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Abstract

Classification of seat occupancy in in-vehicle interior re-

mains a significant challenge and is a promising area in

the functionality of new generation cars. As majority of ac-

cidents are related to the driver errors the consequences

of not wearing, or improperly wearing, a seat belt are

clear. The NHTSA reports that 47% of the 22,215 passen-

ger vehicle occupants killed in 2019 were not wearing seat

belts. To address this problem we propose a deep learn-

ing based framework to classify seat occupancy into seven

most important categories. In this study, we present an

interpretable and explainable AI approach that takes ad-

vantage of pre-trained networks including ResNet152V2,

DenseNet121 and the most recent EfficientNetB0-B5-B7

to calculate the feature vectors followed by an adjusted

densely-connected classifier. Our model provides an in-

terpretation of its results through the identification of ob-

ject parts without direct supervision and their contribution

towards classification. We explore and propose two new

statistical metrics including HGDscore and HGDAscore

which are based on the multivariate Gaussian distribution

for assessing heatmaps without using human-annotated ob-

ject parts to quantify the interpretability of our network. We

demonstrate that the calculated statistical metrics lead to

an interpretable model that correlates with the framework

accuracy and can flexibly analyze heatmaps at any reso-

lution for different user needs. Furthermore, extensive ex-

periments have been performed on the SVIRO database [7]

including 7,500 sceneries for BMW X5 model which con-

firm the ability of the developed framework based on the

EfficientNetB5 architecture to classify seat occupancy into

seven main categories with 79.87% overall accuracy as well

as 95.92% recall and 90.32% specificity for empty seats

recognition, which is a state-of-the-art result in this domain.

1. Introduction

In-cabin (or vehicle interior) sensing can be considered

as a novel and promising approach to enhance the function-

ality of new generation cars. It is already proved to be useful

in driver state monitoring and occupant detection systems

and its application is gradually spreading from luxury mar-

ques to mass-produced models. In the near future, fusion of

exterior and interior sensing can provide additional features

necessary to achieve higher levels of autonomy. As a re-

minder, the Society of Automotive Engineers (SAE) distin-

guishes six level of autonomy [28], from 0, which means no

automation to full automation at level 5. It should be noted

that most of the currently produced models are at level 2 in

this scale.

The perceptual system for the vehicle interior analyzes

raw data provided by a sensor to detect and classify seat oc-

cupancy states, adults, children, animals, other objects such

as belts or infant seat, driver’s state and behavior. The infor-

mation about the seat occupancy, for example, how many

people are in the vehicle and at which seat positions they

are located, can be used to remind the driver of passengers

in the back seat when the driver is still in the vehicle. In

particular this is important in case of children remaining

in the vehicle as there are many cases when children died

from heatstroke after being left in the vehicle. The child

presence detection is one of the feature on the road map of

the Euro NCAP standard. The detection of seat occupancy

when connected with belt recognition can significantly en-

hance the safety of the vehicle’s occupants. As majority of

accidents are related to the driver errors the consequences

of not wearing, or improperly wearing, a seat belt are clear.

The NHTSA reports that 47% of the 22,215 passenger vehi-

cle occupants killed in 2019 were not wearing seat belts [1].

In addition, information about what seats are occupied by

passengers can be combined with an automatic emergency

call system in case of accident situations. The perceptual

system is exposed to many types of uncertainties caused by
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a) b) c) d) e) f) g)
Figure 1. Examples of the SVIRO database for X5 model regarding the seat occupancy scenarios: a) empty seat, b) infant in the infant seat,

c) child in child seat, d) adult, e) everyday object, f) empty infant seat, and g) empty child seat [7].

environmental conditions (mainly lighting conditions) and

characteristics of sensors. Moreover, the environment being

monitored by the sensors contains actually infinite number

of possible scenarios. So the design of efficient algorithms

for detection and classification with high accuracy and pre-

cision in such working environment can be considered as

a really challenging and difficult task which is not solved

completely yet. Furthermore, as deep networks are increas-

ingly used in the autonomous driving domain to automate

data analysis, detection and classification, their decision-

making process remains largely unclear and is difficult to

explain to the end user. An interpretable and explainable

approach can provide answers to many questions, which are

crucial in autonomous driving and provide extra solutions.

