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Abstract

AI-based perception is a key factor towards the automa-

tion of driving systems. A conclusive safety argumentation

must provide evidence for safe functioning. Existing safety

standards are not suitable to deal with non-interpretable

deep neural networks (DNN) learning from unstructured

data. This work provides a proof of concept for a compre-

hensible requirements analysis based on an interpretable

DNN. Recent work on interpretability motivates to rethink

software considerations of safety standards. We describe

the application of established considerations to DNNs by

integrating interpretability and identifying artifacts. DNN

artifacts result from a meaningful decomposition of require-

ments and adaptions of the perception pipeline. To prove

our concept, we propose an interpretable method for the

center, scale and prototype prediction (CSPP) that learns

an explicitly structured latent space. The interpretability-

based requirements analysis of CSPP is completed by trac-

ing artifacts and source code to decomposed requirements.

Finally, qualitative post-hoc evaluations provide evidence

for the fulfillment of defined requirements for the latent

space.

1. Introduction

AI techniques develop various domains, reaching from

the integration in consumer electronics to even more

security-related surveillance tasks. The human-comparable

performance of machine learning models (MLM) enables

the automation of advanced tasks. Besides pushing tech-

nological boundaries, automated systems can significantly

contribute to safety. Automated driving systems (ADS) uti-

lizing MLMs can improve safety for pedestrians and pre-

vent deadly casualties. Although safety-critical systems can

profit from a responsibility transfer away from humans to

automated MLM-based decision-making, the safety of in-

volved components must be proven. Regarding the modu-

lar ADS pipeline, the decision-making process depends on

a reliable perception of the complex environment based on

sensory input [12]. Hence, guaranteeing pedestrian safety

is in the first instance related to a safe perception.

MLMs integrated into the perception pipeline of ADS

are mainly generated by supervised deep learning algo-

rithms. The algorithms unfold their full potential by sub-

stituting an expert’s manual feature engineering with fea-

ture learning from unstructured data. Data used for the per-

ception task is represented by pixel values in images and is

therefore unstructured. During training, features are learned

as parameters in a deep neural network (DNN). Applied in

ADS, DNNs become safety-critical and plausible evidence

of reliable functioning has to be stated. Although standards

for safety-critical systems are well established, DNNs are

not suitable due to non-interpretable behavior in combina-

tion with unstructured data sampled from a complex input

domain.

In this work, we reevaluate the safety impact of inher-

ent interpretability by rethinking the role of MLM inter-

pretability for existing safety standards and evaluating an

interpretable DNN. The development of software according

to DO-178C [19] is driven by the decomposition of require-

ments - naturally in contrast to a deep learning approach.

However, recent work on MLM interpretability introduces

mechanisms describing a meaningful decomposition of a

DNN. Evolved from the inherent interpretability, we can de-

fine requirements and establish explicit traces to DNN arti-

facts. We propose an interpretable DNN for the center, scale

and prototype prediction (CSPP). Our work relates most

closely to Aravantinos and Diehl [1] who also present an

approach to integrate traceability of artifacts with require-

ments in the context of a DNN. However, we specifically

focus on an adapted and extended DNN architecture, pro-

pose its meaningful decomposition and derive comprehen-

sive requirements. We evaluate the performance of CSPP



for pedestrian detection on the CityPersons dataset. Fi-

nally, the post-hoc evaluation of CSPP derives qualitative

evidence for the fulfillment of defined requirements.

2. Related Work

2.1. Pedestrian Detection

Pedestrian detection can be accomplished by traditional

computer vision (CV) algorithms as part of advanced driver

assistance systems (ADAS). Nevertheless, the limited capa-

bilities contradicts the application to ADS. DNNs signifi-

cantly outperform traditional CV techniques and meet real-

world complexity.

AI-based pedestrian detection results from reducing 2d

object detection to two classes - pedestrian and background.

More precisely, the DNN has to solve multiple binary clas-

sification tasks for different image regions.

Starting from this fundamental idea, early single-stage

and two-stage object detectors utilized default anchor

boxes, for instance, SSD [28] and Faster R-CNN [21].

