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Abstract

Traditional semantic segmentation methods can recog-

nize at test time only the classes that are present in the

training set. This is a significant limitation, especially for

semantic segmentation algorithms mounted on intelligent

autonomous systems, deployed in realistic settings. Re-

gardless of how many classes the system has seen at train-

ing time, it is inevitable that unexpected, unknown objects

will appear at test time. The failure in identifying such

anomalies may lead to incorrect, even dangerous behav-

iors of the autonomous agent equipped with such segmenta-

tion model when deployed in the real world. Current state

of the art of anomaly segmentation uses generative mod-

els, exploiting their incapability to reconstruct patterns un-

seen during training. However, training these models is

expensive, and their generated artifacts may create false

anomalies. In this paper we take a different route and we

propose to address anomaly segmentation through proto-

type learning. Our intuition is that anomalous pixels are

those that are dissimilar to all class prototypes known by

the model. We extract class prototypes from the training

data in a lightweight manner using a cosine similarity-

based classifier. Experiments on StreetHazards show that

our approach achieves the new state of the art, with a sig-

nificant margin over previous works, despite the reduced

computational overhead. Code is available at https:

//github.com/DarioFontanel/PAnS.

1. Introduction

For machines acting in the real world, it is of the ut-

most importance recognizing what objects are present in

their surroundings, and where. To achieve this objective,

multiple works have focused on the task of semantic seg-

mentation [27, 4], where the goal is to assign to each pixel

in the image its corresponding semantic label. However, se-

mantic segmentation models are inherently limited by the

classes they see annotated at training time. As vast as their

training database might be, this limitation is a crucial weak-

ness, as clearly it is not possible to capture in a static col-

lection all the possible semantic classes a system might ever

encounter. Ideally, we would like a segmentation model

to recognize whether a pixel belongs to one of its known

classes, or whether it belongs to an unseen category not in-

Figure 1: Anomaly segmentation (AS) aims to segment ob-

jects unseen to the model. Addressing AS is crucial, es-

pecially in autonomous driving applications, where confus-

ing an anomalous object with known ones can be extremely

dangerous. In this work, we address AS through prototype

learning, where the anomalies (light-blue) are all regions

unmatched with any class prototype learned by the model.

cluded in the training set. Note that this capability is im-

portant whenever pixels of unknown categories might be a

threat for the machine (or the human) making use of a se-

mantic segmentation module. As an example, since no se-

mantic segmentation dataset contains labeled pixels for the

class helicopter, if an autonomous driving system faces a

scene as the one depicted in Figure 1 it will have no chances

to avoid a fatal collision, unless it recognizes that there is

something unforeseen in the image, i.e. an anomaly.

In this work, we focus on the problem depicted in Fig-

ure 1, namely anomaly segmentation (AS) [13, 37]. The

goal of AS is to recognize whether a pixel in an image be-

longs to a category unseen during training, being unknown

to the model. Previous works addressed this problem by ei-

ther imposing a threshold on the predicted probabilities per

pixel [16] or by means of generative approaches, comparing

input images (or features) with their reconstructed versions

[25, 37]. However, both strategies present some drawbacks.



Figure 2: Qualitative results of SPADE [31] reconstructions

on an image from StreetHazards dataset [15] (top). The

green box shows the anomaly, correctly not reconstructed

by the model. The red box, instead, shows one of the arti-

facts that the generator introduces: the traffic lights are not

reconstructed, thus being predicted as anomalies.

The first ignores that the softmax function blurs the confi-

dence of the model regarding the presence of a certain class,

i.e. after the softmax, two classes predicted with high scores

(logits) have nevertheless equal and low probability).

On the other hand, generating images with high fidelity

is particularly difficult in semantic segmentation due to their

complex content. Thus, generative approaches tend to cre-

ate artifacts not only when synthesizing pixels of unknown

classes, but also pixels of known ones (see Fig. 2).

In this paper, we argue that it is fundamental to address

the anomaly segmentation problem directly at the level of

class scores. Our intution is that if a model learns general

but discriminative representation of each class, it can de-

tect anomalies as pixels that are not compatible with any

of the class representations. We concretely pursue this idea

by means of class-specific prototypes, considering a pixel

as anomalous whenever the highest matching score for the

set of prototypes of the known classes is below a certain

threshold. We train the prototypes using a cosine classifier

that bounds the class specific scores while ensuring that the

prototypes embody the average pixel features of the corre-

sponding known class. It is important to emphasize that,

to avoid the normalization problems of softmax-based ap-

proaches, we estimate the anomalies directly from the com-

patibility between a feature vector and the prototypes. We

test our model PAnS on the popular StreetHazards bench-

mark [15], showing that it largely surpasses the state of the

art.

