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Abstract

In this paper, we propose a method for post-hoc ex-

plainability of black-box models. The key component of

the semantic and quantitative local explanation is a knowl-

edge distillation (KD) process which is used to mimic the

teacher’s behavior by means of an explainable generative

model. Therefore, we introduce a Concept Probability Den-

sity Encoder (CPDE) in conjunction with a Gaussian Dis-

criminant Decoder (GDD) to describe the contribution of

high-level concepts (e.g. object parts, color, shape). We

argue that our objective function encourages both, an ex-

planation given by a set of likelihood ratios and a measure

to describe how far the explainer deviates from the training

data distribution of the concepts. The method can lever-

age any pre-trained concept classifier that admits concept

scores (e.g. logits) or probabilities. We demonstrate the ef-

fectiveness of the proposed method in the context of object

detection utilizing the DensePose dataset.

1. Introduction

It is a well known issue that modern neural networks ex-

hibit a lack of explainability and interpretability in their pre-

dictions. A neural network serves as a mapping from high

dimensional feature space (e.g. an image) to a commonly

low dimensional output describing its decisions. However,

it is still not possible to get meaningful insights into such a

mapping allowing an interpretation of the network predic-

tions. Nevertheless, the ability to explain neural network

predictions is of particular interest as it is mandatory to un-

derstand decisions of autonomous systems such as driver

assistance systems and to gain trust. In recent work, sev-

eral approaches like gradient-based methods [2, 20, 15] or

perturbation-based methods [12, 5] aim to gain insights into

the neural network’s decision-making. Most of these ap-

proaches visualize the relevant image regions as saliency
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Figure 1: Semantic and quantitative explanation for the

teacher’s decision [18]: The input image (left) contains a

partially occluded person which leads to a low confidence

score (pt(y = 1|x) ≈ 0.0). Our generative student model

(ps(y = 1|z) ≈ 0.03) can closely reconstruct the teacher’s

confidence based on the presence of concepts (torso, hand,

etc.). The presence or absence of concepts is determined

by a concept model and the corresponding logits (top right,

semantic explanation). Finally, the quantitative explanation

(bottom right) is obtained by the contribution of each con-

cept (log likelihood ratio) to the student’s confidence. A

parallel GDA model confirms the successful knowledge dis-

tillation.

maps. However, recent work has claimed that these maps

only indicate omitted input regions and do not provide rele-

vant semantic explanations for the decision [13].

Another branch of research focuses on methods that try

to explain and verify neural network predictions by the pres-

ence or absence of semantic concepts, i.e. body parts like

arms or legs for persons [9, 4, 17]. These approaches pro-

vide meaningful explanations but also require modifications
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Figure 2: Overview of our approach. The teacher represents the network that should be explained, in this case a DNN

predicting the class no person given the input image x. The student network consists of an encoder and a decoder block and

learns to reproduce the predictions of the teacher while internally using the concept presence to explain its prediction. On the

one hand, the student is trained to mimic the behavior of the teacher (KD). On the other hand, the student is also trained to

match the moments of a fixed concept logit distribution (explainability). Finally, the output of the student is used to calculate

a log likelihood ratio that in turn is used to evaluate the contribution of each concept to the decision of the teacher.

to the base network which in turn might also affect its per-

formance. Therefore, the focus of this work is to develop a

method that doesn’t require a modification of the base net-

work and delivers semantic and quantitative explanations

based on a concept model (cp. Figure 1). We follow the

strategy presented in [3] and use a student-teacher approach

to add post-hoc explainability to a DNN. In contrast to [3],

we introduce a new generative encoder-decoder model to

determine the contribution of each visual concept to the stu-

dent’s and teacher’s decision, respectively. Therefore, we

exchange the crucial weighting schema of [3] by a proba-

bilistic model with a built-in interpretation of the concept

contribution.

Contributions: To summarize, (i) we present to our

knowledge the first generative knowledge distillation (KD)

approach to explainability that can be applied to black-box

models and thus do not affect their performance; (ii) we pro-

pose an encoder-decoder structure, which utilizes a concept

model in the ”latent” space to obtain semantic and quan-

titative explanations. The corresponding loss controls the

trade-off between KD and explainability; (iii) we define a

measure to evaluate how far the explainer has to deviate

from the training data distribution to perform a prediction;

(iv) we investigate the viability of this measure and analyze

the explanations on the DensePose [6] dataset.