Anchor-based models predict relative deviations to the

bounding box coordinates of default anchors. Hence, the

performance strongly depends on post-processing steps for

clustering and calculating the scales and aspect ratios of de-

fault anchors boxes.

Recently, research has focused on anchor-free models

yielding simpler DNN architectures. The absence of de-

fault anchor boxes eliminate the need for a-priori mining of

training data to initiate anchor scales and sizes. Anchor-free

models achieve state-of-the-art performance and surpass

anchor-based models. Thereby, center-oriented anchor-free

models simplify the 2d object detection in terms of predict-

ing center points and the scale of an object, for instance,

CenterNet [7], FoveaBox [22], FCOS [24] and CenterNet

[30].

The anchor-free approach is also applied to pedestrian

detection. CSP [16] extracts and combines semantic fea-

tures of multiple scales to predict the center and height of

a pedestrian. Regarding the evaluation on CityPersons [29]

and Caltech [5], it achieves state-of-the-art performance in

terms of the log-average miss rate (LAMR).

The LAMR [3, 5] takes the false positives per image

(FPPI) next to the miss rate (MR) into account. Thereby,

all detections for a given test dataset are sorted in descend-

ing order according to the predicted confidence scores. By

applying a threshold of 0.5 to the intersection over union,

predicted bounding boxes are matched with ground truth

bounding boxes. Positive matches determine true positives

(TP) in contrast to false positives (FP) or false negatives

(FN).

The complexity of pedestrian detection can be explained

by the small pixel height of pedestrians, occlusion and

crowd appearances in images. Therefore, Dollar et al. [5]

propose an initial definition of a reasonable evaluation set-

ting: Pedestrians with a height smaller than 50 pixels shall

be ignored. Wang et al. [27] refine the settings for CityPer-

sons and exclude annotations with an occlusion rate larger

than 0.35. Taking both settings into consideration, a reason-

able subset with height > 50 pixels and occlusion rate ≤
0.35 can be defined. The reasonable evaluation leads to a

more realistic view of the actual DNN capabilities.

2.2. Safety Argumentation

The assessment of safety-critical DNNs is challenging

considering the non-interpretability in combination with un-

structured data. In terms of ADS, practitioners see over-

whelming complexity since the camera-based perception is

based on pixel values. Till now, the inner working of a DNN

remains largely non-interpretable and designing compre-

hensible test cases for individual DNN components seems

impossible.

A straightforward verification approach based on input-

output relations and formulation of general assumptions

is problematic due to the dependency on pixel values.

Nonetheless, one might make assumptions for the input do-

main from a functional safety perspective. A reduced do-

main might be used for the description of a safe operating

state. It is still pending whether useful safety statements can

be derived from such an argumentation.

In the first step towards a safety argumentation, func-

tional insufficiencies (FI) such as incomprehensible behav-

ior, unreliable confidence information and brittleness [18]

were identified. Other safety concerns like the intrinsic or-

acle problem of perception can be added. Although each

FI highlights slightly different issues, they jointly refer to

the incomprehensible behavior - the non-interpretability of

a DNN.

The lack of interpretability in combination with a high-

dimensional input domain prevent the direct application of

automotive-related standards like ISO 26262 [10] or SO-

TIF [11]. SOTIF ensures the ’absence of unreasonable risk’

[18], but resilient evidence for the absence can yet not be

extracted from DNNs. The verification formalism is largely

targeting the function itself and not the software which rep-

resents the inner working of the function.

Safety standards, specifically developed for software,

might be more applicable. The DO-178C [19] offers ad-

vanced considerations for safety critical software and fo-

cuses on the safety argumentation for source code develop-

ment. The DO-178C relies on software life cycle data for

generating evidence. Software life cycle data comprises ar-

tifacts, as by-products, for every step in the software life

cycle. The wholesome DO process builds evidences by en-

suring a safe software development process. A key concept

is the bi-directional traceability for a decomposition of soft-

ware high level requirements (HLR) into low level require-



ments (LLR). Hence, source code can be directly developed

from the definition of LLRs - the decomposition of HLRs

equally affects source code and LLRs.

