
Boosting Adversarial Robustness using Feature Level Stochastic Smoothing

Sravanti Addepalli*, Samyak Jain*, Gaurang Sriramanan*, R. Venkatesh Babu

Video Analytics Lab, Department of Computational and Data Sciences

Indian Institute of Science, Bangalore, India

Abstract

Advances in adversarial defenses have led to a signif-

icant improvement in the robustness of Deep Neural Net-

works. However, the robust accuracy of present state-of-

the-art defenses is far from the requirements in critical ap-

plications such as robotics and autonomous navigation sys-

tems. Further, in practical use cases, network prediction

alone might not suffice, and assignment of a confidence

value for the prediction can prove crucial. In this work, we

propose a generic method for introducing stochasticity in

the network predictions, and utilize this for smoothing de-

cision boundaries and rejecting low confidence predictions,

thereby boosting the robustness on accepted samples. The

proposed Feature Level Stochastic Smoothing based clas-

sification also results in a boost in robustness without re-

jection over existing adversarial training methods. Finally,

we combine the proposed method with adversarial detection

methods, to achieve the benefits of both approaches.

1. Introduction

Deep Neural Networks are susceptible to carefully

crafted imperceptible noise known as adversarial attacks

[13], which can flip their predictions to completely unre-

lated classes with high confidence. The catastrophic impact

of such attacks has led to significant interest towards build-

ing defenses against such attacks.

Adversarial training using Projected Gradient Descent

(PGD), proposed by Madry et al. in 2018 [20] has been

one of the most successful defenses so far. PGD adversar-

ial training coupled with early stopping is still one of the

leading defenses [23, 21] indicating that progress on the

front of adversarial defenses has been meager since 2018.

Schmidt et al. [26] show that adversarial training requires

significantly more data when compared to standard train-

ing. On the CIFAR-10 dataset for example, Carmon et al.

[7] demonstrate that a 7% increase in robustness requires

500K samples in addition to the 50K training samples of

*Equal contribution.

Correspondence to: Sravanti Addepalli (sravantia@iisc.ac.in)

the original dataset. However, it is not practical to assume

the availability of 10× more data for training robust models.

Another avenue of research has been towards detecting

adversarial samples [34, 24, 16, 12]. Such methods can be

used to detect whether a test sample is adversarial or not,

allowing the system to abstain from prediction on adver-

sarial samples. However, most of the detection methods

rely on identifying specific properties of adversarial images.

Hence, they work well under a black-box setting, but fail in

the presence of an adaptive adversary, whose goal is to craft

an adversarial example which is similar to the distribution

of natural images, specifically with respect to the property

that is used for detection [31].

Recent work by Stutz et al. [30] demonstrates a method

of detecting different types of adversaries using Confidence

Calibrated Adversarial Training (CCAT). The authors pro-

pose to train networks that assign very low confidence to

adversarial samples. This method is shown to induce low-

confidence predictions to adversaries constrained in other

ℓp-norm balls as well, and demonstrates remarkably high

detection accuracies, while limiting the rejection rate on

correctly classified clean samples to 1%. However, this

method is overly sensitive to even small random perturba-

tions, which could occur due to factors such as slight soil-

ing on a sensor collecting data. Based on our evaluation

on the CIFAR-10 dataset, CCAT rejects 78.60% of images

corrupted with Bernoulli noise of magnitude 1/255, while

a model with standard training has an accuracy of 92.4% on

the same (Ref: Table-3 of the Supplementary). Thus, the

model is becoming more sensitive, while the requirement

in general is to make models more robust. Additionally, as

shown in Fig.2(a) of the Supplementary, CCAT incorrectly

accepts a large fraction (36.5%) of adversarial examples at

low perturbation magnitudes (δ = 3/255) against an adap-

tive attack proposed by the authors [30].

Adversarial detection alone cannot meet the require-

ments of applications such as robotics and autonomous nav-

igation systems. As an example, at fast driving speeds, a

self-driving car abstaining from prediction can be danger-

ous, as the driver may not be able to take control instantly.

Hence we need to limit the frequency at which the system

abstains from prediction, while also being able to reject hard

images. An ideal system should therefore operate such that

weak adversaries which can be correctly classified by an

adversarially trained model are not rejected, while strong

adversaries which are likely to be misclassified are rejected.

Towards this end, we propose a unified framework that com-

bines the merits of adversarial training and detection, while

also overcoming the shortcomings of both.

We list the key contributions in our paper here:

• We propose Adversarial training using a stochastic

classifier, which enforces one of the feature layers to

follow a predefined distribution, facilitating sampling

from the same during training and deployment.

• We propose Feature Level Stochastic Smoothing to

achieve a boost in adversarial robustness over standard

deterministic classifiers.

• We use the proposed stochastic classifier for rejecting

low confidence samples, thereby resulting in a signifi-

cant boost in adversarial robustness.

• We propose metrics to evaluate classifiers which im-

prove robustness using adversarial training, while also

incorporating a rejection scheme.

• Finally, we propose a scheme of combining our ap-

proach with Confidence-Calibrated Adversarial Train-

ing (CCAT) [30], to achieve the merits of both.

The code and pretrained models are available at:

https://github.com/val-iisc/FLSS

2. Related Works

Types of Adversarial Defenses: Amongst the most

common methods used to produce robust networks is Ad-

versarial Training, wherein the network is exposed to

adversarial images during the training regime. Several

other methods relied on introducing randomized or non-

differentiable components either in the pre-processing stage

or in the network architecture, so as to minimise the effec-

tiveness of generated gradients. However, Athalye et al. [2]

broke several such defense techniques [4, 19, 11, 33, 27],

where it was shown that methods which relied on gradi-

ent obfuscation were not truly robust, as gradient masking

effects could be successfully circumvented by an adaptive

adversary. Though our method uses stochastic elements,

the network remains completely differentiable end-to-end

through the reparamaterisation trick, akin to that used in

Variational Autoencoders [17], and does not rely on gradi-

ent obfuscation to achieve robustness. Further, we present

a thorough evaluation of our model based on attacks intro-

duced in [2] to verify the same.