2. Related Work

In the scope of image processing, gradient-based vi-

sualization methods like LRP [2], Deconvolution [20] or

DeepLIFT [15] attempt to approximate explanations by us-

ing backpropagation. Therefore, the gradient of each in-

put pixel is evaluated with regard to the output signal. The

gradient reflects the importance of the according pixel to

the output and thus allows for measuring the relevance of

image regions. In contrast, GradCAM [14] only uses the

layer activations of the last layer to visualize relevant fea-

ture regions. However, these approaches require accessing

the intermediate layer activations and are not agnostic to

the model architecture. Another way of obtaining neural

network explanations is to perturbate image regions and to

measure the influence to the output prediction [5]. Using

this approach, it is possible to highlight the most relevant in-

put regions for the network output while being independent

to the underlying network architecture. A similar approach

is given by LIME [12] where an input image is perturbed

around its neighborhood to highlight the most relevant re-

gions. An explanation can also be given by generating a

text-output based on an inner feature layer [16]. Combining

both approaches yields a text-based description of images in

conjunction with a visualization of important image regions

and is demonstrated by [19].
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Although all of these approaches already achieve good

performance, it is important to not only use quantitative lo-

cal explanations, but also to obtain semantic explanations

in terms of simple and human understandable concepts like

shape, color or parts that constitute an object. The au-

thors in [8] use a vector representation of the logit layer as

concepts and compare them to random counter examples.

The importance of each concept, regarding a tested class,

is measured by its change when evaluated for another class.

Higher changes lead to a greater importance of this concept.

In contrast, the authors of [9] attach concept classifiers to

the inner layers of the network to predict the presence or

absence of the concepts, whereas [4] use invertable layers

to map the features to a latent space that in turn represents

the concepts. Due to the invertability, the latent space can be

mapped back to the feature space. Further, [17] propose fea-

ture attribution layers in conjunction with input occlusions

to determine relevant concepts as well as their importance

to the network decision. However, all of these approaches

require modifications of the base network. In some cases,

this is not feasible or might also affect performance. In

this work, we use a student-teacher framework that does

not need any modification of the base network and is also

independent of its architecture.

Our approach is based on the work of [3] where a

student-teacher approach is used to predict the contribution

of concepts to a teacher’s decision. The contributions are

obtained by an additional explainer network. We also uti-

lize a pre-trained concept model and perform knowledge-

distillation. The explainer network of [3] consists of a

weighted linear combination of the concepts denoting the

contribution of each concept to the final decision. The

weights are in turn determined by an additional neural net-

work. However, we argue that these weights are only re-

stricted by a weight prior at the beginning of the train-

ing process and thus can be freely chosen by the network.

In addition, a method to choose either the magnitude of

the weights or their ratio for different concepts is missing.

Therefore, it is a challenging task to choose and interpret

the a-priori weights. In contrast, our probabilistic approach

is characterized by a built-in method to determine ”a-priori

weights” based on the training data. These weights are

given as distribution and are used during the whole training

process to trade-off knowledge distillation and explainabil-

ity. Finally, our approach uses a Bayes Classifier and could

benefit from the current research in the field of symbolic

explanations, the so-called PI-explanations of Naive Bayes

Classifiers (NBCs) [10].

3. Knowledge Distillation

Let pt(y|x) denote the teacher model that is the sub-

ject to be explained, y the target class, and x the input

data. ps(y|z) is the decoder of an explainable generative
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Figure 3: Distributions of concept model logits p(z|y) when

predicting the proposal dataset P . Green denotes the distri-

butions for positive samples (person), while red denotes the

negative ones.

student model. Our proposed method aims to train the stu-

dent model, that is, learn the parameters of the student to

mimic the behavoir of the teacher model utilizing visual

concepts c. We follow the strategy from [3] and use the

concept model p(c|x) to predict n visual concepts as se-

mantic explanations. The pre-trained concept model en-

codes e.g. object part, color, and shape information. The

n-dimensional output of the concept model serves as the in-

put feature vector for the generative explainer; more specif-

ically we use the logits z as features.