The software development process of AI techniques can

be conceptualized by the research agenda of AI Engineering

[2]. The new field of research is focused on AI-related char-

acteristics that complicate the application of well-known

traditional safety considerations for software. Bosch et

al. [2] identify explainability as a domain-specific research

topic for safety critical systems.

2.3. Machine Learning Model Interpretability

Recently developed methods focusing on MLM inter-

pretability can help to generate insights and increase trust

in DNN decisions. According to Doshi-Velez and Kim [6],

interpretability can be defined as ’... the ability to explain or

to present in understandable terms to a human’. Whether a

model can be seen as interpretable is highly domain-specific

and needs to be evaluated with respect to the task to be ac-

complished [20].

Regarding the assessment of interpretability, Lipton [15]

defines two non-absolute dimensions: (1) transparency and

(2) post-hoc interpretability. Transparency describes the

evaluation on model, parameter and training level and fo-

cuses on inherent properties of the reasoning process. Ad-

ditionally, post-hoc interpretability generates explanations

for a given model behavior by applying surrogate explana-

tory models.

Although interpretability is described as a two-sided

concept, latest research activities are largely focused on ex-

plainable AI (XAI) proposing local approximations on pa-

rameter level with surrogate models. Popular representa-

tives are saliency methods. Adebayo et al. [13] show their

vulnerability and limited capabilities to represent holistic

interpretability. However, techniques modeling post-hoc

explanations can contribute to a versatile understanding of

a trained DNN.

In contrast to post-hoc methods, interpretability can

also be inherently integrated into the DNN. Inherent inter-

pretability addresses transparency but must be defined task-

dependent. The inherent approach gives a new perspective

on the reasoning process of a DNN. Although interpretabil-

ity for all convolutional operations seems to be not feasible

and maybe not even necessary, the development of inter-

mediate representations that provide human-understandable

explanations might be possible.

Our work builds upon the interpretable ProtoPNet [4].

The interpretable DNN bases its classification on the linear

combination of similarities between latent representations

and learned prototypes. A latent representation is defined as

a vector z ∈ [0, 1]D with D feature channels. Extracted fea-

tures depend on the spatial position of the latent representa-

tion in the latent space. The latent space Z ∈ [0, 1]
H
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Figure 1. Pipeline to generate prototype map. Features within a

receptive field (light blue) of an image X are encoded in a latent

representation zi,j (blue). Ground truth (green) is matched with

a grid cell (blue) in the latent space Z. The prototype map P′

(reduced to the receptive field) highlights areas of small distances

di,j for a given prototype p.

is the output of the AI-based feature extraction with scaling

factor r. It represents the spatially compressed and encoded

information regarding the input image X ∈ R
H×W×3 with

H and W describing the width and height of an image. A

prototype p ∈ [0, 1]D acts as a class-specific counterpart for

a latent representation. Similarities are derived from the eu-

clidean distance between a prototype and a latent represen-

tation. The classification task is solved in terms of an infer-

ence to the best explanation. If extracted features have high

similarities to a class-specific prototype, it is most likely

that the given image shows an object with the specific class.

The focus on an interpretable DNN architecture, explic-

itly structured latent space and understandable reasoning

process strengthens the inherent interpretability. ProtoPNet

generates inherent explanations without applying surrogate

models.

3. Proposed Methodology

3.1. Enable Decomposition through Interpretability

In our work, we apply key concepts introduced by the

DO-178C as an existing safety standard for software con-

siderations to a DNN. Even though a DNN can be seen as

software, the source code primarily implements the network

architecture, pre-, post-processing steps and learning pro-

cess. Extracted features are represented by parameters. The

hybrid DNN structure is not compatible with the decompo-

sition approach of DO-178C.

We propose to rethink decomposition in the context of

inherent interpretability. Although interpretability is not di-
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Figure 2. Interpretable DNN for center, scale and prototype prediction (CSPP) of pedestrians. The prototype-based structure of the latent

space is introduced by ProtoPNet [4]. Prototypes are reference points in the latent space representing features of a pedestrian center.

