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Abstract

Data-driven sensor interpretation in autonomous driv-

ing can lead to highly implausible predictions as can most

of the time be verified with common-sense knowledge. How-

ever, learning common knowledge only from data is hard

and approaches for knowledge integration are an active re-

search area. We propose to use a partly human-designed,

partly learned set of rules to describe relations between ob-

jects of a traffic scene on a high level of abstraction. In

doing so, we improve and robustify existing deep neural net-

works consuming low-level sensor information. We present

an initial study adapting the well-established Probabilistic

Soft Logic (PSL) framework to validate and improve on the

problem of semantic segmentation. We describe in detail

how we integrate common knowledge into the segmentation

pipeline using PSL and verify our approach in a set of ex-

periments demonstrating the increase in robustness against

several severe image distortions applied to the A2D21 au-

tonomous driving data set.

1. Introduction

Deep neural networks are an integral part of autonomous

driving as they achieve unmatched performance in a num-

ber of tasks, in particular image-based environment per-

ception. Still, they are prone to random or targeted dis-

turbances, which renders robustness a crucial requirement

for safety-critical applications. These disturbances might

be of a natural source – like overexposure, fog, snow – or

of an artificial and purposefully malicious source – like ad-

versarial attacks. At the same time, wrong predictions in

such tasks are most of the time blatantly obvious for hu-

1https://www.a2d2.audi/a2d2/en.html

Figure 1: Most humans approach the task of understanding

and reasoning about traffic scenes using relations between

objects. Given that all of them have been identified, com-

mon knowledge — describing both behaviour and features,

e.g. relative position — can straightforwardly be delineated

in terms of simple rules. Some of the rules that we utilize in

this paper are exemplified in the above figure.

man viewers that use multiple intuitive rules based on their

knowledge and experience to reveal what is happening in

a given scene. Neural approaches, in their current form,

aim to implicitly learn these rules from data, which makes

it necessary to acquire and annotate large amounts of inputs

and furthermore introduces the danger of adopting spuri-

ous correlations. The integration of scene knowledge into

the training or inference of neural networks seems a viable

approach, however, this knowledge ranges from considera-

tions of scene geometry, common knowledge, and rules of

human behavior, rendering it a difficult problem [17]. There

are not only a number of competing approaches to perform

the integration of knowledge itself but also multiple ways

of representing the knowledge.

In this paper, we study a way to represent knowledge in

form of relations delineated as logic rules between identi-

fied objects in a traffic scene (see Fig. 1) and examine how



these relations can be used to robustify data-driven environ-

ment perception. To this end, we adapt the Probabilistic

Soft Logic (PSL) framework [10] to define and learn rela-

tions between objects in the surrounding scene. We demon-

strate the results of initial experiments aimed at quantifying

its effect on the robustness of a recent small-scale semantic

segmentation neural network.

2. Related Work

The importance of high-level knowledge injection for

image-related tasks is widely accepted [1]. Utilizing back-

ground and common-sense knowledge about objects or re-

gions, which goes beyond data annotations, can benefit

many computer vision tasks, such as object recognition or

semantic segmentation. Mostly due to its use in robotics

and autonomous driving vehicles, semantic segmentation,

as one form of low-level scene representation, is currently

one of the actively developing fields in image recognition.

In their survey Siam et al. [15] show the development

of semantic segmentation from feature-based approaches to

the end-to-end deep learning networks. Among other tech-

niques, they point out and discuss an increase in accuracy

achieved by including structural knowledge, which is abun-

dant in the particular task of autonomous driving. To fa-

cilitate knowledge inclusion, according to Siam et al. [15],

many researchers apply conditional random fields (CRF)

additionally to deep convolutional networks for classifica-

tion to improve the accuracy of the predictions. There

are also approaches that are based only on an ontology or

logical reasoning for semantic segmentation. For exam-

ple, Zand et al. [18] propose to deploy Dirichlet mixture

models based on super-pixel segmentation using knowledge

from a fixed, user-defined ontology after which prediction

is performed using conditional random fields. Analogously,

Leon-Garza et al. [12] use fuzzy logic to perform segmen-

tation and Dasiopoulou et al. [4] use a high-level semantic

ontology for object detection in videos.