The task of the generative model is to reconstruct the

teacher’s output by only combining the visual concepts z

in terms of a special Gaussian Discriminat Analysis (GDA)

model. The benefit of using the GDA is that we are able to

sample from the learned Gaussians and we can calculate the

contribution of each visual concept to the class prediction.

This approach is closely related to a supervised VAE. In

contrast to a VAE, the objective is not to approach a Gaus-

sian N (0, I) but to match the conditional training data dis-

tribution of the concept logits p(z|y) = N (z;µz|y,Σz|y).
In addition, the decoder doesn’t reconstruct the quantitative

input variable but the categorical output of the teacher.

Our student model consists of two building blocks,

a Gaussian Discriminant Decoder (GDD) and a Concept

Probability Density Encoder (CPDE). The details are pre-

sented in section 3.2 and 3.3. The overall structure of the

approach is visualized in Figure 2.

3.1. Concept Model

The concept model p(c|x) predicts the presence of each

concept for a given input x. We start with a pre-trained

ResNet50 [7] as base network and add a set of n classifica-
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tion heads. For the categorical outputs we use a sigmoid ac-

tivation to predict the presence or absence of the concepts.

The training process of the concept model is independent

of the knowledge distillation process and the model can be

exchanged by any pre-trained model that predicts reason-

able concepts for the given application. Once the concept

model is trained, it is used to create the conditional train-

ing data distribution of the concept logits p(z|y) based on

the student-teacher training data (cp. Figure 3). An example

for the logits of a single input sample is shown in Figure 2

(concept presence).

3.2. Gaussian Discriminant Decoder (GDD)

The structure of the decoder is based on a GDA model

and has no directly trainable parameters in the context of

student-teacher learning. It serves as a proxy to convert the

encoder prediction into an interpretable classification out-

put. Based on the concept model and the training data, we

can determine the class conditional mean µz|y and covari-

ance Σz|y of the corresponding concept logits. The likeli-

hood p(z|y) and prior p(y) alone are sufficient to deploy an

auxiliary GDA classifier that can be used in parallel to the

teacher model. For inferring the class in terms of a max-

imum a posteriori probability (MAP) estimate the Bayes’

theorem can be applied

p(y = i|z) =
p(z|y = i)p(y = i)

∑

k p(z|y = k)p(y = k)
. (1)

To conveniently extract the concept contributions, we as-

sume conditional independence and factorize the concept

likelihood p(z|y) =
∏n

j=1 p(zj |y). In practice, this

leads to a diagonal covariance matrix of the form Σz|y =

diag
(

σ2
z1|y

, . . . , σ2
zn|y

)

. Instead of Equation 1, we use the

corresponding quadratic decision function log p(y = i|z),
neglect the normalizer and utilize a softmax to define our

generative student model ps(y|z). Expanding the decision

function for each class, we get

fy(z) = zTWyz + wT
y z + by, (2)

with

Wy = −
1

2
Σ−1

z|y,

wy = Σ−1
z|yµz|y,

by = −
1

2
µT
z|yΣ

−1
z|yµz|y −

1

2
log detΣz|y + log p(y = y).

Equation 2 constitutes the decoder of our student model and

is a function of the concept logits while it is parameterized

by the mean, covariance and prior (cp. Figure 2). This part

of our student model is called Gaussian Discriminant De-

coder (GDD). However, how do we obtain an explanation?

For simplicity, we now assume a 2-class problem and the

log-odds ratio of Equation 1 leads to

logit (p(y = 1|z)) =
n∑

j=1

log
p(zj |y = 1)

p(zj |y = 0)
+ log

p(y = 1)

p(y = 0)
.

Due to the factorized likelihood, the contribution of each

concept is given by the log likelihood ratio for the indi-

vidual concepts LLRj = log
p(zj |y=1)
p(zj |y=0) . Positive values

basically confirm the decision for the target class y = 1
and negative values contradict the decision. An example is

shown in Figure 2 (concept contribution). At this point, we

have an explainable model that is independent of the teacher

and hence, the explanation for the teacher’s decision is still

missing. To get around this hurdle, we incorporate an en-

coder model into the student to facilitate KD by adjusting

the parameters of the concept logit distribution.