The structured latent space (green tensor) represents the inner understanding of a given image. The center and scale heads of CSP [16]

complete the detection of a pedestrian center and prediction of the height. Considering an interpretable DNN, the detection heads (blue

tensors) must reason from an explicitly structured latent space. We develop CSPP to prove our concept. In order to derive comprehensive

low level requirements, we integrate prototypes and a comprehensible reasoning process into the detection pipeline. CSPP thus describes

a novel interpretable DNN for pedestrian detection based on CSP (DNN for pedestrian detection) and ProtoPNet (interpretable DNN for

classification).

rectly implied by the DO process, it can conceptualize the

idea of decomposition. A meaningful decomposition of a

DNN leads to components with individual responsibilities

which can further be processed by an iterative requirements

analysis. Hereby, interpretable DNNs are capable to de-

compose the internal reasoning process and assign meaning

to separated components. With respect to the interpretable

ProtoPNet, the mandatory extensions have to explicitly ad-

dress the learning process and architecture of the DNN.

Regarding the inference of a DNN, the latent space en-

codes a given image, thus represents the internal represen-

tation and inner understanding of the input. Final detections

are directly processed from the latent space.

We reformulate the optimization of an interpretable

DNN for pedestrian detection: Every prototype shall min-

imize its euclidean distance to the latent representation

which can be matched to a pedestrian center, shown in Fig-

ure 1 for one prototype. Thereby, the matching strategy de-

termines which latent representation is responsible for an

annotated pedestrian center (positive match) contrary to the

background (negative match). High similarities result from

small distances and increase confidence in a detection. The

final prototype map is built upon the distance estimation be-

tween a given prototype and every latent representation.

In comparison to ProtoPNet, we ease constraints on the

task-dependent interpretability and adapt class-specific pro-

totypes to center-focused prototypes. Rather than imple-

menting case-based reasoning for classification, our goal

is to detect pedestrians based on learned features that can

be separated from background information. The reasoning

process can be understood as: A pedestrian is detected be-

cause its extracted features in the latent representation are

close enough to a prototype for a pedestrian center.

Consequently, prototypes describe learned reference

points for pedestrian features in the latent space. Learn-

ing from sampled images determines (1) how an abstract

prototype is finally shaped and (2) how the extracted la-

tent representations are clustered around prototypes. Both

mechanisms describe the final structure of the latent space -

the inner understanding of the given data. As a result of the

distance-based reasoning process, decisions made by the in-

terpretable DNN are quantifiable.

We would like to emphasize the enforcement of inter-

pretability by explicitly structuring the latent space through

prototypes. However, intermediate outputs of convolu-

tional layers in the previous feature extraction remain non-

human understandable. The limitation seems reasonable

since machine-learned features motivates the use of DNNs

for complex perception tasks. The proposed level of inter-

pretability is balanced with respect to the complexity of the

perception task and the characteristics of human percep-

tion [26]. Extracted features in latent representations are



initially not comprehensible to humans. Nonetheless, la-

tent representations can be individually mapped to receptive

fields that contain the compressed information [4].

3.2. An Interpretable DNN for Pedestrian Detection

The proposed method for center, scale and prototype

prediction (CSPP), illustrated in Figure 2 combines the

anchor-free and center-oriented concept of CSP [16] for

pedestrian detection and the interpretability of ProtoPNet

[4]. In doing so, we extend the interpretable approach from

the classification task to pedestrian detection. CSPP learns

prototypes representing extracted features characteristic for

different types of pedestrians. Due to the fact that pedestrian

detection faces high complexity in terms of poses, appear-

ances, apparels and occlusion, we see center-oriented pro-

totypes for pedestrians as reasonable to propose a general

view on interpretable DNNs for pedestrian detection. How-

ever, estimating the optimal number of prototypes remains

non-trivial.

The feature extraction of CSP also builds the basis

for CSPP and combines information from different scales,

drawn from various layers of the ResNet-50 [9] backbone.

The compatibility of the concatenated latent space with Pro-

toPNet is achieved by the sigmoid activation function. Ev-

ery step based on the latent space contributes to the in-

terpretable reasoning process of CSPP. However, the fea-

ture extraction as a significant part of CSPP remains non-

interpretable.

The CSPP architecture is divided into two paths start-

ing from the latent space to generate the center map and

the scale map. The center path initially computes proto-

type maps applying a generalized L2 convolution [8, 17].