Adversarial Training based Defenses: Madry et al.

[20] proposed training on multi-step adversaries generated

using Projected Gradient Descent (PGD), so as to minimise

the worst-case loss within the given constraint set. PGD

based training continues to be one of the most effective de-

fenses against adversarial attacks known till date. He et

al. [15] proposed to inject trainable Gaussian noise in the

weights of the network as a regularization method while

performing standard PGD training. This transforms the

weight tensor to a noisy one, wherein the variance of the

added Gaussian is parameterized and trainable. Further,

Zhang et al. [36] introduced a framework to trade-off clean

accuracy for adversarial robustness, using a multi-step train-

ing method called TRADES. Though TRADES was shown

be more effective than PGD training, recent works such as

that of Rice et al. [23] indicate that high capacity models

trained using PGD with early stopping can achieve simi-

lar, if not better results. Following this, Pang et al. [21]

showed that by tuning parameters such as weight decay and

the step learning rate schedule, TRADES can achieve better

robust accuracy compared to that of Rice et al. The cur-

rent state-of-the-art robust accuracy is achieved using Ad-

versarial Weight Perturbation (AWP) [32] where the loss

maximization is done with respect to both input pixels and

weight space of the network. Minimizing loss on a proxy

network with perturbed weights is shown to result in signif-

icantly improved generalization to the test set, owing to the

improved flatness of loss landscape. While the AWP formu-

lation can be combined with any defense, AWP-TRADES

achieves the state-of-the-art results currently.

Detection of Adversarial Examples: Another avenue

of research in this field has been towards addressing the de-

tection of adversarial perturbations. Gosh et al. [12] use a

VAE with Gaussian Mixture density to perform threshold-

ing based on the distance between the encoding of an input

sample and the encoding of the predicted class label, com-

bined with thresholding of the reconstruction error obtained

from the decoder. However, this method is not scalable to

datasets such as CIFAR-100, with a large number of classes.

Several other detection methods exist which seek to ex-

ploit the differences between clean and adversarial samples

with respect to a given property. However, such methods are

often effective only in black-box settings, and are suscepti-

ble to adaptive attacks in a white-box setting. Tramer et al.

[31] systematically evaluate several defense methods, com-

prising both adversarial training as well as detection meth-

ods. The authors show that with carefully crafted adaptive

attacks, several detection methods [24, 34, 16] could be cir-

cumvented. The detection method by Roth et al. [24] relies

on the fact that network outputs of adversarial samples ex-

hibit higher sensitivity to input noise when compared to nat-

ural images. The method incorporates thresholding of log-

its, which inherently assumes that adversarially perturbed

samples either have highly confident scores for the incor-

rect class or lie abnormally close to decision boundaries, de-

pending on the nature of the attack used (such as PGD [20]

or CW [6] attacks). This detection method could be com-

promised using a feature level attack [25], which attempts

to generate adversarial examples that exhibit properties of

natural images by utilizing a guide image from a different

class. We show that our method is robust against this class

of feature level adversaries with different loss functions as

well (Ref: Table-9 of the Supplementary).

Randomized Smoothing (RS): Cohen et al. [8] pro-

posed the addition of Gaussian noise to input images during

inference, in order to generate models that are certifiably

robust to perturbations that lie within a specified ℓ2 norm

bound. The addition of Gaussian random noise can be used

to produce a distribution of network predictions; a p-test on

the top two most frequently predicted classes can then be

utilised to identify the confidence level of the final averaged

prediction. A given image can be rejected if its averaged

prediction confidence lies below a pre-set threshold. In this

work, we propose to add Gaussian noise in feature space

and train the model to produce consistent predictions across

multiple samples drawn. We obtain improved performance

when compared to randomized smoothing baselines.

3. Preliminaries

In this paper, we consider a stochastic classifier Cθ, that

maps an input image x to its corresponding softmax out-

put Cθ(x, ǫ) after sampling a noise vector ǫ from a fixed

probability distribution such as the Standard Normal distri-

bution N (0, I) with zero mean, and Identity covariance ma-

trix. The stochastic classifier has two primary components:

an Encoder network E = {µθE ,ΣθE}, and a Multi-layer

Perceptron M (consisting of one or more layers), such that:

Cθ(x, ǫ) = M(µθE (x) + ΣθE (x)⊙ ǫ)

where ⊙ denotes element-wise multiplication. For an image

x, we denote its corresponding ground-truth label as y. For

a given sampled noise vector ǫ, we denote the cross-entropy

loss for a data sample {x, y} as ℓCE(Cθ(x, ǫ), y). Further,

given a clean image x, we denote an adversarially modi-

fied counterpart as x̃. In this paper, we primarily consider

adversaries that are constrained in ℓ∞ norm of δ = 8/255:

A(x) = {x̃ : ||x− x̃||∞ ≤ δ}

4. Proposed Approach

In this section, we discuss the proposed approach in de-

tail. We first discuss the proposed stochastic smoothing

based classifier, followed by details on how such classifiers

can be used to boost adversarial robustness.