3.3. Concept Probability Density Encoder (CPDE)

The encoder is the only part of the student that has learn-

able parameters and therefore the encoder is responsible for

adjusting the output of our student’s GDD ps(y|z) to be

aligned with the teacher model pt(y|x). More importantly,

this adjustment forces our decoder to explain the decisions

of the teacher since it has to reconstruct the decision by a

set of interpretable concepts. The goal of the concept prob-

ability density encoder (CPDE) is to predict the class con-

ditional mean and covariance used by the GDD. In order to

equip the student with the necessary degree of freedom, the

student’s distribution q(z|y, x) now depends on the input

data x, that is, we predict the mean µz|y,x and covariance

Σz|y,x. The encoder itself is again based on a ResNet50 [7]

with softplus activations to guarantee positive variance pre-

dictions. We only train the last fully connected layer.

The decoder, as described in subsection 3.2, is an aux-

iliary classifier that explains its decision with reference to

the training data distribution p(z|y). If we exchange p(z|y)
with the input dependent distribution q(z|y, x) of the en-

coder, we obtain a regular student-teacher setup. The addi-

tional degree of freedom, that is incorporated into the en-

coder, allows the student to completely ”neglect” the pres-

ence or absence of concepts to follow his goal and approx-

imate the teacher’s output as close as possible. It is worth

mentioning that this is a worst case scenario where the con-

cepts are incomplete or insufficient to mimic the teacher’s

behavior. Thus, we have the two extremes: 1.) an explain-

able GDD model which is independent of the teacher and 2.)

a student-teacher framework which can freely choose the

mean and covariance to describe the concept contributions.

The inevitable trade-off between the explainability and the

knowledge distillation is obtained by combining both ob-

jectives into the loss function.
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3.4. Loss Function

Our objective function encourages both, an explanation

given by a set of concept likelihood ratios (explanation) and

a knowledge distillation (KD). The KD forces the output

of the student to mimic the teacher whereas the regularizer

encourages the student’s distribution to mimic those of an

explainable GDA by minimizing

L = DKL (ps||pt)
︸ ︷︷ ︸

KD

+αDKL

(
q||N (z;µz|y,Σz|y)

)

︸ ︷︷ ︸

explainability

, (3)

with the Kullback-Leibler divergence DKL (ps||pt)
between decoder ps and teacher distribution pt.

DKL

(
q||N (z;µz|y,Σz|y)

)
denotes the divergence be-

tween the encoder distribution q(z|y, x) and training data

distribution p(z|y). The hyper parameter α controls the

trade-off between knowledge distillation and explainability.

4. Experiments

We use our approach to monitor the decisions made

by a person detection model. To train the components of

our proposed method, we use different subsets that have

been generated by the DensePose dataset [6]. Further-

more, we use the six concepts torso, hand, foot, leg, arm

and head to explain the network predictions of a pretrained

Faster RCNN R-50 [11] provided by Detectron2 [18]. We

further introduce the concept dataset C consisting of crops

from DensePose dataset with corresponding concept labels.

To not confuse the concepts due to concurrent presence (e.g.

arm and torso are often visible at the same time), we es-

pecially cropped single concepts. A concept is counted

as present if the ground-truth part-segmentation provided

by DensePose covers at least 5 % of the image. In to-

tal, we generated 107.864 concept samples. The proposal

dataset P (> 247.000 samples) represents the predictions

made by the teacher model. This dataset can either be cre-

ated by a classification network or, in our case, by the pre-

dictions/proposals obtained by an object detection network.

To convert the detections into a classification dataset, each

predicted bounding box is cropped and saved with the cor-

responding confidence score. This information defines our

teacher model. In Figure 4, we provide some cropped sam-

ples of P with the corresponding confidence scores. Note

that the samples are cropped after the non-maximum sup-

pression as we treat the network as black-box.

4.1. Concept Model

In a first step, we trained a ResNet50 on the concept

dataset C that is independent of the person detection net-

work to predict the presence of concepts in an image. The

results are shown in Table 1. Concepts close to the torso

Score: 1.00 0.15 0.39 0.01

Figure 4: Samples of the proposal dataset P with the corre-

sponding ground-truth body-part segmentation of the con-

cepts as well as the predicted person confidence.

often appear inside a cropped image of the training data,

whereas the concept hand is absent in many cases. This

leads to a slightly inferior performance compared to the

other concepts.

