualized. Secondly, thanks to the one-to-

one matching strategy formulated as a binary classification
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problem in Eq. (9), the distributions (or appearances) of

learned patterns in query and support images give a strong

clue on MTUNet’s matching score s.

Pattern-based visual explanation. Figure 1 shows a pair

of support and query images in a 5-way task in mini-

ImageNet. The pairs are of category horizontal bar.

The second column shows the visualization of overall atten-

tion, given by

A′ =
1

z
A(T )

1z. (11)

For support image, we can see that the visualization of pat-

tern 1 identifies the part of the human body (head), and pat-

tern 3 appears around the hands grabbing the horizontal bar.

For the query image, patterns 1 and 3 respond in a similar

way to the support image. Patterns 4 and 5 appear in the

background and around other parts of the body, however

their responses are relatively weak. Patterns 1 and 3 may

responsible for human heads and hands grabbing the hori-

zontal bar, lead to successful classification.

Visualization of pairwise matching scores Figure 3

shows the visualization of the pairwise matching score. The

output for each pair is a value between 0 to 1 due to the sig-

moid function, whereas the scores are shown in percentage

in the figure. The combination of the support and query im-

ages of catamaran makes the full score (100%). The vi-

sualization of overall attention covers the hulls, especially

the masts, in both images, which are the main character-

istics of this category. Surprisingly, the query image for

goose gets 81% for the support image for beetle. This

may suggest that one of the patterns responds to black re-

gions and this pattern is solely used as the clue of goose.

This is a negative result for the FSL tasks because it means

the model does not generalize, but clearly demonstrates

MTUNet’s explainability on the relationship between visual

patterns and the pairwise matching scores.

3.4. Discussion

The number z of patterns. The number of patterns can

be a crucial factor for MTUNet. The test accuracies are

shown in Figure 4 for 5-way 1-shot tasks in 10,000 sampled

episodes over Dtest. The horizontal axis represents the num-

ber of patterns and the vertical axis represents the average

accuracy. Interestingly, the results show no clear tendency

with respect to z. In general, tuning over z may help gain

performance, but its impact is not significant.

Selection of categories for training PE. Our PE module

is supposed to learn common visual patterns. We use im-

ages of a certain subset of categories in Cbase to learn such

patterns in our experiments. To clarify the impact of the

choice of the subset, we randomly sample seven categories

in Cbase of mini-ImageNet for 50 times and use the corre-

sponding images for training PE on top of ResNet-18. Fig-

ure 4 shows the scatter plot of the validation accuracies and

corresponding test accuracies, which has Pearson’s correla-

tion coefficient of 0.64. This leads to the conclusion that,

at least for mini-ImageNet, we can use the validation set to

find the better choice. The green square in the plot is the

choice that we adopted in our experiments.

4. Conclusion

In this paper, we propose MTUNet designed for ex-

plainable FSL. We achieved comparable performance on

two benchmark datasets and qualitatively demonstrated its

strong explainability through patterns in images. The ap-

proach adopted in our model might be analogous to human

beings as they usually try to find shared patterns when mak-

ing a match between images of an object that one has never

seen before. This can be advantageous as the explanation

given by MTUNet can provide an intuitive interpretation of

what the model actually learns.
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