In this paper, we address this problem by providing sta-

tistical metrics to explain and assess the deep model’s de-

cision. Specifically, we are interested in explaining clas-

sification decisions based on the heatmaps generated by the

Grad-CAM algorithm that shows how important each image

pixel is for the network’s prediction [29]. We are propos-

ing statistical metrics without using human-annotated ob-

ject parts to quantify the interpretability of the deep net-

work. Furthermore, in this paper we present a convolu-

tional neural network based architecture (SO-CNN) to clas-

sify seat occupancy in vehicle interior into seven categories

including infant in infant seat, child in child seat, adult, ev-

eryday object, or empty infant seat, child seat or seat, re-

spectively (Fig. 1).We reuse the pre-trained CNN models

including ResNet152V2, DenseNet121 and the most recent

EfficientNetB0-B5-B7 for feature extraction which is fol-

lowed by an adjusted densely-connected classifier. Experi-

ments have been performed on the SVIRO database includ-

ing dataset in-depth visualization and analysis as well as

deep learning architecture adjustment and performance ver-

ification [7]. We further employ the Grad-CAM algorithm

to generate heatmaps and calculate the proposed new statis-

tical metrics including HGDscore and HGDAscore which

are based on the multivariate Gaussian distribution to con-

duct the multi-task learning model interpretability.

The main contributions of the present paper can be sum-

marized as follows:

• In this paper, we present a CNN based approach for

the seat occupancy classification in vehicle interior

into seven main categories based on the adjusted pre-

trained EfficientNetB5 network architecture.

• We propose a new approach for model interpretability

based on Grad-CAM heatmaps analysis. The statistical

metrics HGDscore and HGDAscore are based on the

values of the density function for a non axis-aligned

multivariate Gaussian distribution and its probability

to quantify the interpretability without using human-

annotated object parts.

• We perform an in depth analysis of the SVIRO dataset

benchmarked for the classification of seat occupancy

for each individual seat.

• We perform extensive experiments and compare

the outcomes of state-of-the-art pre-trained models

including ResNet152V2, DenseNet121 as well as

EfficientNetB0-B5-B7. We visualize the feature dis-

tribution extracted by each architecture.

• We compare and estimate the correlation between pre-

diction and proposed statistical metrics dedicated for

model interpretability.

1.1. Related works

The problem of detection and classification of the seat

occupancy in the vehicle interior can be accomplished us-

ing the information provided by cameras, radars or ultra-

sonic sensors. Raw data provided by these sensors consti-

tutes an input to the perception algorithms aimed to moni-

tor and interpret what is happening both inside and outside

of the vehicle. In the design and development process of

the vision-based systems for the automotive industry one

of the most important issue is related to the system’s per-

formance, safety, reliability and interpretability. This is in

particular valid to the systems that utilize machine learning

components. It is clear that testing in detail such a system is
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impossible as the number of important scenarios is actually

infinite. The process of selecting just a few of the many

possible scenarios is a difficult and challenging task and

currently is most often based on qualitative best engineer-

ing judgment. One of the most challenging task is propos-

ing safe AI solutions regarding standardization, transparent

training as well as model evaluation including interpretabil-

ity for automated driving.

Deep model interpretability: Recently, different meth-

ods have been developed to visualize and interpret deep

learning architectures using the gradient-based or its vari-

ants including DeconvNet [21] and Saliency Maps[30].

Grad-CAM uses the gradients of a target concept, flowing

only into the final convolutional layer to produce a coarse

localization map [29]. Also different statistical metrics have

been proposed to analyze CNN features including analysis

of properties of CNN [34] or quantification of the generality

versus specificity of neurons [39]. Ribeiro et al. proposed

the LIME method which is an explanation technique that

explains the predictions of any classifier in an interpretable

and faithful manner, by learning an interpretable model lo-

cally around the predictions [26]. Extracted image regions

that were responsible for each network output in order to

analyse the network behaviour were used in [16]. Another

statistical metric include pointing game introduced in [40]

or RISE approach that estimates importance empirically by

probing the model with randomly masked versions of the

input image and obtaining the corresponding output[24].

However, most of these methods require experts to manu-

ally identify discriminative image regions for the label pre-

diction for each testing image.