In our work, we propose to employ the PSL framework

as an expressive and interpretable way to reason about the

environment of the autonomous vehicle. To the best of our

knowledge it is the first attempt to combine deep-learning-

based semantic segmentation with probabilistic logical rea-

soning about the environment. Nevertheless, the idea of

employing knowledge via logic rules in autonomous driv-

ing tasks is not new. In fact, Kanaujia et al. [7], Kardaş

et al. [8], Kembhavi et al. [9] use Markov logic networks

for recognizing complex events in video data.

Related work in the same area of application as ours is by

Souza and Santos [16], in which the authors use logic rea-

soning to support a lane detection system with high-level

knowledge. They employ the output of their segmentation

method for further reasoning and controlling the movement

of the vehicle (or alerting the driver). Similar to the PSL

framework used in our work, these authors adopt Markov

logic networks to employ high-level knowledge in the form

of logical hard and soft rules. However, the object-based

rules are only used to classify events after recognizing ob-

jects (e.g. person, car) within image frames. In contrast, we

employ soft object-based rules to robustify the prediction

results of a semantic segmentation neural network for the

objects in the image frames itself. Thus, our goal is to con-

struct rules that analogously would support semantic seg-

mentation in cases when the network itself is compromised

(e.g. by an image distortion) in order to prevent completely

missing critical objects such as pedestrians, traffic signs or

traffic signals.

3. Approach

The goal of our research is to find ways in which high-

level domain knowledge can improve and robustify the

predictions of deep learning models in the context of au-

tonomous driving. While multiple lines of research dis-

cussed in Sec. 2 make use of domain knowledge exclu-

sively for building a model, it is our aim to combine the

data-driven approach and high-level knowledge during in-

ference.

For various traffic scenes, humans can typically use com-

mon and empirical knowledge about behaviour and features

of the objects to infer their type and in-scene relations, even

if generalizing to unseen scenarios. Considering different

features and interrelations of objects, this human common

knowledge can partially be encoded as a set of simple rules,

some of which are showcased in Fig. 1. The way a human

would reason about such a traffic scene cannot be based on

hard Boolean logic, though, in which rules hold either al-

ways or never. For example, an object having a zebra walk

underneath and standing close to a traffic sign has a high

probability to be a human, as depicted in Fig. 1. But there is

a chance that this could also be something else, e.g. a dog or

some obstacle in a construction site. Therefore, to integrate

such high-level human knowledge in the same “uncertain”

manner into a neural network model, we need to define log-

ical rules with relaxed truth values. Structuring the rules

upon the identification and classification of objects aligns

with the task of semantic segmentation that lends itself well

to finding image regions with a common semantic, which

we treat as object proposals. We selected PSL as a frame-

work for knowledge representation for two reasons: First,

it allows us to flexibly use soft truth values that are suitable

to define both strict and loose rules, and, second, it can be

fine-tuned on data, hence, distilling high-level knowledge

directly via the given annotations.

We first introduce PSL in Sec. 3.1 and briefly describe

the input requirements for a PSL program. Based on this,

Sec. 3.2 elaborates on how we define object entities and

rules in our domain of interest followed by a description



of the approach to combine the PSL rules with semantic

segmentation.

3.1. Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) [3, 10] is a programming

framework for probabilistic reasoning in domains with re-

lational structure. Typical applications of PSL are collec-

tive classification (of interlinked objects in structured data),

entity resolution (finding a mapping from multiple interre-

lated references to the true set of underlying entities) and

link prediction (predicting whether a relationship exists be-

tween two entities). PSL makes use of Hinge-Loss Markov

Random Fields (HL-MRF), a graphical model, and applies

these to structured machine learning problems. Graphical

models define a type of loss function that represents a prob-

ability score for each possible value configuration respect-

ing the graph-encoded dependencies among the variables.

For HL-MRFs [2, 3] the continuous loss functions are de-

fined using the hinge loss, which allows for efficient convex

optimization techniques during inference.