Contributions. To summarize, our contributions are:

• We propose a novel perspective for the anomaly seg-

mentation problem, revisiting the importance of class-

specific scores rather than probabilities in the process

of recognizing anomalous pixels.

• We present our approach, Prototypical Anomaly

Segmentation (PAnS), that computes such scores as

the compatibility between a feature vector and class-

specific prototypes, learning the latter as weights of a

cosine classifier.

• Experiments on the widely adopted StreetHazards

showing that our approach surpasses the previous state

of the art by a margin.

2. Related works

In this section we review the topics that constitute the

building blocks of our work, i.e. uncertainty estimation in

semantic segmentation, out-of-distribution (OOD) detec-

tion, anomaly segmentation and prototype learning.

Semantic segmentation. Modern semantic segmentation

architectures [27, 6, 46, 24, 45] are fully-convolutional

encoder-decoder networks [27, 1] that differ on the strat-

egy used to integrate contextual information in the pixel-

level features. We can categorize these works as belong-

ing mainly to two different approaches: pyramid-based ap-

proaches [46, 24, 5, 4, 45, 6], that integrate modules ex-

ploiting information at different scales, and attention-based

approaches [40, 42, 41, 43, 9, 44] that aggregates the long-

range spacial dependencies using attention modules at dif-

ferent levels. A drawback shared by all these architectures

is that they require huge amount of training data, which is

often time consuming and extremely expensive to collect.

Moreover, they only consider an offline setting, i.e. once

the model has been trained, it is not possible to integrate

additional knowledge. Although recent works have tried to

move forward and deal with the addition of novel classes

[30, 3], none of these approaches deal with anomaly detec-

tion.

Out of distribution detection is a topic that has aroused

growing interest in the machine learning community in re-

cent years [16, 22, 18].

[16] has established the standard baseline for out-of-

distribution (OOD) detection where a threshold applied on

the maximum softmax probability (MSP) is used to recog-

nize whether a sample belongs to the training distribution

(in-distribution) or not (out-of-distribution). Beside its sim-

plicity and effectiveness, the largest softmax probability is

sub-optimal to detect anomalies for two reasons. First, the

model may produce high probability values even when the



predictions are incorrect [7]. Second in case of correct pre-

dictions with low probabilities, the model may misinterpret

them as OOD samples.

Other approaches have attempted to mitigate these is-

sues. [19] preprocesses the training set in order to find class-

specific set of images that contain only the training samples

predicted with high similarity, filtering out the fraction of

sparse samples that may be outliers. Given a test sample,

the model detects anomalies through a modified nearest-

neighbor classifier, computing the prediction as a ratio of

distances between class sets. In [7], an additional neural

network is trained on in-distribution data to produce high

confidence values when the prediction of the model is cor-

rect. This additional architecture helps to model the confi-

dence on the network predictions.

Previous approaches [10, 20] have also used Monte

Carlo Dropout (MC-Dropout) for Bayesian approximation.

With multiple forward pass, they compute the variance and

the entropy as a measure of uncertainty.

ODIN [23] improves MSP by introducing a temperature

scaling factor in the softmax operation and a small pertur-

bation on the features before the classification step. The

temperature value and the perturbation are computed on a

OOD validation set. It is worth noticing that despite the

apparent similarity, our work is conceptually different from

[23]. First, [23] relies on a softmax function with tempera-

ture, while we directly compute the class scores as compat-

ibility with the prototypes. Second, while [23] requires an

OOD set, we train our model on in-distribution data only.

Anomaly segmentation. Current mainstream approaches

for AS exploit pixel-wise reconstruction loss with auto-

encoders (AEs) [2, 13]. The main disadvantage of these

approaches is that when the training scene is very complex,

as often is the case in roads or streets scenes, AEs are not

able to model correctly the in-distribution and therefore they

cannot guarantee to generate plausible in-distribution im-

ages from out-of-distribution regions. As a matter of fact,

the CAOS benchmark [15] demonstrated that MSP [16]

outperforms AEs and Bayesian network-based approaches.