Table 1: Results (%) of the concept model on C.

Concept Accuracy Precision Recall F1

torso 91.1 94.2 93.0 93.6
hand 88.3 91.5 83.6 87.4
foot 94.2 82.4 81.1 81.7
leg 89.0 85.8 85.5 85.6
arm 88.4 91.1 90.6 90.8
head 94.6 96.8 92.1 94.4

4.2. Knowledge Distillation Performance

In this section, we evaluate the performance of our

knowledge distillation process. The ability of the student

to mimic the behavior of the teacher is measured by the

similarity of the predicted probability scores. Therefore,

we utilize the Pearson correlation coefficient to assess a lin-

ear relationship between student’s and teacher’s confidence

whereas the Spearman’s rank correlation coefficient cap-

tures a monotonic relationship. A baseline is obtained by

using a standard GDA model which in turn is exactly our

GDD model with the distribution parameters of the regular-

izer p(z|y). The distribution p(z|y) is extracted from the

proposal dataset P (Figure 3) and new samples can be clas-

sified by the GDA model using the logit predictions from

the concept model. It is obvious that the baseline GDA

model shouldn’t be highly correlated with the teacher since

the input features are different, the GDA is of limited ca-

pacity and the GDA is a parallel model without insights

into the teacher. Even if the decoder (GDD model) defines

a quadratic decision function, the added encoder (CPDE)

is a neural network and therefore induces a highly non-

linear decision function. This degree of freedom is nec-
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essary to enable knowledge distillation. The high corre-

lation values of our student (CPDE & GDD) compared to

the standard GDA shown in Table 2 confirm the successful

knowledge distillation process. We performed a grid search

(α ∈ {0.1, . . . , 1.0}) on the training data to determine an

appropriate α. As a measure to choose an α we analyzed the

trade-off between student-teacher and student-GDA corre-

lation, but all analyzed values induce similar performance in

terms of explainability. Therefore, we have chosen α = 0.1
with highest student-teacher correlation.

Table 2: Pearson and Spearman correlation coefficients be-

tween teacher confidence and the output of our student

(CPDE & GDD) trained with α = 0.1. A GDA model is

used as a baseline. Correlation relevance: p-value ≤ 0.001.

Pearson r Spearman ρ

GDA baseline .69 .51
CPDE & GDD .81 .64

In addition, we use a standard evaluation protocol (ac-

curacy, precision, recall, F1 score) to demonstrate the ef-

fectiveness of the student-teacher learning. The models

are evaluated using intersection over union (IoU) scores

of .5 and .75 to define a matching ground-truth bounding

box. Although the GDA has a lower correlation w.r.t. the

teacher, around 92 % of all samples can be classified cor-

rectly (cp. Table 3). Therefore, the GDA could be helpful to

discover corner cases where the GDA and the teacher dis-

agree. On the other hand, the student is characterized by a

higher correlation and a classification performance that al-

most matches the teacher’s performance.

Table 3: Classification results for IoU .5 (top) and .75 (bot-

tom) compared to the ground-truth data on the test dataset.

Accuracy Precision Recall F1

Teacher 95.83 85.74 69.56 76.81
GDA baseline 92.01 57.68 73.02 64.45
CDPE & GDD 94.48 78.54 61.08 68.72

Accuracy Precision Recall F1

Teacher 97.78 75.31 96.32 84.53
GDA baseline 91.87 42.67 85.15 56.86
CDPE & GDD 96.63 67.04 82.18 73.84

4.3. Explanation

Insights into the Concept Knowledge: Compared to

the standard GDA, the student has a higher performance and

correlation (cp. subsection 4.2). This is achieved by the stu-

dent’s ability to adjust the distribution q(z|y, x) based on

the input data x. An interesting insight into the student’s

Concept
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Figure 5: Comparison of the GDA baseline (regularizer)

and the CPDE. For each concept, the deviation of the pre-

dicted mean µz|y,x and covariance Σz|y,x of our encoder is

evaluated w.r.t. the GDA distribution p(z|y). Thus, we get

an insight into the student’s behavior and how far he has to

shift the mean and covariance of each concept to mimic the

teacher’s behavior. It is obvious that the student’s strong de-

viation for the concepts leg and foot are necessary to capture

the bimodal nature of these concepts (cp. Figure 3).