The HL-MRFs are defined using declarative rules, whose

importance can be indicated by optional non-negative

weights. These rules are formulated using first order logic.

In contrast to the binary truth values true and false of

Boolean algebra, PSL uses continuous soft truth values in

the interval [0, 1]. For a detailed explanation of the elements

of a PSL rule, see the example depicted in Fig. 2.

Conceptually, we require that the “satisfaction” of rules

can be measured in a soft-Boolean way if all “variables”

have a defined value. In this case, we can aggregate the set

of all rules to a global score using individual weights for

each rule. Given a set of “ground truth” observations, the

weights can be fine-tuned such that the importance of each

rule agrees with the ground truth observations. The result-

ing fixed set of weights then allows us to perform inference

over incomplete observations by choosing the most proba-

ble value for unknown variables.

In detail, this means each atom is mapped to a soft truth

value – before inference for all known variables, and during

inference for all unknown variables.To compute the contin-

uous truth value of the whole rule, values on atom-level are

combined using the Lukasiewicz t-norm [11] as a relaxation

for the logical conjunction, disjunction, and negation. Each

rule’s satisfaction is calculated indicating to what degree

that rule is fulfilled given the current configuration of val-

ues. A rule is satisfied if the head is assigned at least the

same truth value as the body, and a fully satisfied rule has a

value of 1.

All possible variable configurations for the rules are

combined to a probability distribution, in which those that

satisfy more ground rules are more probable. If a weight is

assigned to a rule, this indicates the importance of this rule

to be satisfied in relation to the other rules and their corre-

sponding weights. Rules that are unweighted induce hard

constraints which require the rule to be met at all times.

During inference, the most probable value configuration for

unknown predicates is found given evidence (via known

predicates). Given ground truth, the weights of rules can

also be learned with maximum-likelihood estimation. Thus,

the importance of each rule in the rule set can be learned

from the data itself.

Apart from these rules, a PSL program consists of a

database that defines the elements of the domain of in-

terest as well as their relations in the form of predicates.

The database is built up from known predicates (i.e. atoms

that are completely observed) and unknown predicates (i.e.

atoms that are unobserved and must be inferred) that are

part of one of the three following sets: (i) Necessary for all

known predicates is the set of observations. These are vari-

able combinations with an associated soft truth value in the

form of actual extracted and known data for each. (ii) Nec-

essary for all unknown predicates is the set of targets that is

a list of all atoms (combinations of variables) that should be

inferred, therefore without any associated truth values. (iii)

For weight learning a set of truths with actual known data

(likewise observations) to be used as ground truth for all

unknown predicates is necessary. Inference in PSL is done

based on the first two sets, while evaluation of the inferred

predicates can be done with the test set of the truths.

There are two types of rules that are supported in PSL:

logical and arithmetic rules. We use logical rules to encode

dependencies between atoms as for example depicted in the

rule in Fig. 2. Additionally, we need to imply an arithmetic

constraint to restrict the substitution for variables further. In

our setting, we want to reason about the class of an object in

the scene that can only be one of three classes, constraiing

the corresponding truth values to sum up to 1.

3.2. Deriving Rules from Domain Knowledge

The overall goal of employing PSL to camera-based per-

ception in autonomous driving is to identify parts of com-

mon knowledge about the traffic scene that can be readily

extracted and represent it in a form that facilitates integra-

tion into the model performing inference. Based on the in-

put requirements for a PSL program as defined above, we

first need a database, i.e. objects that we want to reason

about as well as their relationships encoded within chosen

predicates. Then, we define a set of rules that carries ad-

ditional relational knowledge about the domain of interest

that is not yet covered by the annotated data and thus can be

deployed to support and validate the perception task. When

defining an initial set of rules, one therefore has to carefully

choose the objects they link up: it should be simple to both

describe their behavior and to extract them from raw data.