Recent works [25] and [37] proposed to compare test im-

ages containing OOD pixels with their reconstructed ver-

sions. In both cases, images are reconstructed from the pre-

dicted semantic maps by means of a generative approach,

i.e. pix2pixHD [36] and SPADE [31] respectively. To detect

the OOD pixels, [25] and [37] measure the discrepancy be-

tween the original and reconstructed images by means of a

discrepancy network and a comparison module respectively.

A drawback of these works is that artifacts in the reconstruc-

tions process may be wrongly recognized as anomalies, as

shown in Fig. 2.

Differently from these works, we do not rely on expen-

sive generative approaches and we directly produce predic-

tions from the compatibility between features and class pro-

totypes. Our approach achieves better results despite being

more lightweight and simple than generative-based ones.

Prototype Learning [39, 12, 29], as opposed to softmax-

based CNN, learn a metric space in which labeling is

achieved by measuring the distance between the test image

and prototypes of of class. Recently, prototype learning has

been exploited by few-shot [11, 32, 34, 39] and zero-shot

[38, 26] learning methods. In this work, we take inspiration

from [11, 32], using a cosine-similarity based classification

layer that forces the classification weights to represent the

class prototypes.

3. Anomaly Segmentation with Prototypes

In this section we first formalize the anomaly segmen-

tation problem (Section 3.1), highlighting the limitations

of softmax-based approaches. We then describe how we

overcome these limitations with our model, Prototypical

Anomaly Segmentation (PAnS), in Section 3.2. An illus-

tration of PAnS is provided in Fig. 3.

3.1. Problem formulation

The goal of anomaly segmentation is to recognize which

pixels in the image belong to anomalous objects, unseen

during training. Let us denote as X ∈ IR|I| the image

space, where I is the set of pixels. During training, we

are given a dataset T = {(xk, yk)}
N

i=k
where x ∈ X

is an image and y ∈ Y is its corresponding ground-truth

mask. As in standard segmentation, Y contains pixel-level

annotations for a set of semantic classes C, i.e. Y ∈ C|I|.

Given T , we want to learn a function f mapping an im-

age to its corresponding anomaly score at pixel level, i.e.

f : X → IR|I|. Without loss of generality, we consider

f built on three components. The first is a feature ex-

tractor ϕ : X → Z mapping images into a feature space

Z ⊂ IR|I|×d, with d being the feature dimensions. The

second is a scoring function ρ : Z → IR|I|×|C| mapping

the features in Z to pixel-level class scores. The third is an

anomaly score function σ : IR|I|×|C| → IR|I|, mapping the

class scores to the final anomaly ones. A core component of

every anomaly segmentation algorithm is σ, that produces

the final anomaly scores. In the following we discuss how

previous approaches instantiated the σ function.

Maximum Softmax Probability (MSP). One of the most

popular and effective approaches for anomaly segmentation

is Maximum Softmax Probability (MSP) [16]. The intu-

ition behind MSP is that the anomaly score of a pixel should

depend on the highest probability assigned to any of the

known classes. Given an image x and its pixel-level class

scores s = ρ(ϕ(x)), MSP defines the anomaly score for

pixel i, i.e. σi(s), as:

σi(s) = 1−max
c∈C

es
c
i

∑
k∈C e

sk
i

(1)
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Figure 3: Overview of PAnS. During training, we learn class-specific prototypes using a cosine classifier that computes the

cosine similarity between the features ϕ(x) and the classifier weights w. When a test image arrives, we compute the network

prediction on the known classes and we compute the anomaly score by means of the cosine classifier scores.

where sk
i
= ρi

k
(z) is the score for class k in pixel i. Note

that anomaly scores are defined as the inverse of the maxi-

mum probability assigned to any known class in C, with the

probabilities computed through the softmax function. De-

spite its effectiveness, we argue that using softmax probabil-

ities is not the best choice to estimate the anomaly scores. In

fact, the softmax function may smooth the confidence of the

model prediction on each pixel, leading to consider uncer-

tain (and thus anomalous) pixels even with high predicted

initial scores.