4.1. Feature Level Stochastic Smoothing

Standard classifiers are deterministic and can be defined

as a function mapping from input space to output space,

Figure 1. Decision boundaries (in feature space) of (a) Standard

Classifier and (b) Feature Level Stochastic Smoothing based Clas-

sifier. The data sample which belongs to the class C2 gets incor-

rectly predicted as C4 in (a), whereas in (b) it is predicted correctly

as C2. The smoothed classifier considers a majority vote over sam-

ples within the local neighborhood of the image as shown in (a).

Σ

μ

SO
FT

M
A

X

Encoder (ResNet-18 backbone) MLP

C(x,ε)x

Figure 2. Feature Level Stochastic Smoothing Classifier: The net-

work is trained such that output of the encoder follows a fixed

distribution, thereby enabling sampling from this layer to generate

a randomized pool of network outputs for a given input x.

leading to a unique output for every possible input in the do-

main of the function. Deep Networks can be used as deter-

ministic classifiers and are known to achieve very high clas-

sification performance. However, training Deep Networks

using the standard cross-entropy loss is known to force the

network to predict outputs with a high confidence, even for

out-of-distribution samples. Several methods [35, 30, 22]

have been proposed to overcome this, allowing the confi-

dence predictions of the classifier to be more informative.

Some of these methods are also known to generate smoother

decision boundaries [35].

In contrast to deterministic classifiers, some classifiers

introduce stochasticity during training, typically for their

regularizing effect. Randomness during test time is not

preferred, as many applications require consistency in pre-

dictions while being deployed. This is avoided by taking

expectation over the random components during test time

either analytically, as done in dropout [29], or by finding

a sample mean using a sufficiently large number of sam-

ples during test time, as done in randomized smoothing [8].

In this work, we propose Feature Level Stochastic Smooth-

ing based classification, which enforces one of the feature

layers to follow a predefined distribution such as the stan-

dard normal distribution, thereby facilitating sampling from

the same during training and deployment. We use this to

achieve the dual objective of smoothing decision bound-

aries, and for generating multiple randomized predictions

for rejection. The diagram in Fig.1 shows that feature space

decision boundaries of standard classifiers tend to be highly

non-smooth, primarily due to the high dimensionality of the

network parameters, leading to poor generalization, specif-

ically to out-of-distribution samples. On the other hand,

in the proposed method, we generate predictions by tak-

ing an expectation over randomized feature vectors, lead-

ing to smoother decision boundaries and better generaliza-

tion. The expectation is approximated using a sample mean,

and consistency among all outputs is used to estimate confi-

dence of the prediction and decide whether the input sample

should be rejected.

An implementation of the proposed Feature Level

Stochastic Smoothing Classifier is shown in Fig.2. Moti-

vated by the Variational Autoencoder formulation [17], we

enforce the encoder network to predict mean (µθE) and vari-

ance (ΣθE) vectors for each input sample, and use the repa-

rameterization trick for ease of backpropagation. Hence,

rather than sampling directly from the mean and variance

predicted by the network, we sample from the standard nor-

mal distribution and pass µθE + ΣθE ⊙ ǫ to the rest of the

network. The sampled feature vector is passed as input to

the multi-layer perceptron head for the final classification.

Every sampled feature vector gives a different random pre-

diction. We describe the algorithm used for training and

inference during test time in the following sections.

4.2. Training Algorithm

The proposed method uses feature level stochastic

smoothing discussed in the above section for training ro-

bust classifiers. The algorithm for training is shown in

Algorithm-1. For ease of notation, we consider a single

sample at a time in the algorithm, however the training is

done using mini-batches of size 128. In every mini-batch,

two steps of training are done. The first step is meant for

training on adversarial samples, while the second step uses

only clean samples for training. We use adversarial samples

constrained within an ℓ∞ norm of δ = 8/255 for training.

An adversarial sample is generated using a 10-step PGD at-

tack [20] and a 11th AWP step [32]. An adversarial sample

is initialized by combining an input image with noise sam-

pled from U(−δ, δ), and is passed through the encoder E.

A random vector, ǫ is sampled from the Standard Normal

distribution and the reparameterized vector, µθE +ΣθE ⊙ ǫ
is passed on to the MLP. Cross entropy loss is computed

at the output of the network, and is maximized over 10 it-

erations to find the perturbed image. Following this, a 11th

iteration is used to perturb the network weights to maximize

the training loss in Eq.1 using AWP [32]. During all 11 it-

erations, the same initial sampled ǫ value is used in order to

ensure that the maximization objective remains consistent

throughout. The adversary corresponding to the image xi

is denoted by x̃i and is used in the following loss which is

minimized during the first step of training:

L = ℓCE(Cθ(x̃i, ǫ), yi) +KL1 +KL2 +KL3 (1)

The first loss term corresponds to the cross-entropy loss

on adversarial samples, as utilised in PGD adversarial train-

ing [20] to obtain robust models. As shown in Algorithm-1

(L-6), KL1 denotes the Kullback-Leibler (KL) divergence

between the Gaussian distribution N (E(xi)) corresponding

to the clean sample and the Standard Normal distribution.

This term is adapted from the Variational Autoencoder [17]

setting, and is crucial to enforce the feature representations

to follow a known distribution, which in this case is a Stan-

dard Normal distribution. The KL2 term (L-7 in Algo.1) is

the KL divergence between the Gaussian distributions cor-

responding to a pair of adversarial and clean samples. This

aids the encoder to learn a smooth function mapping in the

ℓ∞ ball of radius δ around each image, thereby assisting the

adversarial training of the network. We use the closed form

expression of KL divergence between two Gaussian distri-

butions for the realization of KL1 and KL2. We addition-

ally minimize KL3 (L-8 in Algo.1), which is the KL diver-

gence between the softmax outputs of an adversarial image

with and without sampling. This encourages the network to

produce consistent predictions across various samples of an

adversarial image.