knowledge is provided by comparing the GDA distribution

p(z|y) and q(z|y, x). In Figure 5, the deviation of the stu-

dent’s mean and covariance w.r.t. to the GDA is visual-

ized. Surprisingly, the deviation of the student model from

the GDA is marginal for most concepts, except for the con-

cepts foot and leg. By comparing the deviation-magnitude

of µz|y,x with the training data distribution from Figure 3,

we observe that the student model has learned to cope with

the bimodal nature of the concept distribution of foot and

leg, i.e., the distribution p(z|y = 1) (green) of the concept

foot has two modes (approx. zfoot ∈ {−9, 10}) and the

GDA utilizes the mean µzfoot|y=1 ≈ −2. Figure 5 reveals

that the student has learned to shift this mean in the range

Table 4: Spearman correlation coefficients ρ between

teacher confidence and concept LLR. Correlation rele-

vance: p-value ≤ 0.001. (except concept foot of GDA base-

line).

GDA baseline CDPE & GDD

torso .48 .54

hand .18 .28

foot −.02 .17

leg .16 .32

arm .37 .40

head .35 .53
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Figure 6: Top: An example of explanations with the input image, the logits z from the concept model (concept presence)

and the log likelihood ratios (concept contribution) for the positive class (person). The confidence of the student and teacher

is very similar, while the GDA model delivers a contradictorily confidence value. On the right the predicted encoder dis-

tribution q(z|y, x) (solid line) and the regularizer p(z|y) (dashed line) are visualized. The distribution for the positive class

y = 1 is shown in green and in red for the negative class. Bottom: Additional example images with corresponding concept

explanations obtained by our student model.

[−5, 6]. Therefore, the student can dynamically take ad-

vantage of the two modes to improve its performance and

mimic the teacher using the approximation of the modes

ẑfoot ∈ {−7, 4}. A similar behavior can be observed for

the concept leg. A visual example of the shifted mean for

the concepts foot and leg is shown in Figure 6 (top right).

To summarize, due to the regularizer (explainability), most

of the concept explanations are very similar to the GDA

baseline and small deviations are sufficient to mimic the

teacher’s behavior. In addition, the student can leverage the

bimodal nature of concept distributions to improve KD even

further.

Quantitative Evaluation: To evaluate the explanation,

we follow the strategy presented in [1] and use the Spear-

man rank correlation metrics to measure the ”similarity”

between concepts and the teacher’s decision in terms of a

monotonic relation. The correlation is calculated between

the log likelihood ratio LLR of each concept and the confi-

dence of the teacher. The LLR represents the contribution

of each concept to the prediction of the teacher. The corre-

lation coefficients are again compared to the standard GDA

model without any KD. Table 4 reveals that our encode-

decoder (CPDE & GDD) framework has improved the cor-

relation by a large margin.

Qualitative Examples: Qualitative examples of seman-

tic and quantitative local explanations are visualized in Fig-

ure 6. We observe that our encoder changes the distribu-

tions slightly while keeping them in the same range as the

distributions of the GDA baseline model. Furthermore, the

confidence scores of the teacher, student and GDA model

confirm an appropriate knowledge distillation. The GDA

model delivers contradictorily confidence values, whereas

the student and teacher show a similar behavior.

5. Conclusion

In this paper, we present a method to add post-hoc ex-

plainability to black-box models. We use visual concepts to

obtain semantic and quantitative explanations and propose

a new generative student-teacher framework that learns to

mimic the base network. The trade-off between knowledge

distillation and explainability is ensured by our objective
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function which utilizes a regularizer capturing the informa-

tion stored in a standard GDA model. In order to quan-

tify the contribution of different semantic visual concepts,

the concept distribution is factorized to provide separate log

likelihood ratios. These ratios reveal the inner-workings of

our teacher model. The viability of our approach is evalu-

ated on the DensePose dataset. We show in our experiments

that our student model is able to mimic the teacher model

with high correlation while providing meaningful concept

explanations for each prediction. Therefore, we conclude

that our framework implements a reasonable knowledge

distillation while enhancing explainability without sacrific-

ing the teacher’s performance. This framework is a good

contribution towards explainable and interpretable neural

networks, allowing for a potential usage even in safety crit-

ical applications like autonomous driving.
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