As a toy example, suppose we have two different classes

and, given a pixel, the model produces a very high score

for the first class and a very low one for the other one. In

this case, the probabilities would have a low entropy after

applying the softmax function, with a high probability for

the class with the highest score and a low probability for

the other. The model will correctly consider this pixel as

not anomalous. However, if both classes have high but near

scores, they will get close probability values after softmax

normalization. This high entropy on the pixel prediction

indicates that the model is uncertain of the semantic of the

pixel, but the high initial scores may hint that the model is

not uncertain that the pixel belongs to a known class.

Note that we will get this high entropy class scores re-

gardless of the initial magnitude of the scores. Obviously,

since the magnitude of the logits before the softmax are un-

bounded, it is not trivial to assess whether the model is un-

certain on the semantic content due to the pixels featues be-

ing out of distribution or not. In the following, we will show

that keeping the class scores independent and constraining

them to be bounded in a known range (i.e. [−1, 1]) through

prototype matching is useful to assess the actual confidence

of a model in its predictions, improving the recognition of

anomalous pixels.

3.2. Prototypical Anomaly Segmentation

In the previous section, we discussed how MSP may fail

in recognizing anomalous pixels due to the softmax normal-

ization, which discards information about the confidence of

the model. As a consequence, we take a different approach,

arguing that it is critical to consider the confidence of each

class separately. Ideally, we want to obtain confidence val-

ues which: (i) are independent for each class, (ii) do not

require extra-computation, and (iii) are bounded in a cer-

tain range, such that it is possible to define a threshold on

their scores to detect anomalies.

To accomplish this, we propose to represent each class

using a prototype. Each class prototype may be consid-

ered as a reference feature vector for a certain class. We

can then compute class-independent confidence scores by

computing the similarity between the features of any pixel

and the prototype itself. We take inspiration from few-shot

classification learning works [32, 11], and we use a simple

yet effective cosine classifier, which implicitly encodes the

class-prototypes by means of its classification weights.

Cosine Classifier To effectively extract class-prototypes

from the network, we use a cosine classifier, i.e. a classi-

fier which uses cosine similarity between the input features

and the class weights as class scores. While this classifier

has been used for image classification [11, 28, 35, 17] to ef-

fectively learn class-prototypes, we are the first to use this

classifier with the aim of recognizing anomalies in semantic

segmentation. We replace the standard convolutional clas-

sifier, with a cosine similarity-based one. In particular, the

classification scores for a class c, given an image x and a

pixel i, are:

sci = ρic(ϕ(x)) = 〈ϕi(x), wc〉 =
ϕi(x)

⊺wc

||ϕi(x)|| ||wc||
, (2)

where ϕi(x) is the output of the feature extractor ϕ at pixel



i of the image x, and wc ∈ IRd is the prototype of class c.

We note that the scores s are in the range [−1, 1] due to the

normalization effect on the denominator.

To learn the prototypes, we apply the standard cross-

entropy loss on the softmaxed probabilities computed on

the scores sc:

ℓCE(x, y) = −
1

|I|

∑

i∈I

log
eτs

yi
i

∑
c∈C e

τsc
i

, (3)

where τ is a scalar value that scales the classification scores

in the range [−τ, τ ] and yi is the ground-truth at pixel i.

Intuitively, minimizing the ℓCE loss forces the prototype

weights to have low cosine distance with features of their

respective class, representing them on average.

Computing the Anomaly Scores In this section, we de-

scribe how we use the prototypes to detect the anomalies

in the input image. To overcome the limitations of soft-

max function, we argue that it is important to avoid the use

of normalized probabilities, but rather to use directly the

classification scores. Since the cosine classifier outputs the

similarity of each weight with the visual features extracted

from the network, it enables the use of the scores s as a

confidence measure on the presence of a class. Moreover,

we can exploit the fact that the scores of the classifier are

bounded in the range [−1, 1] and define the binary proba-

bility σ̄ of a class c to appear in a pixel i of an image x

as:

s̄ci =
sc
i
+ 1

2
(4)

and the anomaly score σ using the maximal binary proba-

bility, which we define as:

σi(si) = 1−max
c∈C

s̄ci . (5)

Intuitively, σi will produce scores close to 1 when the visual

features are far from all the class-prototypes, while close to

0 if at least the prototype of one class is close to them.

With this strategy, we expect that our method is able to

effectively represent the known classes, having an high con-

fidence on pixels belonging to them, while we expect no

class prototype to be close to the extracted features for pix-

els of anomalous objects. Moreover, we avoid the afore-

mentioned issues of the softmax function largely boosting

the results as we will demonstrate in the experimental sec-

tion.