In the second step, the network is trained on clean sam-

ples using the following losses:

L = ℓCE(Cθ(xi, ǫ
′), yi) +KL1 +KL4 (2)

Here, the first term denotes the cross-entropy loss on

clean samples, and the second term, KL1 denotes the objec-

tive of enforcing the output of encoder to follow a Standard

Normal distribution, as seen earlier. The third term, KL4

(L-13 in Algo.1), is the KL divergence between the soft-

max predictions of a clean image and a sampled clean im-

age. This loss is crucial to ensure consistency in predictions

across various samples of a given clean image, thereby lead-

ing to improved non-rejection of clean samples. We present

ablation experiments in Table-2 of the Supplementary, to

highlight the significance of each of the loss terms.

4.3. Rejection Scheme

In addition to the goal of improving adversarial robust-

ness, the proposed method also rejects samples which are

hard to classify, thereby leading to a boost in the accuracy of

accepted samples. In this section, we discuss details on the

rejection scheme proposed to be used during deployment of

the classifier. Every test sample would be passed through

the Encoder network in order to obtain its corresponding

mean and variance vectors. At the output of the encoder,

N vectors are sampled from the Gaussian corresponding to

these mean and variance vectors, and are further propagated

through the MLP network to obtain N softmax vectors.

As discussed in Section-4.1, introduction of stochastic-

ity during training is generally coupled with the use of ex-

pected value during test time, in order to obtain regularized

Algorithm 1 Adversarial Training using Feature Level

Stochastic Smoothing Classifier

1: Input: Classifier Network Cθ (with parameters θ, En-

coder E = {µθE ,ΣθE}, MLP M), Training Data

{xi, yi}
K
i=1, Epochs T , Learning Rate η, Adversarial

Perturbation function A(Cθ(x, ǫ), y)
2: for epoch = 1 to T do

3: for i = 1 to K do

4: Sample ǫ ∼ N (0, I)
5: x̃i = A(Cθ(xi, ǫ), yi)
6: KL1 = KL

(
N (E(xi))||N (0, I)

)

7: KL2 = KL
(
N (E(x̃i))||N (E(xi))

)

8: KL3 = KL
(
Cθ(x̃i, ǫ)||Cθ(x̃i, 0)

)

9: L = ℓCE(Cθ(x̃i, ǫ), yi) +KL1 +KL2 +KL3

10: θ = θ − η · ∇θL
11: Sample ǫ′ ∼ N (0, I)
12: KL1 = KL

(
N (E(xi))||N (0, I)

)

13: KL4 = KL(Cθ(xi, ǫ
′)||Cθ(xi, 0))

14: L = ℓCE(Cθ(xi, ǫ
′), yi) +KL1 +KL4

15: θ = θ − η · ∇θL
16: end for

17: end for

and deterministic outputs. In the absence of an analytical

expression for the expectation, a sample mean over all N

probability vectors can be used. It is to be noted that, as

N approaches infinity, the sample mean would approach the

expected value. Thus, higher values of N lead to much bet-

ter estimates of the network output as shown in Fig.1(a) in

the Supplementary, while they add to the test time complex-

ity. We choose N to be 100 for our experiments. Since the N

additional forward propagations are done only on the MLP,

the test time overhead is insignificant for N = 100. We

note that the increase is computational cost is 2% with 100
times sampling when parallelized on Nvidia-2080Ti.

In the proposed rejection scheme, we first find the class

predictions for each of the N sampled outputs. Further, we

define the class with maximum number of predictions (ma-

jority vote class) to be the class predicted by the Smoothed

Classifier. We set rejection threshold based on frequency

of the predicted class, which serves as a proxy to the confi-

dence of prediction. If the frequency of the predicted class

is below a predefined threshold f , the classifier rejects the

sample, otherwise it returns the most frequent class as its

prediction. We empirically find that the majority vote based

rejection scheme leads to better improvements in robust ac-

curacy, when compared to a rejection scheme based on find-

ing sample mean across softmax predictions.

We discuss the important metrics for our proposed clas-

sifier along with the method used for selecting threshold in

the following section.

4.4. Evaluation Metrics

The commonly used evaluation metrics for adversarially

trained classifiers are accuracy on clean (or natural) sam-

ples, Accnat and accuracy on adversarial samples, Accadv .

For methods which detect adversarial samples, the impor-

tant metrics include True Positive Rate (TPR) and False

Positive Rate (FPR), where the case of rejection is set to be

the positive class. While it is important to ensure that all ad-

versaries are detected (TPR), it is also necessary to limit the

number of clean samples which are incorrectly predicted as

adversarial, and hence rejected (FPR). The proposed classi-

fier combines both adversarial training as well as detection,

and therefore requires novel metrics which can better mea-

sure the effectiveness of the method.

Selection of threshold for rejection: We select the

threshold for rejection such that not more than 10% of the

clean samples are correctly classified and rejected [30]. It is

to be noted that this metric is independent of the clean ac-

curacy of the classifier, and hence the number of correctly

classified clean samples that are allowed to be rejected are

the same across all baselines for a given dataset. In practice,

a hold-out validation set can be used for finding this thresh-

old. However, in order to strictly ensure a fair comparison

between baselines and the proposed method, we use the test

set to find the threshold.