Distances di,j,k = ‖pk − zi,j‖2 for k prototypes are rein-

terpreted as similarities si,j,k = log(
di,j,k+1

di,j,k+10−4 ). The

non-affine batch norm layer (Center-BN) acts as a domain-

specific discriminator that distinguish whether one of the

prototypes is close enough to the latent representation to

be treated as a pedestrian center. The 1x1 center convolu-

tion (Center-Conv) for the center map represents a linear

weighting without bias for all distances to prototypes. Par-

allel to that, the 1x1 scale convolution (Scale-Conv) calcu-

lates the height for a detected pedestrian center. The pedes-

trian width is approximated by width = 0.41 · height [29].

During inference, non-maximum suppression is applied as

a post-processing step.

The integration of prototypes has to be explicitly formu-

lated in the CSPP loss. On the one hand, latent represen-

tations and prototypes learn features that are characteristic

for pedestrians, represented by minimizing the distance to

all prototypes (Lcluster). On the other hand, the distance be-

tween prototypes and latent representations receipting back-

ground features is maximized (Lseparation). Furthermore,

we apply the loss terms according to CSP [16] to formulate

LLR Definition Rationale

1

The latent space

shall be explicitly

structured.

Structuring the high-

dimensional latent space

demands for the training of

domain-specific reference

points or prototypes.

2

A latent represen-

tation shall learn

features that de-

scribe a pedes-

trian center.

The feature extraction must

learn consistent latent rep-

resentations that are aligned

with prototypes. A latent

representation encodes fea-

tures of its receptive field.

3

Confidence

scores shall be

derived from an

interpretable rea-

soning process.

Euclidean distances be-

tween latent representations

and prototypes enable an

interpretable reasoning

process behind a detection.

4

The threshold

for accepting

or declining a

detection shall

be learned from

statistics on the

training dataset.

A domain-specific discrim-

inator must learn statistics

representing the distribution

of the prototype maps for a

given training dataset.

5

Outputs of en-

semble classifiers

shall be linearly

resolved.

Multiple prototypes are in-

volved in the joint decision

and their contributions must

be weighted.

6

Scales of a de-

tection shall be

drawn from latent

representations.

Solving multiple tasks si-

multaneously must rely on a

common latent space.

Table 1. Decomposed low level requirements (LLR). Inherent

interpretability enables a meaningful decomposition of a DNN

which can be processed by a requirements analysis.

the total loss:

Ltotal = λclusterLcluster + λseparationLseparation

+ λcenterLcenter + λscaleLscale

(1)

3.3. Requirements Analysis with DNN Artifacts

According to the safety assessment of DO-178C, low

level requirements (LLR) are derived from high level re-

quirements (HLR) and source code can be directly devel-

oped from LLRs. The decomposition is driven by require-

ment refinement. In the chapter before, we have described

an interpretable DNN to enable a meaningful decomposi-



tion. The interpretability approach is focused on the latent

space and the subsequent reasoning process.

As a result, layers that process information from the la-

tent space become meaningful. In the following, we refer

to parameters of these layers as DNN artifacts. We define

DNN artifacts as learnable parameters of an interpretable

DNN that are explicitly formed by source code. Due to

the already mentioned reasonable limitation, we exclude pa-

rameters of the feature extraction. DNN artifacts have a sig-

nificant influence on the final detection pipeline attached to

the feature extraction. The identification of DNN artifacts

allows for the decomposition of HLRs.

Although this paper is not supposed to provide a com-

plete safety argumentation for a DNN, we base our work

on the following high level requirement (HLR): The latent

space of a DNN for pedestrian detection shall be inter-

pretable. The HLR relates directly to a meaningful decom-

position. Interpretability targeting the latent space and rea-

soning process of a DNN enables a starting point to derive

LLRs from a HLR. A meaningful decomposition allows to

assign multiple DNN artifacts to specific requirements. We

propose a non-exhaustive list of LLRs in Table 1.

The proposed methodology aims at the decomposition of

an interpretable DNN to establish the bi-directional trace-

ability of HLR, LLR, DNN artifacts and source code.