4. Experiments

Dataset and baselines We conduct our experiments on the

popular StreetHazards [15] database, which has been pro-

posed within CAOS benchmark [15] as a synthetic dataset

for anomaly segmentation. It contains 5125 training images

with paired semantic labels, 1031 validation images with-

out anomalies and 1500 test images with anomalies. As the

Figure 4: Examples taken from StreetHazards dataset [15].

authors used Unreal Engine along with CARLA simulator

[8] to obtain the synthetic images, they selected different

towns for the three splits. Test images contain anomalies

randomly selected from a set of 250 objects. These objects

are placed in the test images trying to reproduce plausible

road scenarios. Figure 4 shows examples of images taken

from the dataset.

On this benchmark we compare our method with state-

of-the-art anomaly segmentation approaches, namely MSP

[16], MSP + CRF [15], an auto-encoder (AE) based ap-

proach [2], Dropout [10], and the generative approach Syn-

thCP [37].

Metrics. Following [15, 37, 25] we used as anomaly seg-

mentation metrics AUPR, AUROC and FPR95 as they are

widely used in out-of-distribution detection [18, 21]. AUPR

measures the area under the Precision-Recall curve, AU-

ROC measures the area under the TRP and FPR and FPR95

measures the FPR at 95% of recall. In each of these met-

rics, anomaly pixels have been considered as positives and

all the others as negative.

4.1. Implementation details

Following [37], we used a ResNet-50 architecture [14]

as a backbone and PSPNet [46] as the head module. We

trained our segmentation module for 40 epochs, with batch

size equal to 2 and a learning rate equal to 0.007. We used

as learning rate decay policy the polynomial schedule with

power equal to 0.9 and a weight decay equal to 0.0001. We

also used InPlace-ABN [33] which allows to save up to 50%

of GPUs memory. Same as [37], we used multiple scale

evaluation at test time and at training time we performed

random scale, random crop and random horizontal flip aug-

mentation.

4.2. Comparison with the state of the art

The results of our comparison with the state of the art

are reported in Table 1. As the table shows, in this sce-

nario our method achieves the best performances by a mar-

gin, under AUROC and FPR95 OOD metrics, being instead



Method AUPR ↑ AUROC ↑ FPR95 ↓
AE [2] 2.2 66.1 91.7

Dropout [10] 7.5 69.9 79.4

MSP [16] 6.6 87.7 33.7

MSP + CRF [15] 6.5 88.1 29.9

SynthCP [37] 9.3 88.5 28.4

PAnS 8.8 91.1 23.2

Table 1: Results on StreetHazards dataset [15] according to

AUPR, AUROC and FPR95 metrics. [15].

Figure 5: Difference between the direct usage of scores

(both the scores produced by a standard classifier and a

cosine-based one) on StreetHazard dataset [15].

comparable under AUPR values. Among all, noteworthy is

the result of 23.2% achieved under the FPR95 metric which

shows that our method is much less prone to confuse pixels

of known classes as anomalies. This is due to the fact that

our prototype-based classifier betters preserve the original

scores for known classes which might be either smoothed

by the softmax normalization (as in MSP) or overwritten

by inaccurate generations (as in SynthCP). Indeed, under

the FPR95 metric, our approach improves the state of the

art (SynthCP) by almost +6%. The fact that our prototypes

induce a classifier more robust against misclassification of

known class pixels is reflected in the other metrics. Our

approach reaches 91.1% of AUROC, improving over the

best previous method, SynthCP, of 2.6%. These results con-

firm how our approach achieves the best trade-off between

recognizing anomalous pixels while preserving high confi-

dence predictions for pixels of known classes. On the other

hand, SynthCP obtains a slightly better AUPR (+0.5 w.r.t.

PAnS). However, we highlight that PAnS only requires a

single forward pass on the network, without any generative

step and without increasing the computation required by the

model.

Note also that generative models might be affected by

the quality of the generated images. Indeed, using syn-

thetic images often introduces artifacts, as mentioned in

[37]. These artifacts might hamper the performance of gen-

erative anomaly segmentation models, since they might be

wrongly segmented as anomalies (i.e. see Fig. 2).