Metrics used for evaluation: We explain the termi-

nology and metrics used for our evaluations here. We de-

note the accuracy on natural samples and adversarial sam-

ples in the No Sampling (NS) case by Accnat,NS and

Accadv,NS respectively. In the proposed classifier, this met-

ric is calculated by passing the mean vector from the en-

coder output directly to the MLP, without considering the

variance. Accnat,0% and Accadv,0% denote the accuracy

without rejection (but with sampling) on natural samples

and adversarial samples respectively, while Accnat,10% and

Accadv,10% denote the same with the rejection threshold set

to 10%. For defining Accadv,10%, we consider the worst

case attack for every data sample as recommended by Car-

lini et al. [5]. The calculation of this metric along with other

important metrics is described below.

Worst case robustness evaluation with rejection: For

a data sample {xi, yi}, we denote the predicted label using

any given classifier C by C(xi) and the decision of the re-

jection scheme (detector) by D(xi). D(xi) = 1 denotes the

case where the sample is rejected, while D(xi) = 0 means

that the sample is accepted by the classifier for prediction.

We denote the set of all perturbations of a data sample

xi, within the threat model defined in Section-3, by A(xi).
We define SFC (FC: Flag Correct) to be the set of all

images which are not rejected by any adversary, and are

predicted correctly by the classifier as shown below:

SFC = {i : D(x̃i) = 0 , C(x̃i) = yi ∀ x̃i ∈ A(xi)} (3)

SFW (FW: Flag Wrong) is defined as the set of all accepted

images, incorrectly predicted for at least one attack:

SFW = {i : ∃ x̃i ∈ A(xi) : D(x̃i) = 0, C(x̃i) 6= yi} (4)

SFC is computed in practice by obtaining the indices of cor-

rectly classified accepted samples for each attack, and find-

ing an intersection of all such sets. Similarly, SFW is com-

puted by finding the indices of incorrectly classified sam-

ples which are accepted for each attack, and subsequently

finding a union across all such sets.

SFC =
⋂

i
SFC,attacki

, SFW =
⋃

i
SFW,attacki

(5)

We define the metrics FC and FW as the percentage of im-

ages that belong to the sets SFC and SFW respectively as

follows, where X denotes the test set:

FC =
|SFC |

|X |
· 100 , FW =

|SFW |

|X |
· 100 (6)

We define the worst case robust accuracy on accepted

samples to be the fraction of samples which are always ac-

cepted and correctly classified, under any possible adver-

sarial attack. This fraction is defined on the set of images

which are either always correctly classified, or are incor-

rectly predicted by at least a single attack.

Accadv,10% =
|SFC |

|SFC |+ |SFW |
· 100 (7)

We define R to be the set of all images which can be

rejected using at least a single attack. MPR (Maximum

Percentage Rejection) is defined as the maximum percent-

age of samples that can be rejected by the model.

R = {i : ∃ x̃i ∈ A(xi) : D(x̃i) = 1}, MPR =
|R|

|X |
· 100

(8)

For adversarial detection methods, MPR would be equal

to 100% in the ideal case, as the goal of such methods is to

reject all adversarial samples. This makes them susceptible

to adversaries who aim to get all input images rejected.

5. Experiments and Results

We report results on the standard benchmark datasets,

CIFAR-10 and CIFAR-100 [18]. We use ResNet-18 archi-

tecture [14] for all the experiments. We report all results

with an ℓ∞ constraint of 8/255. We present more details on

datasets, training settings and results in the Supplementary.

5.1. Baselines

In this paper, we approach the problem of improving

the adversarial robustness of Deep Networks and rejecting

low confidence samples in parallel. There is no prior work

which we can directly compare our results with. Stutz et

al. [30] show that confidence thresholding of state-of-the-

art models such as PGD [20] and TRADES [36] give the

best results for detection as well, when limited to a well-

defined threat model. Therefore, PGD, TRADES and AWP

[32] trained models can be used to achieve the combined

goal of improving adversarial robustness, and also rejecting

low confidence samples. We use these models combined

with confidence thresholding as our primary baselines. If

the confidence of the predicted class is lower than a prede-

fined threshold, the samples are rejected, otherwise a clas-

sification output is predicted. The rejection threshold is set

based on the same criteria as that defined in Section-4.4.

In addition to the baselines discussed above, we also

consider the baselines PGD (Noise) and TRADES (Noise).

These baselines are same as PGD or TRADES during train-

ing, however they differ during test time. For every test im-

age, we generate 100 noise images by sampling each pixel

from U [−32/255, 32/255] distribution. Each of these at-

tack images is added to the test image, to generate 100

samples of the test image. These 100 samples are passed

through the network to generate 100 softmax vectors. We

implement the same rejection scheme that is used in the pro-

posed approach for generating the predictions and for re-

jecting low confidence samples. For this baseline, reducing

noise results in a very low rejection percentage, whereas in-

creasing noise reduces the accuracy on clean samples sig-

nificantly. We add noise only during inference (and not

training) since we empirically find that training such mod-

els with Gaussian Noise augmentations results in degraded

performance.

We consider the baseline of Randomized smoothing

(RS) [8], where we train the model as described by the au-

thors. We also consider a baseline which combines Ran-

domized Smoothing with the TRADES defense, as pro-

posed by Blum et al. [3], and reject images if the most fre-

quently predicted class is less than a pre-defined threshold

value. For the baseline using Parametric Noise Injection

(PNI) [15], we utilize the stochasticity of the model to find

a threshold corresponding to the criteria of rejecting 10%
correctly classified natural images.

We further compare our method with the work by Stutz

et al. [30], although they primarily prove robustness to un-

seen threat models, while in this work, we consider the ro-

bustness within a well defined threat model.

5.2. Attacks considered for Evaluation

The evaluations are done to predict the worst case accu-

racy across an ensemble of attacks. Across all evaluations

(unless specified otherwise), we set the rejection thresh-

old such that not more than 10% of the clean samples are

correctly classified and rejected. The metrics discussed in

Section-4.4 are reported.