Deep models in autonomous driving: There are ongo-

ing studies on the design of neural network based architec-

tures for detection and classification tasks. A review of deep

learning approaches for object detection including some ex-

perimental analysis can be found in [41]. Besides object

detection there are also deep learning methods designed

for specific tasks, such as driver gaze estimation [22, 38],

gaze and eye tracking [14]. Within the last years several

networks have been developed that might be considered as

key building blocks for dedicated applications. Family of

R-CNN (Region Based CNNs), YOLO (You Only Look

Once), SDD (Single Shot Detectors), RetinaNet [13], PSM-

Net [4], NASNet, Inception, MobileNet, EfficientDet [36],

VGG19 [31], ResNet50, Exception, DenseNet121 [11], Ef-

ficientNets [35] are current state- of-the-art models in com-

puter vision benchmarks.

Seat occupancy frameworks: There are some commer-

cial solutions and patents developed by the automakers and

automotive suppliers for the seat occupancy detection and

classification, however there is not a lot of research papers

that present efficient algorithms in this area alongside with

the experimental analysis. The work [6] describes a stereo

vision system capable to detect the passenger presence and

its location in the vehicle interior. Several typical configu-

rations such as empty seat, adult present and baby seat can

be distinguished by the developed system. In [19] Near-

Infrared Camera (NIR) has been used to detect the passen-

ger presence on front and rear seats. Images recorded by

thermal camera have been used in [23] to train CNNs to

detect number of passengers in the vehicle. To the best of

our knowledge this is the first attempt to classify seat occu-

pancy in vehicle interior based on scenarios into seven most

important categories using deep learning approach.

2. Methodology

The automated determination of seat occupancy is per-

formed automatically according to the flowchart presented

in Fig. 2 were the first part is responsible for determining the

category of seat occupancy into seven main categories while

the second part for the model interpretability and explain-

ability so the decision can be assessed and understood. As

the deep learning architecture is designed to perform clas-

sification on each individual seat according to the SVIRO

dataset, in the first step, the images need to be split into three

rectangles such that each seat can be classified individually

[7]. In the second step we take advantage of the pre-trained

networks including the ResNet152V2, DenseNet121 and

EfficientNetB0-B5-B7 architectures for feature extraction

stage. We adjust the classifier on top of deep convolutional

neural networks which has a three layer structure contain-

ing global average pooling, dropout and dense layers fol-

lowed by Softmax function. The deep learning architecture

is fine-tuned with the publicly available SVIRO dataset. As

a result, we generate classification outcomes and employ

the Grad-CAM algorithm to generate heatmaps and calcu-

late the statistical metrics to conduct the multi-task learning

model interpretability.

2.1. SVIRO dataset specification

Verification of automotive vision systems requires large,

variable and diverse datasets in order to assure proper re-

liability and safety levels alongside with the expectation

for high accuracy and precision of classification algorithms.

KITTI [8], nuScenes[3], Audi [9], Waymo [33], SVIRO [7],

U2Eyes[25], CBSR NIR Face Dataset [17] are data collec-

tions available for research purposes. It should be also em-

phasized that for the vehicle interior public circulation of

the data is limited due to the General Data Protection Reg-

ulation (GDPR). In our research we take advantage of the

Synthetic Dataset for Vehicle Interior Rear Seat Occupancy

(SVIRO) to classify people and objects in passenger com-

partment [7]. The dataset is based on 10 different vehicle

interiors and 25.000 sceneries in total. In this research we

use the BMW X5 model which consists of 7.500 sceneries.

The dataset contains detailed description for following cat-
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Figure 2. The streamline of our proposed framework based on adjusted CNN architecture and model interpretability. Classification is

performed on each individual seat from the SVIRO dataset. For feature extraction we use the pre-trained deep learning models. The clas-

sification is based on the adjusted densely-connected classifier. We employ the extracted features to conduct the multi-class classification

task. Finally, we perform the model evaluation and interpretation and calculate the proposed metrics HGDscore and HGDAscore.

egories regarding the seat occupancy: infant in infant seat,

child in child seat, adult, everyday object, empty infant seat,

and empty child seat. In Table 1 we present the database

with distribution between training and testing set regarding

the number of images for each of the classes.