Qualitative results To analyze the impact of our cosine

classifier and scores, we report in Fig. 6 some qualita-

tive examples on anomaly scores produced by the softmax-

based approach MSP [16] and our approach PAnS for ran-

domly selected samples of StreetHazards. In the figure,

white regions indicate higher anomaly scores while blue

regions lower ones. As the figure shows, our model is

able to correctly assign low scores to the regions where the

anomaly is present (e.g. helicopter on the top image, i.e.

carriage in the bottom), while MSP does not, covering only

small portions of the anomalies. At the same time, both

MSP and our approach tend to assign high anomaly scores

to boundaries between known classes (e.g. street lines and

road in the top, building and sidewalk in the bottom). We

believe modeling this highly uncertain regions between two

or more known classes, is an open problem for anomaly seg-

mentation algorithms, which would be important to address

in future works.

Ablation study of anomaly scores. We report in Fig. 5

an ablation study about the choice of the anomaly score

function σ on the StreetHazards dataset [15]. To provide

a comprehensive comparison, we considered four variants:

the softmax predictions of a standard linear classifier (MSP

[16]), the softmaxed predictions of a cosine classifier (Co-

sine cls + softmax), using the unnormalized class scores of

a linear classifier (Class scores), and finally the unnormal-

ized cosine scores of PAnS. As the figure shows, computing

the softmax probabilities using a cosine classifier improves

the performances w.r.t. making use of a standard classifier,

improving the FPR95 value reached by the latter by 5.8%

points. However, we note that using directly the class scores

of the network instead of the softmax-normalized probabil-

ities is highly beneficial, improving the standard softmaxed

version by 9.5% and the cosine one by 4.7%.

Finally, we note using the unnormalized cosine scores

(PAnS) outperforms the use of standard class scores achiev-

ing the highest FRP95 value up to 23.2%. We ascribe this

improvement to the unbounded nature of scores of a stan-

dard classification layer, where defining a threshold values

for detecting anomalies is more difficult.

Ablation study of classifiers. While our model PAnS

shows promising results on anomaly segmentation, an open

question is whether it still maintains the high discrimination

capabilities of standard classification modules. In Table 2

we report the IoU achieved by both a standard and a co-

sine similarity-based classifier on each class of the Street-

Hazards dataset. Overall, the cosine-based classifier out-

performs the standard classifier obtaining a 54.2% mIoU,

which is 1% more than standard classifier (53.2% mIoU).

Results show that the cosine similarity allows the model

to reach higher performances on almost every class, espe-

cially on classes that are frequently considered hard, such



Figure 6: Qualitative comparison between the use of probabilities (MSP) and our direct scores (PAnS) for segmenting

anomalies on StreetHazards [15]. White indicates an high score for the anomaly, while the blue indicates a low score. In the

semantic labels the anomaly are represented in cyan.

Classifier bkg building fence pole street-line road sidewalk veget. car wall t.sign mIoU

Standard 84.5 70.9 30.1 23.6 26.7 92.1 57.4 75.1 53.3 42.9 28.9 53.2

Cosine-based 84.8 72.1 30.9 22.3 26.7 92.5 60.0 75.3 55.2 45.7 30.3 54.2

Table 2: Comparison on IoU using a standard or the cosine classifier.

as fence, traffic sign, and sidewalk. Only in the pole cate-

gory the model’s performance slightly deteriorates w.r.t. the

standard classifier, 22.3% against 23.6%. The reason is that

in StreetHazards the pole class is small and rarely repre-

sented, making it difficult for the model to estimate a good

prototype for it.

5. Conclusions

In this paper we addressed the problem of anomaly

detection in semantic segmentation, an important but yet

scarcely researched topic. Previous works either focused

on how to model the probability of a pixel belonging to an

unknown class, or on generative approaches for detecting

anomalies through reconstruction errors. Here, we instead

argued that to detect if a pixel is anomalous or not, it is

more important to have a model that measures the distance

between visual features extracted from a pixel and a gen-

eral representation of each class, rather than using maxi-

mum softmax probabilities. We obtain such general repre-

sentations by learning class-specific prototypes as weights

of a cosine similarity-based classifier. Experiments on the

widely used StreetHazards benchmark support our intu-

ition, as we achieve the new state of the art with a significant

margin over previous work in two out of three metrics.

Future work will further explore this research avenue,

looking into distinguishing between anomalous pixels and

pixels at the boundary between two known classes, that are

challenging to predict due to their uncertain nature.
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