Table 1. White-Box Evaluation: Performance (%) of models under an ensemble of 6 attacks : PGD, APGD-CE, APGD-DLR [10], PGD-

CW [6], GAMA-PGD and GAMA-MT [28]. FC denotes the % of samples which are correctly classified and accepted for all attacks. FW

denotes the % of samples which are accepted and incorrectly classified by at least one attack. MPR denotes the max % rejected samples.

Method Thresholding Accnat,NS ↑ Accnat,0% ↑ Accnat,10% ↑ Accadv,NS ↑ Accadv,0% ↑ Accadv,10% ↑ FC ↑ FW ↓ MPR

CIFAR-10

PGD-AT [20, 23, 21] Confidence 83.80 83.80 91.93 49.07 49.07 51.15 43.99 42.00 44.19

TRADES [36] Confidence 81.77 81.77 90.26 49.43 49.43 51.85 44.13 40.97 44.34

AWP [32] Confidence 80.58 80.58 89.14 49.80 49.80 53.01 44.06 39.05 44.01

CCAT [30] Confidence 89.92 89.92 97.52 0.00 0.00 0.00 0.00 8.52 100.00

FLSS (Ours) (SD=1) Confidence 80.51 80.51 89.10 50.64 50.64 54.06 42.28 35.84 42.18

FLSS (Ours) (SD=2) Maj. Vote 80.51 77.68 89.63 50.64 51.00 56.16 43.16 33.69 47.42

CCAT [30] + FLSS (Ours) Conf + Maj. Vote 80.51 - 89.10 50.64 - 56.16 43.16 33.69 47.42

CIFAR-100

PGD-AT [20, 23, 21] Confidence 56.13 56.13 74.30 25.40 25.40 26.06 23.30 66.08 59.08

TRADES [36] Confidence 57.84 57.84 74.09 24.33 24.33 23.84 22.70 72.49 57.12

AWP [32] Confidence 58.21 58.21 74.31 25.16 25.16 25.07 23.43 70.01 55.77

FLSS (Ours) (SD=1) Confidence 51.86 51.86 70.86 25.57 25.57 28.79 23.51 58.14 56.48

FLSS (Ours) (SD=2) Maj. Vote 51.86 47.50 74.35 25.57 25.57 29.95 22.01 51.46 65.61

Table-1 in the Supplementary shows results of the pro-

posed approach and baseline models against an ensemble of

five attacks: Projected Gradient Descent (PGD) with fixed

step size, AutoPGD with Cross-Entropy loss (APGD-CE)

and Difference of Logits Ratio Loss (APGD-DLR) [10],

Fast Adaptive Boundary Attack (FAB) [9] and Square At-

tack [1]. The first four comprise of some of the strongest

known white-box attacks, while Square attack is a query

based black-box attack. We use 100 steps each for PGD,

APGD-CE, APGD-DLR and FAB attack, and use 5000

queries for the Square attack. We observe that the pro-

posed method achieves significantly better adversarial per-

formance across different metrics. Based on these results,

we select the following strong baselines for evaluations in

the main paper: PGD, TRADES and AWP with confidence

thresholding, and CCAT.

For our main evaluations in Table-1, we use the follow-

ing ensemble of 100-step attacks, which were able to reli-

ably estimate the worst-case performance of networks be-

fore and after rejection, at a reasonable computational bud-

get: PGD [20], APGD-CE, APGD-DLR [10], PGD with

CW loss [6], GAMA-PGD and GAMA-MT [28]. While

AutoAttack [10] is strong enough to estimate robustness be-

fore rejection, we find that Maximum-Margin based attacks

such as PGD with CW loss, GAMA-PGD and GAMA-MT

are significantly better at estimating the true robustness af-

ter rejection, possibly because rejection implicitly relies on

the confidence-margin of predictions.

5.3. Results

Test-time prediction using the proposed method (FLSS)

involves sampling 100 times from the latent space, after

which the majority vote class is predicted. While we use

a Standard Normal distribution N (0, I) for sampling dur-

ing training, the use of different scaling factors for stan-

dard deviation at test time can result in different robustness-

accuracy trade-offs. For example, as shown in the CIFAR-

10 results in Table-1, we achieve 2.1% higher robust accu-

racy after rejection (Accadv,10%) using standard deviation

scaling of 2 (SD = 2), when compared to 1. While the

clean accuracy without rejection (Accnat,0%) for SD = 2 is

2.83% lower than the case with SD = 1, we achieve higher

natural accuracy after rejection (Accnat,10%) at SD = 2,

which is the main metric to consider. Therefore, we achieve

better clean accuracy (Accnat,10%) and adversarial robust-

ness (Accadv,10%) after rejection using SD = 2. We em-

pirically find that increasing the scaling factor does not im-

prove performance further. Hence, we consider SD = 2 as

our primary approach across all datasets.

Overall, the important evaluation metrics to consider

are natural accuracy (Accnat,10%) and robust accuracy

(Accadv,10%) after rejection. We note that the proposed

method FLSS (SD = 2) achieves a significantly higher

robust accuracy after rejection (Accadv,10%) when com-

pared to the baselines across both datasets, at a compara-

ble value of clean accuracy after rejection (Accnat,10%).

While the clean accuracy of CCAT [30] is exceptionally

high (97.52%), the results of CCAT cannot be directly com-

pared with ours, as CCAT is an algorithm for detection of

adversaries. We discuss CCAT in detail in Section-5.4.