Here, we choose pedestrians, traffic signs and traffic sig-

nals as our three types of objects of interest, for which we



Figure 2: PSL rules have a conjuncted body and a single literal head. Atoms (e.g. IntersectionUnder(O1, ’r’) are

the basic elements that are used for reasoning. An atom is a combination of predicates (here: IntersectionUnder\2)

and a sequence of variables and constants equal to the predicate’s arity. A constant indicates a concrete element (e.g. “ped” is

the concrete object class pedestrian) and a variable denotes a placeholder later to be substituted by concrete elements. Here,

the predicate IntersectionUnder has an arity of two, thus, the atom consists of the variables O1 indicating an object

plus the constant “r” indicating the underground type is the road. The identifier O1will be substituted for all available objects

during inference while the constant “r” will stay the same. The O1 identifier is used in three atoms indicating that during

inference, each object-1-variable will be substituted by the same constant (same holds for object-2-variable O2, respectively).

The exponent ˆ2 at the end of the rule indicates that the quadratic loss is chosen. This example rule can be interpreted as “if

an object 1 is placed on a sidewalk and in close distance to another object 2, which is a traffic signal, there is a probability

that this object 1 is a pedestrian”.

want to infer the class. To identify these objects in a log-

ical setting, one would need to fall back to low-level sen-

sor interpretation. Typically, autonomous vehicles have di-

verse sensors from which objects, their attributes (e.g. col-

ors, shapes) and their surroundings (e.g. area underneath,

background) and their relationships (e.g. distance to other

objects) can be derived.

For our case study, however, we solely focus on the as-

pect of how external knowledge can be meaningfully in-

tegrated into an existing prediction workflow. We there-

fore purposefully deploy an oracle to extract the object enti-

ties thereby neglecting additional challenges resulting from,

e.g., unreliable sensor readings and object extraction. Our

solution is to employ the connected components on ground

truth segmentation masks using additional smoothing to

avoid fractured objects due to occlusion. Additionally, we

emulate a depth sensor by propagating the RGB inputs to a

publicly available2 version of MonoDepth2 [6]. This “ora-

cle sensor” information already allows for creating a mean-

ingful set of objects as basis for the rules.

Subsequently, the rules describing the objects have to be

defined. To this end, we develop an initial set of rules, for

which we refine the weights later on. As we want to reason

about the objects of our three selected classes, we define

our target predicate isType(Obj,Class). This is used

to later infer a soft truth value for each object and the possi-

ble three classes, resulting in one class being more likely

than the others. We then base the logical reasoning for

an object class on the semantic features, on the surround-

ings of the objects, and on their relations. Surroundings

of the objects are described with the observations (known

predicates) intersectionUnder(Obj,Class) and

2https://github.com/nianticlabs/monodepth2

intersectionBehind(Obj,Class). For exam-

ple, to infer the class of an object to be “traffic sign”

intersectionUnder should have a high likelihood

for the classes “pedestrian walk” or “street”. We inte-

grate color as a semantic feature as it is especially impor-

tant for traffic signs and traffic signals with the predicate

hasColor(Obj,Color). Rules we defined using the

color predicate are for example inspired by the officially

specified color combinations of common German traffic

signs. The relations between objects are specified as a dis-

tance value based on depth readings with the known predi-

cate distance(Obj1,Obj2). The defined rules for our

setup can be found in appendix 6.1.

As a final step, the knowledge gained from the set of

data via probabilistic rules has to be combined with the pre-

dictions from the neural network, in this case the seman-

tic segmentation masks. For our conceptual demonstration

we follow a simplified approach integrating scores obtained

from the network as prior assumptions within the rule based

framework.

Overall, the practical approach can be described as fol-

lows (see Fig. 3):

1. Identify objects to reason about and extract them from

sensor data (oracle using ground truth semantic seg-

mentation);

2. Construct the set of rules using expert and common

knowledge;

3. Prepare the required information from lower level sen-

sors for the rules inference (depth, colors);

4. Learn the weights of the rules using a training set of

recorded camera frames;



Figure 3: Overall flow of information: Oracles are serv-

ing as a source of information for objects and depth maps

and also observations for weights learning; predictions pro-

duced by the neural network are combined with PSL rules

via priors.