To understand the complexity of the classification prob-

lem we perform the SVIRO dataset analysis through visu-

alization of the data distribution using two dimensionality

reduction techniques including the t-distributed Stochastic

Neighbor Embedding technique (t-SNE) [37] and recently

proposed Uniform Manifold Approximation and Projection

(UMAP) method [20]. UMAP is a learning technique using

Riemannian manifold distribution for dimension reduction

and t-SNE is an unsupervised method that minimizes the

Kullback–Leibler divergence between the two distributions

with respect to the locations of the points in the embedding

[18]. Fig. 3 shows the visualisation of the SVIRO dataset

distribution in terms of seat occupation and seat occupancy

classification using t-SNE on PCA-reduced data and UMAP

techniques.

In order to analyze the correlations and overlapping areas

between the categories in the dataset, we have calculated

statistical metrics which give us a better understanding of

the problem. We have calculated the intra-class and inter-

class ratio (IntraC, InterC) based on the Euclidean distance.

We analyze the Silhouette Coefficient Score (S), which is

given by [27]:

S =
b− a

max(a, b)
(1)

where a is the average distance in the cluster and b is the

minimal average distance to the next cluster. Additionally,

the Davies-Bouldin index has been calculated that signifies

the average similarity between clusters as a measure that

compares the distance between clusters with the size of the

clusters themselves and is defined as [5]:

DB =
1

k

k
∑

i=1

max
i 6=j

Rij (2)

where

Rij =
si + sj

dij
(3)

and si is the average distance between each point of cluster

i and the centroid of that cluster, dij is the distance between

cluster centroids and k is the number of clusters.

Table 3 contains the results of statistical analysis of the

SVIRO dataset. We observe that the complexity of the

underlying classification task is very high as the Silhou-

ette score confirms that the classes are overlapping with

samples very close to the decision boundary of the neigh-

bouring clusters. However the high CH score as well as

IntraCWAvg indicates the possibility of separating the data

into seven main categories.

2.2. Proposed deep learning approach

Due to our limited and imbalanced dataset we take

advantage of the transfer learning concept which indi-

cates the effectiveness of reusing pre-trained CNN architec-

tures to extract the feature representation. We use several

state-of-the-art architectures including ResNet152V2 [10],

DenseNet121 [11] as well as the newest EfficientNetB0-

B5-B7 [35]. EfficientNet models which have been intro-

duced in 2019 by Tan et al. are based on the inverted bot-

tleneck residual blocks of MobileNetV2 and squeeze-and-

excitation blocks. They use a compounding scaling method
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Table 1. Statistical analysis of the dataset with respect to the training and testing datasets associated with the seven main seat occupancy

categories.
Empty Infant in infant seat Child in child seat Adult Everyday object Empty infant seat Empty child seat Total Nb.

SVIRO Database 3010 480 669 1126 962 542 711 7.500

Training dataset 2400 371 569 892 767 418 583 6.000

Testing dataset 610 109 100 234 195 124 128 1.500

a) b) c) d)
Figure 3. Visualization of data distribution within the SVIRO dataset where a) t-SNE visualization for seven categories, b) t-SNE visual-

ization for seat occupancy vs empty, c) UMAP visualization for seven categories, d) UMAP visualization for seat occupancy vs empty.

which scales width, depth, and resolution together instead

of scaling only one model attribute. The EfficientNetB0

architecture has been proposed by a multi-objective neu-

ral architecture search which optimizes both accuracy and

floating-point operations. Furthermore, a new activation

function, Swish, has been proposed which shows superior

performance for deeper networks. Swish is a multiplication

of a linear and a sigmoid activation [35]:

Swish(x) = x · sigmoid(x) (4)

On top of the base, we have adjusted a three layer classi-

fier containing global average pooling with batch normal-

ization, additional dropout layer which randomly sets in-

put units to 0 with frequency of rate 0.2 at each step dur-

ing training time as a regularization technique for reducing

overfitting [32], and dense layer with the number of neurons

corresponding to the number of seven classes followed by

Softmax activation function for the predict a multinomial

probability distribution.

2.3. Training details

Preprocessing: The entire image taken by the virtual

rear seat camera has been cropped into 3 pieces of the same

size, each area is representing one seating position. Apart

from resizing the input image no other preprocessing meth-

ods were used. As the dataset has a decent class balance

and the variety of scenarios is high no data augmentation

was needed to be applied. Furthermore, different lightning

conditions, textures and models’ positions were randomized

during its development.

Training: Training process consisted of two separate

phases where first we trained the added top layers and then

the entire network (excluding batch normalization layers).