For CIFAR-10, we obtain an improvement of 3.15% on

the Accadv,10% metric over the strongest baseline (AWP

[32]). For CIFAR-100 we achieve an improvement of

3.89% over PGD-AT [20, 21, 23], which is the strongest

baseline. We also obtain the best Clean Accuracy after

rejection (Accnat,10%) when compared to all baselines on

CIFAR-100.

5.4. Combining FLSS with CCAT

As discussed in Section-1, although CCAT [30] achieves

remarkably high detection accuracy while limiting the re-

jection percentage on correctly classified clean samples to

1%, it is overly sensitive to adversarial examples and ran-

dom perturbations at low magnitudes. In some cases it

achieves a very high rejection rate on easy samples, and

in others it causes high misclassification on accepted sam-

ples. While the proposed approach (FLSS) achieves a sig-

nificantly higher accuracy on adversarial samples after re-

jection (Accadv,10%), we limit the rejection percentage of

correctly classified clean images to 10%, which is much

higher than that considered in CCAT (1%). Although Table-

1 reports CCAT results with a threshold of 10%, the authors

achieve the claimed results with a threshold of 1%.

We propose to achieve the merits of CCAT and FLSS

(Ours) by using a combination of both models during test-

time. The test samples would first be evaluated using CCAT

to obtain a decision of Accept or Reject. Samples accepted

by CCAT would be evaluated using FLSS without sampling

in latent space, while samples rejected by CCAT would be

evaluated using FLSS with a threshold corresponding to

the 10% rejection criteria. Therefore, samples accepted by

CCAT cannot be rejected by FLSS, ensuring that clean and

correctly classified samples have a rejection threshold of 1%
similar to CCAT. Adversarial examples which are rejected

by CCAT would have a higher accuracy, since they are pre-

dicted or rejected using FLSS which is adversarially trained.

Images corrupted with low magnitude random noise, which

are rejected by CCAT would be accurately predicted by

FLSS, thereby improving the sensitivity of the overall sys-

tem against random noise.

The plots in Fig.2 of the Supplementary show results

against the adaptive attack considered by Stutz et al. [30],

which is a variant of maximum-margin loss coupled with

momentum and backtracking. Against CCAT, this attack

causes a high FW (accepted and incorrectly predicted im-

ages) in the range of δ ∈ [2/255, 5/255], despite having a

very high Rejection rate (R). In fact, rejection causes Robust

Accuracy in CCAT to reduce, indicating that misclassified

samples are not being rejected. Such low magnitude adver-

sarial examples can be reliably predicted using FLSS, since

it is adversarially trained. This results in a significant reduc-

tion in Rejection rate and boost in Accadv,10% when CCAT

is combined with FLSS.

The results of the combined method (CCAT + FLSS)

are presented for CIFAR-10 dataset in Table-1. The clean

accuracy corresponds to the No-Sampling case, while the

adversarial accuracy is similar to FLSS (SD = 2). The

pre-trained model available on the CCAT GitHub reposi-

tory has been used for CIFAR-10. We do not report CCAT

results on CIFAR-100 since the pre-trained model is not

available. Therefore, the method that combines FLSS with

CCAT achieves the merits of both. We achieve the results

similar to FLSS at a threshold corresponding to 1% rejec-

tion of clean samples which are correctly predicted.

5.5. Evaluation against EOT attack

Since the proposed method utilizes randomization dur-

ing inference, we evaluate its performance against Expecta-

tion over Transformation (EOT) attacks [2] (Table-4 in the

Supplementary). We forward propagate each input image

k times and use the average gradient direction to find the

adversary. This is needed only for defenses which include

randomization, and hence is not required for the baselines.

We find that EOT attack is not stronger than the standard

PGD attack, indicating that the gradients in the standard at-

tacks are reliable to produce sufficiently strong attacks.

5.6. Checks to ensure absence of Gradient Masking

We evaluate the model against stronger multi-step at-

tacks and attacks with multiple random restarts and observe

that the model trained using the proposed approach is stable

to attacks with 1000 steps and 10 random restarts (Tables-7

and 8 in the Supplementary). Further, as suggested by Atha-

lye et al. [2], we perform the standard sanity checks and find

that the proposed approach does not show gradient masking.

We show evaluations of our model against the gradient-free

attack, Square, in Tables-5 and 6 of the Supplementary. We

note that gradient based attacks are stronger, thereby con-

firming the absence of gradient masking. We also evaluate

our model against transfer-based black-box attacks (Tables-

5 and 6 in the Supplementary) and note that they are signif-

icantly weaker than the other white-box attacks.

6. Conclusions

In this work, we seek to combine the desirable char-

acteristics of adversarial training methods with detection

techniques, while overcoming the deficiencies of both ap-

proaches. We propose adversarial training with Feature

Level Stochastic Smoothing, wherein we utilise random

smoothing of latent space features to obtain effectively

smoother decision boundaries. Further, by enforcing the la-

tent space to follow a fixed probability distribution during

the training regime, we generate multiple predictions dur-

ing inference, and subsequently assign a confidence score

to each input sample based on consistency of predictions.

By rejecting low confidence adversaries, we obtain a signif-

icant boost in performance on accepted samples over a wide

range of attacks. Further, we demonstrate that by combin-

ing a popular adversarial detection method CCAT with the

proposed approach, we achieve the merits of both methods.

7. Acknowledgements

This work was supported by Uchhatar Avishkar Yojana

(UAY) project (IISC 10), MHRD, Govt. of India.

References

[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flam-

marion, and Matthias Hein. Square attack: a query-efficient

black-box adversarial attack via random search. arXiv

preprint arXiv:1912.00049, 2019.

[2] Anish Athalye, Nicholas Carlini, and David Wagner. Ob-

fuscated gradients give a false sense of security: Circum-

venting defenses to adversarial examples. arXiv preprint

arXiv:1802.00420, 2018.