Traces can finally be made explicit by creating a traceabil-

ity matrix, shown in Table 2. Learned prototypes mark the

most influential DNN artifacts. Furthermore, we identify

parameters of the batch normalization (Center-BN) and 1x1

convolution (Center-Conv) considering the center path lead-

ing to the center map (Center-). The DNN artifact of the

scale path (Scale-) is given by the 1x1 convolution (Scale-

Conv). In contrast to learned parameters, CSPP also im-

plements clearly separated source code: DNN architecture,

distance measures, loss formulation, matching strategy and

non-maximum suppression (NMS).

4. Evaluation

4.1. Performance Evaluation

We evaluate the performance of CSPP compared to

CSP on the reasonable validation dataset of CityPersons

[29]. We emphasize the state-of-the-art 11.0% LAMR on

CityPersons [29] achieved by CSP (with offset). For a fair

comparison with CSPP, we reevaluate a simplified CSP im-

plementation that neglects the strategy of moving average

weights [23] and the additional offset prediction for centers.

Furthermore, we apply the same thresholds for the confi-

dence score of 0.1 and NMS of 0.5 and limit the number of

detections to 1000. Table 3 compares results from various

subsets of CityPersons of different methods. The perfor-

mance of the proposed CSPP with 4 prototypes (13.78%)

ranks between the simplified CSP (15.52%) and CSP with

Low level requirements

1 2 3 4 5 6

DNN artifacts

Prototypes X X X X X X

Center-BN X

Center-Conv X

Scale-Conv X

Source code

DNN architecture X X X

Distance measure X X X

Matching strategy X

Loss formulation X X

NMS X X

Table 2. Traceability matrix. Low level requirements (LLR) are

traced to implemented DNN artifacts and source code. The iden-

tified DNN artifacts are learnable parameters of the interpretable

CSPP. Explicit traces and full coverage are key factors for a con-

clusive safety argumentation.

offset (11.00%). Hence, CSPP provides competitive perfor-

mance while being inherently interpretable.

We would like to point out that our work is focused on

enabling a safety argumentation, rather than defining a new

state-of-the-art for pedestrian detection. That is why we do

not cross-validate parameters such as the number of proto-

types and channels in latent space. We arbitrarily choose

the number of 1 and 4 prototypes for our experiments. Per-

formance improvements should be part of future work.

4.2. Analyzing the Latent Space Structure

According to the traceability matrix in Table 2, all

LLRs target the integration of prototypes. As pointed out,

prototypes describe reference points structuring the high-

dimensional latent space. The latent space is constrained

and structured by quantifiable mechanisms (distance-based

clustering and separation). Hence, CSPP learns consistent

areas that hold features for pedestrian centers.

Latent representations can be directly mapped to individ-

ual detections or ground truth annotations (see TP, FP and

FN in Figure 3). In contrast to a non-interpretable DNN,

the mapping gives insights into the behavior of a DNN. The

analysis of the latent space and the behavior of latent repre-

sentations can be used in a safety argumentation since con-

fidence scores are distance-based. A pedestrian is detected

if the latent representation is within a certain distance to a

prototype. Thus, the influence of each prototype is quan-

tifiable and can be directly monitored. The critical distance

threshold is learned.



Method Reasonable Bare Partial Heavy Large Medium Small

CSP (with offset) [16] 11.00 7.30 10.40 49.30 6.50 3.70 16.00

CSP (w/o offset) [16] 11.40 8.10 10.80 49.90 6.00 3.90 18.20

CSP (simplified) 14.90 10.53 13.08 53.85 9.04 5.20 21.18

CSPP (1 prototype) 14.72 10.13 13.40 52.31 8.93 5.09 19.82

CSPP (4 prototypes) 13.78 9.31 12.70 49.18 8.13 4.83 20.68

Table 3. Log-average miss rates [%] for various validation subsets of CityPersons [29]. Evaluation was conducted with the original image

size (1024x2048 pixels).