5. Perform inference with the neural network and with

the rules on the test set of frames for validation, possi-

bly using network outputs as prior.

4. Evaluation

The model that we selected for semantic segmentation

is ERFNet [14] whose lightweight encoder-decoder archi-

tecture and limited performance make it straightforward to

observe the benefit of knowledge injection via PSL. We

trained ERFNet on the A2D2 public data set [5], which

features a large set of environmental scenes for cars on the

road. The data set was separated into independent subsets

(by the sequences recorded) for training and testing. The la-

bels in the data set were simplified to 13 classes via group-

ing. The network was trained using the Adam optimizer

with decaying learning rate for 200 epochs. The network

achieved an mIoU of 0.59 after training–in particular 0.26
for ’Pedestrian’ class and 0.63 for ’Traffic sign’ and ’Traffic

signal’.

Rules selected for the evaluation first have to be

ranked with weights. In our evaluation we obtained

the weights using the learning procedure, in which the

weights are assigned to the rules based on the train-

ing set with ground truth annotations. The observa-

tions for weight learning are extracted from the train-

ing images (predicate hasColor), their depth informa-

tion (predicate distance) and the ground truth seman-

tic segmentation (predicates intersectionBehind and

intersectionUnder) using in each case the object en-

tities from the oracle. The full list of rules we defined along

with the learned weights can be found in appendix 6.1. This

step of weight learning serves to validate our initially pro-

posed rules discarding those which turned out to be inade-

quate given the data. In these cases, the weights assigned

were in the order of 10−5. One such rule was for example

increasing the probability of an object to be a pedestrian if

it is close to an object that is a traffic sign.

An independent test set of images is used both for evalu-

ation of the network prediction and rule inference. The con-

nected components selected as objects for soft rule-based

reasoning are compared against the network predictions for

the same region. These regions are produced using the ora-

cle. We refer to the ratio of correctly classified pixels as the

network score for this object. Note that for weight learning

we used information from the ground truth while for infer-

ence network predictions are employed.

To evaluate the robustness of the rule predictions we em-

ployed image corruptions as described by Michaelis et al.

[13]. As the most natural we selected four, namely bright-

ness, fog, frost and snow. Each of them can be applied with

five levels of severity, of which 1 is the weakest (see Fig. 4

for examples). The evaluation then follows the same route

– the network infers predictions on the corrupted images

and the scores for the objects are computed. Likewise, rules

are inferred on corrupted images and their respective pre-

dicted semantic segmentation on them. The oracle as fur-

ther source of information is left unaffected by the applied

corruptions. The results of the predictions are depicted in

Figure 4: Example of corruptions: original image (top left),

brightness, frost and fog corruption (clockwise).

Fig. 5. We display the scores for the pedestrian objects, ei-

ther denoting the correct or incorrect class, in the case of

the original images and images corrupted with brightness.

The histograms for the other two object classes is shown in



the appendix 6.2. One can observe that the scores produced

by the rules are nearly not affected–judging by the distri-

bution of histogram peaks and the average score displayed

in the legend–while network scores are very sensitive to the

corruption of the data.

(a) Scores distribution for the objects “pedestrians” on the original

images.

(b) Scores distribution for the objects “pedestrians” on the cor-

rupted (brightness, severity 5) images.

Figure 5: The scores of the network compared to the scores

of the rules on the test dataset for pedestrian objects. It

should be noted that the distribution of objects is unbal-

anced in the test set: the number of objects “pedestrian”

is the smallest, followed by “traffic signal”. The most fre-

quent class of objects is “traffic sign”. The network was not

trained to distinguish between traffic signs or signals and

we thus only report the (joined) result as “tr sign” for the

wrong classes.

The final evaluation step is to combine network predic-

tions and rules inference. We used the scores produced by

the network as a prior for the isType predicate in the PSL

rules. Fig. 6 reflects the change in the scores assigned to

the objects under increasing severity of corruption. The

scores for the objects of class “traffic signal” are presented

here, the other classes and corruptions can be seen in the

appendix 6.3. One can observe that the severity of the cor-

ruption affects the scores produced by a network while the

inference with the rules deteriorates only slightly. Finally,

the robustification of the network scores is also stable and

shows better results than network scores on their own.