[3] Avrim Blum, Travis Dick, Naren Manoj, and Hongyang

Zhang. Random smoothing might be unable to certify ℓ∞

robustness for high-dimensional images. arXiv preprint

arXiv:2002.03517, 2020.

[4] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfel-

low. Thermometer encoding: One hot way to resist adver-

sarial examples. In International Conference on Learning

Representations, 2018.

[5] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland

Brendel, Jonas Rauber, Dimitris Tsipras, Ian Goodfellow,

and Aleksander Madry. On evaluating adversarial robust-

ness. arXiv preprint arXiv:1902.06705, 2019.

[6] Nicholas Carlini and David Wagner. Towards evaluating the

robustness of neural networks. In 2017 IEEE Symposium on

Security and Privacy (SP), pages 39–57. IEEE, 2017.

[7] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C

Duchi, and Percy S Liang. Unlabeled data improves adver-

sarial robustness. In Advances in Neural Information Pro-

cessing Systems, pages 11192–11203, 2019.

[8] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certi-

fied adversarial robustness via randomized smoothing. arXiv

preprint arXiv:1902.02918, 2019.

[9] Francesco Croce and Matthias Hein. Minimally distorted

adversarial examples with a fast adaptive boundary attack.

arXiv preprint arXiv:1907.02044, 2019.

[10] Francesco Croce and Matthias Hein. Reliable evalua-

tion of adversarial robustness with an ensemble of diverse

parameter-free attacks. arXiv preprint arXiv:2003.01690,

2020.

[11] Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D.

Bernstein, Jean Kossaifi, Aran Khanna, Zachary C. Lipton,

and Animashree Anandkumar. Stochastic activation pruning

for robust adversarial defense. In International Conference

on Learning Representations, 2018.

[12] Partha Ghosh, Arpan Losalka, and Michael J Black. Re-

sisting adversarial attacks using gaussian mixture variational

autoencoders. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 33, pages 541–548, 2019.

[13] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. arXiv

preprint arXiv:1412.6572, 2014.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[15] Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. Paramet-

ric noise injection: Trainable randomness to improve deep

neural network robustness against adversarial attack. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 588–597, 2019.

[16] Shengyuan Hu, Tao Yu, Chuan Guo, Wei-Lun Chao, and Kil-

ian Q Weinberger. A new defense against adversarial images:

Turning a weakness into a strength. In Advances in Neural

Information Processing Systems, pages 1635–1646, 2019.

[17] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[18] Alex Krizhevsky et al. Learning multiple layers of features

from tiny images. 2009.

[19] Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudan-

thi Wijewickrema, Grant Schoenebeck, Michael E. Houle,

Dawn Song, and James Bailey. Characterizing adversarial

subspaces using local intrinsic dimensionality. In Interna-

tional Conference on Learning Representations, 2018.

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Tsipras Dimitris, and Adrian Vladu. Towards deep learn-

ing models resistant to adversarial attacks. In International

Conference on Learning Representations (ICLR), 2018.

[21] Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun

Zhu. Bag of tricks for adversarial training. arXiv preprint

arXiv:2010.00467, 2020.

[22] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz

Kaiser, and Geoffrey Hinton. Regularizing neural networks

by penalizing confident output distributions. arXiv preprint

arXiv:1701.06548, 2017.

[23] Leslie Rice, Eric Wong, and J Zico Kolter. Overfit-

ting in adversarially robust deep learning. arXiv preprint

arXiv:2002.11569, 2020.

[24] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The

odds are odd: A statistical test for detecting adversarial ex-

amples. arXiv preprint arXiv:1902.04818, 2019.

[25] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J

Fleet. Adversarial manipulation of deep representations.

arXiv preprint arXiv:1511.05122, 2015.

[26] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal

Talwar, and Aleksander Madry. Adversarially robust gener-

alization requires more data. In Advances in Neural Infor-

mation Processing Systems, pages 5014–5026, 2018.

[27] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Er-

mon, and Nate Kushman. Pixeldefend: Leveraging genera-

tive models to understand and defend against adversarial ex-

amples. In International Conference on Learning Represen-

tations, 2018.

[28] Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, and

R Venkatesh Babu. Guided Adversarial Attack for Evalu-

ating and Enhancing Adversarial Defenses. In Advances in

Neural Information Processing Systems (NeurIPS), 2020.

[29] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way

to prevent neural networks from overfitting. The journal of

machine learning research, 15(1):1929–1958, 2014.

[30] David Stutz, Matthias Hein, and Bernt Schiele. Confidence-

calibrated adversarial training: Generalizing to unseen at-

tacks. In Proceedings of the International Conference on

Machine Learning, 2020.

[31] Florian Tramer, Nicholas Carlini, Wieland Brendel, and

Aleksander Madry. On adaptive attacks to adversarial ex-

ample defenses. arXiv preprint arXiv:2002.08347, 2020.

[32] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial

weight perturbation helps robust generalization. Advances in

Neural Information Processing Systems, 33, 2020.

[33] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and

Alan Yuille. Mitigating adversarial effects through random-

ization. In International Conference on Learning Represen-

tations, 2018.

[34] Xuwang Yin, Soheil Kolouri, and Gustavo K Rohde. Adver-

sarial example detection and classification with asymmetri-

cal adversarial training. arXiv preprint arXiv:1905.11475,

2019.

[35] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. arXiv preprint arXiv:1710.09412, 2017.

[36] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing,

Laurent El Ghaoui, and Michael I Jordan. Theoretically

principled trade-off between robustness and accuracy. arXiv

preprint arXiv:1901.08573, 2019.