The fulfillment of LLRs for the latent space structure has

to be demonstrated by post-hoc analysis. Although the loss

formulation structures the latent space, the correct func-

tioning of the intended learning process must be demon-

strated. Clustering and separation is enforced by Lcluster

and Lseparation as part of the loss formulation. Therefore,

we expect a prototype to have smaller distances to TPs than

to latent representations for background (see TP and back-

ground in Figure 3). For a given image, latent represen-

tations can be clustered according to their distances to the

four prototypes (see prototype clusters in Figure 3). Due to

the normalization of distances, the rejection area may differ

between prototypes.

The transformation of latent representations into the 2d

plane with PCA [25] and t-SNE [14] is shown in Figure 3.

The t-SNE plot highlights the clusters of latent representa-

tions for TPs around trained prototypes. In contrast to that,

we see latent background representations in the outer re-

gions of a prototype cluster. The position of FPs and FNs

describes a transition area where the risk of wrong decisions

increases. The visualization enables the identification and

analysis of failure modes. Wrong DNN detections can be

attributed to an incorrect position of a latent representation

relative to a prototype. Consequently, systematical failures

can be analyzed from a DNN perspective. Dense clusters of

FNs or FPs indicate potential improvement or areas of high

uncertainty.

The qualitative analysis can be enriched by descriptive

statistics since the clustering and separation of latent rep-

resentations are distance-based. Figure 4 shows boxplots

for four prototype clusters. It can be seen that prototypes

have in general smaller distances to the background (blue)

than TPs (green). FNs (red) and FPs (orange) are charac-

terized by small distances to prototypes. A decision is a

collective process. Hence, TPs can be a result of small dis-

tances to multiple prototypes. Overlapping boxes of TPs

and FNs result from the weighted sum of distances that

may not exceed the predefined confidence threshold (0.1).

Furthermore, overlaps indicate problems in matching detec-

tions to ground truth. A detected pedestrian may be based
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Figure 3. Visualization of latent representations with t-SNE in 2d

plane. Due to the reasoning process of CSPP, a detected pedestrian

is related to one specific latent representation. We can evaluate and

assign the detection to TPs, FPs, FNs or background. The evalu-

ation and visualization of detections and additional background

representations are done for the first 16 images of the reasonable

CityPersons validation dataset. The qualitative analysis is sup-

ported by a distance-based evaluation in Figure 4. The explicitly

learned structure of the latent space is shown. Latent representa-

tions of true pedestrian centers (TPs) are close to prototypes but

separated from the background.

on a latent representation within close distance to a proto-

type, but the predicted height and width of the bounding

box differ significantly from the ground truth bounding box.

The questionable detection is declared as a FN.

In terms of a safety argumentation for a DNN, post-hoc

analysis of an interpretable DNN are of great value be-

cause of their accessibility through requirements analysis.

Nonetheless, the starting point must be given by an inter-

pretable DNN.
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Figure 4. Boxplots for similarities of latent representations. In

contrast to t-SNE analyzing the localization of latent representa-

tions in the latent space, the analysis with boxplots is distance-

based. The distributions of similarities demonstrate that TPs

(green) and background (blue) are well separated. The evaluation

is conducted for the reasonable CityPersons validation dataset.

5. Conclusion

In this work, we provide a concept for a comprehensive

requirements analysis in the context of DNNs. The mean-

ingful decomposition of requirements and identification of

DNN artifacts are enabled by inherent interpretability. To

prove our concept, we propose the interpretable CSPP for

pedestrian detection and establish explicit traces between

defined requirements and DNN artifacts. The reevaluation

of inherent interpretability is completed by providing qual-

itative evidence for the fulfillment of requirements.

However, quantifiable evidence derived from traceable

and requirements-based test cases is crucial for a conclu-

sive safety argumentation in the context of DNNs. Future

work should focus on formulating applicable test cases for

the defined requirements. Consequently, metrics must be

identified that demonstrate test fulfillment.

Extending CSPP towards case-based reasoning of a

pedestrian can further strengthen inherent interpretability.

Multiple prototypical parts of pedestrians should be learned

and clustered into instances in post-processing steps. Semi-

supervised learning of parts can help with heavily occluded

pedestrians. Case-based reasoning motivates the formula-

tion of additional requirements and test cases.
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jects as points. arXiv preprint arXiv:1904.07850, 2019. 2