5. Discussion and Conclusion

We propose a way to reason about high level scene prop-

erties, i.e. the type or class of objects, in terms of Probabilis-

Figure 6: The development of average scores for the class

“traffic signal” with increasing severity of the “frost” cor-

ruption.

tic Soft Logic (PSL). Taking advantage of human knowl-

edge, we draw information from various domains, ranging

from sensor input such as color to scene properties such as

the relations and distances among object. This approach en-

ables us to include additional information from data-driven

model predictions, e.g. as prior assumption, and improve

their prediction reliability via reasoning. Our initial eval-

uation in a simplified setup features a scenario from au-

tonomous driving and indicates that the approach is viable.

Even in tests with highly adverse input augmentations it is

possible to robustify the predictions of the employed seman-

tic segmentation network.

Within the PSL framework reasoning is based on rules,

i.e. human understandable concepts regarding the interpre-

tation and meaning of object relations or properties. Besides

the possibility to guide the rule creation by human expert

knowledge this offers strong interpretability, the set of rules

could, e.g., be audited with respect to consistency. The rel-

evance of each rule can be adjusted individually, where the

necessary weights are either deliberately chosen or learned

from a training data set. The latter case, as demonstrated

in our evaluation, can serve to validate the applicability of

given rules. This places PSL in-between human designed

and data driven approaches, making it an especially suited

candidate to incorporate common knowledge into funda-

mentally data driven applications.

This work showcases the potential benefits such com-

mon knowledge can have for the reliability of a machine

learning framework. At this early stage we, however, ne-

glected the cumbersome step to obtain the entities the PSL

framework reasons about. In practice this information has

to be aggregated from various, most likely not fully reliable,

sources, for instance stemming from additional sensors (e.g.

LIDAR) or alternative processing approaches. While a

probabilistic framework seems appropriate to deal with fur-

ther uncertain input we restrict this demonstration to only



a single ML model providing the semantic segmentation

mask. The entities and their further attributes are instead

given by an oracle using the ground truth annotation. This

allows us to test the approach without the necessity to in-

stantiate a full framework. Another important step is the

involvement of human experts for rules formulation. The

presented rules are formulated with the common knowledge

of the driving situations and environment, but setup specific

rules, as well as the rules that are tuning a particular aspect

of recognition need multiple iterations over the rules con-

struction process.

With respect to the incorporation of machine learn-

ing models we currently only use the provided prediction.

Given the probabilistic nature of both these outputs and

the PSL framework the inclusion of prediction uncertainty

in terms of, e.g., calibrated softmax scores could improve

the reliability further. Adding further models as discussed

above would additionally require a larger set of rules. While

the used set is sufficient for demonstration purposes enlarg-

ing it to cover more attributes seems to be a straightfor-

ward way to extend our work. Specific follow up questions

could address a more systematic approach to rule building,

which investigates the interplay between the set coverage,

reflected by the amount and variety of rules, and its achieved

performance, reflected in learned weights and task perfor-

mance, more closely. For the case of autonomous driving

the incorporation of temporal consistency, requiring, e.g.,

that a pedestrian on two consecutive frames should not un-

expectedly vanish, could add new aspects to the discussion,

possibly including reasoning on the trajectories and inten-

tions of road users.

Especially for domains such as automated driving we be-

lieve that the inclusion of human expertise into predictions

is a valuable addition to safety and reliability. Often hu-

mans are capable to infer relevant information from con-

text. For instance a sign indicating the potential presence

of children could, by formulation of an appropriate rule,

increase the likelihood that a discovered entity is inferred

as child. This inclusion of external knowledge might ad-

ditionally help counterbalance the rareness of safety rele-

vant situations, which would otherwise make it difficult to

learn relevant correlations purely from data. Deliberately

fixing weights or the inclusion of specific rules as above

might therefore increase the safety of vulnerable road users

(VRUs) without affecting the training and optimization of

the underlying machine learning models.
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