The goal of this transfer-learning approach is to adapt the

new and randomly filled top layers to the class set defined

in the database. After this phase the rest of the model is

unfrozen and trained again. The original datasets used for

training are very different than SVIRO base, thus according

to definition [12] batch normalization parameters (γ and β)

should not be updated. Otherwise it would necessitate opti-

mizing every other weight from the start, which means the

loss of previously trained feature extraction functionality.

Hyperparameter choice: For each training phase

of the pre-trained architectures including ResNet152V2,

DenseNet121 and three different types of EfficientNet: B0,

B5 and B7, we deployed randomized search (Random-

izedSearchCV) for optimizing hyperparameters including

epoch count, optimizer and batch size [2]. The algorithm se-

lected 20 random parameter sets from the predefined range.

We tested the batch size and number of epochs in the range

of 8-64 and 5-50 respectively and several optimizers includ-

ing RMSprop, SGD, Adadelta, Adam and Adamax. Initial

learning rate has been set at different levels for each phase,

10−2 for the first and 10−4 for the second phase. The vali-

dation set was used at the initial stage of classifier selection

and for empirical evaluation of the model’s behaviour dur-

ing and after training. In Fig. 4 we show the average training

and validation accuracy for the EfficientNetB5 architecture,

which is the most efficient and has achieved the highest ac-

curacy score.

3. Experimental results

3.1. Effectiveness of the proposed framework

We test our proposed framework on the BMW X5 model

from the SVIRO dataset. The adjusted pre-trained mod-

els have been trained in an end-to-end fashion to classify

the images into seven categories based on the seat occu-

pancy. The architectures have been trained independently

in order to optimise the hyperparameters and the proposed
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a) b)
Figure 4. Accuracy score plot for 5 epochs of training and validation in both training phases during EfficientNetB5 training. In the first

phase, only the top layers are being updated, whereas in the following one, the entire network excluding batch normalization layers.

pre-trained CNN models have been evaluated on the test

set. The test results have been calculated 5 times and av-

eraged. Following performance metrics including accuracy,

precision, recall and F1-score have been calculated. Table 2

presents the evaluation metrics for each network architec-

ture for the best set of training hyperparameters. Efficient-

NetB5 achieved 79,9% accuracy, 76,8% precision, 69,3%

recall and 67,8% F1-score which were the best results when

trained with 5+5 epochs, batch size of 32 and Adam opti-

mizer [15]. It can be seen from Table 2 that the Efficent-

NetB5 model achieves the highest classification accuracy in

the classification task.

Furthermore, in Fig. 5 we present the confusion ma-

trix for the multi-task classification problem. The Efficient-

NetB5 network achieved 95.92% recall and 90.32% speci-

ficity for empty seats recognition, which is a state-of-the-art

result in this domain.

Figure 5. Confusion matrix for the multi-task classification prob-

lem where the class number is according to Fig. 1.

.

3.2. Model interpretability

In Table 3 we compare the statistical analysis of the

SVIRO dataset and feature vectors extracted from the last

layer of the pre-trained architectures in terms of data sep-

arability into seven main categories. We can observe that

IntraCWAvg values for EfficientNetB5 is relatively high

as well as the S score which is the highest for all classes.

That indicates good separability and confirms the best per-

formance for this network. To improve the explainability of

the model, we used the Grad-CAM visualization algorithm

[29], which creates a heatmap that shows which parts of the

input image contributed most to the classification.

a) b) c)
Figure 6. CNN model interpretability: a) 3D surface plot of bi-

variate Gaussian distribution, b) GD mask for HGDAscore, c)

GDarea mask for HGDscore.

Moreover, we propose two statistical metrics HGDscore

and HGDAscore which are based on the multivariate

Gaussian distribution for assessing heatmaps without using

human-annotated object parts to quantify the interpretabil-

ity of our network. The multivariate normal distribution is

a generalization of the univariate normal distribution to two

or more variables and can be defined for a k-dimensional

random vector X = (X1, . . . , Xk)
T with the following no-

tation:

X ∼ N (µ, Σ) (5)

The probability density function (pdf) of the d-dimensional

multivariate normal distribution is given by:

f(x, µ,Σ) =
1

√

|Σ| (2π)d
e−

1

2
(x−µ)Σ−1(x−µ)

′

(6)
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Table 2. Obtained results for state-of-the-art pre-trained CNN architectures with obtained optimal training hyperparameters.
Architecture Optimal training hyperparameters Metrics

Optimizer Batch Size Epochs Accuracy Precision Recall F1

ResNet50 Adam 64 5+5 0.558 0.451 0.420 0.427

DenseNet121 Adam 32 5+5 0.537 0.469 0.412 0.372

EfficientNetB0 Adam 32 5+5 0.739 0.730 0.598 0.622

EfficientNetB7 Adam 32 5+5 0.647 0.721 0.657 0.619

EfficientNetB5 Adam 32 5+5 0.799 0.768 0.693 0.678

Table 3. Statistical analysis on the separability of the SVIRO dataset as well as deep learning methods based on the visualization of the

UMAP dimension reduction technique, where the intra-class distance has been calculated for each category: 0- infant in infant seat, 1-

child in child seat, 2- adult, 3- everyday object, 4- empty infant seat, 5- empty child seat, and 6- empty seat.

Method Metrics

IntraC0 IntraC1 IntraC2 IntraC3 IntraC4 IntraC5 IntraC6 IntraCWAvg S DB

SVIRO dataset 568.45 499.85 420.23 567.13 545.09 461.23 409.67 524.07 -0.064 7.05

EffcientNetB0 361.77 268.03 270.41 290.72 343.65 214.89 246.76 327.61 -0.113 7.38

EffcientNetB5 743.80 521.71 599.65 580.07 723.70 375.31 535.74 661.84 -0.115 8.10

EffcientNetB7 892.60 729.35 608.85 822.82 1023.12 662.42 728.54 874.80 -0.114 8.39

ResNet152 336.74 301.30 264.83 348.13 361.15 268.51 323.35 328.93 -0.077 8.20

DenseNet121 182.19 145.12 141.26 167.11 157.39 135.84 122.77 164.01 -0.104 7.35

where it is parametrized in terms of the mean vector and the

covariance matrix, denoted by µ and Σ respectively. x and

µ are 1-by-d vectors and Σ is a d-by-d symmetric, positive

definite matrix.

Based on the assumption that the most important ele-

ments responsible for the classification process lie in the

center of the picture we propose two different masks which

are generated on the basis of the probability density function

with µ =

(

0
0

)

and Σ =

(

3.5 0
0 1

)

.The parameters have

been obtained experimentally based on generated bounding

boxes for a set of analysed images. Based on the calculated

probability density function we propose two masks which

are used to determine the significance of the location of the

heatmap in the image. The first map GDarea is a binary

map obtained by including the central 90% of the proba-

bility of the normal distribution while leaving out a total

of α = 5% in each tail, of the normal distribution. The

HGDscore is defined as the sum of intensity pixels in the

heatmap within the GDarea divided by the sum of all pixels

in the heatmap. The formula is given by:

HGDscore =

∑

(x,y)ǫ|H∩GDarea|
H(x, y)

∑

(x,y)ǫH H(x, y)
· 100% (7)

The second map is the bivariate normal distribution GD

with high values in the center of the image and low values at

the edges. The second metric The HGDAscore is defined

as the sum of intensity pixels in the heatmap multiplied by

the GD mask and divided by the sum of all pixels in the

GD mask. The formula is given by:

HGDAscore =

∑

(x,y)ǫH H(x, y)GD(x, y)
∑

(x,y)ǫGD GD(x, y)
· 100% (8)

In Table 4 we present the results for calculated statisti-

cal metrics. We observe that the HGDscore achieves high

values for correctly classified images when the heatmap has

the highest activation in the center of the image. Values

of HGDscore < 50% correlate to high classification error.

Based on the analysis of the HGDscore metric we can ob-

serve that 64% of classification errors have been based on

wrong CNN network region attention while for over 89%

of correctly classified examples the network has focused on

the area in the centre of the image.

In Fig. 7 we present four different examples including

two child seats, an empty seat and an everyday object (bot-

tle box). First two examples have been incorrectly classified

and the heatmap focuses on the surrounding not the seat.

The last two examples have been correctly classified which

is also confirmed by the heatmaps concentrating in the mid-

dle of the image. From these images we can draw several

conclusions. Firstly, we observe that the heatmaps and the

area of activations highly correlate with the region of inter-

est and the statistical metrics confirm the certainty of the

final result. These results provide strong evidence of the

importance of differentiating between classification results

based on the significant area and surroundings which may

lead to higher accuracy, interpretability and classification

certainty.

4. Conclusion

In this work, we developed a pre-trained based architec-

ture for safe occupancy classification into seven main cate-

gories. The framework is based on the EfficientNetB5 ar-

chitecture and achieved 79.87% overall accuracy as well

as 95.92% recall and 90.32% specificity for empty seats

recognition, which is a state-of-the-art result in this domain.

Furthermore, we have proposed two new statistical met-
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Table 4. Outcome for the proposed statistical metrics calculated for the test dataset including 1,500 images for seven categories. The

threshold has been set to 50% for HGDscore and to 25% for HGDAscore.
Correct Classification (#HGDscore > 50% / #Total Nb.) Classification Error (#HGDscore < 50% / #Total Nb.)

HGDscore 89% (952/1069) 64% (276/431)

Correct Classification (#HGDAscore > 25% / #Total Nb.) Classification Error (#HGDAscore < 25% / #Total Nb.)

HGDAscore 74% (791/1069) 68% (293/431)

Figure 7. Results of the CNN model interpretability: a) input image, b) Grad-CAM visualization, c) heatmap activations, d) GDarea mask

for HGDscore, e) overlapping area of heatmap, f) GD mask for HGDAscore, g) overlapping area of heatmap.The two first rows are false

prediction cases and the next two are true.

rics which provide an interpretation of its results through

the identification of object parts without direct supervision

and their contribution towards classification. Starting from

the described framework, further research efforts will be

firstly addressed to compare and integrate other car mod-

els which are available in the SVIRO dataset, improve the

network performance through fine-tuning of the layers. Fu-

ture research will concentrate on the model interpretability

and calculation of statistical metrics for other classification

tasks.

Acknowledgment

We gratefully acknowledge the funding support of
the “Excellence initiative – research university” pro-
gramme for the AGH University of Science and Tech-
nology. The work has been carried out with support of
Advanced Engineering group at Aptiv Technical Center
Krakow.

8



References

[1] United States. National Highway Traffic Safety Administra-

tion. 1

[2] J. Bergstra and Yoshua Bengio. Random search for hyper-

parameter optimization. J. Mach. Learn. Res., 13:281–305,

2012. 5

[3] H. Caesar, V. Bankiti, A.H. Lang, S. Vora, V.E. Liong, Q. Xu,

A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom. nuscenes:

A multimodal dataset for autonomous driving. In Proceed-

ings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 11621–11631, 2020. 3

[4] J.R. Chang and Y.S. Chen. Pyramid stereo matching net-

work. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018. 3

[5] D. L. Davies and D. Bouldin. A cluster separation measure.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, PAMI-1:224–227, 1979. 4

[6] M. Devy, A. Giralt, and A. Marin-Hernandez. Detection

and classification of passenger seat occupancy using stereo-

vision. In Proceedings of the IEEE Intelligent Vehicles Sym-

posium 2000 (Cat. No.00TH8511), pages 714–719, 2000. 3

[7] S. Dias Da Cruz, O. Wasenmüller, H. Beise, T. Stifter, and

D. Stricker. Sviro: Synthetic vehicle interior rear seat occu-

pancy dataset and benchmark. In IEEE Winter Conference

on Applications of Computer Vision (WACV), 2020. 1, 2, 3

[8] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The kitti dataset. The International Journal of

Robotics Research, 32(11):1231–1237, 2013. 3

[9] J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh,

A.S. Chung, L. Hauswald, V.H. Pham, M. Mühlegg, S. Dorn,

T. Fernandez, M. Jänicke, S. Mirashi, C. Savani, M. Sturm,

O. Vorobiov, M. Oelker, S. Garreis, and P. Schuberth. A2d2:

Audi autonomous driving dataset, 2020. 3

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 770–

778, 2016. 4

[11] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks, 2018. 3, 4

[12] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift, 2015. 5

[13] H. Kaiming, X. Zhang, S. Ren, and J. Sun. Deep resid-

ual learning for image recognition. CoRR, abs/1512.03385,

2015. 3

[14] M.Q. Khan and S. Lee. Gaze and eye tracking: Techniques

and applications in ADAS. Sensors, 19(24):5540, 2019. 3

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. CoRR, abs/1412.6980, 2015. 6

[16] D. Kumar, A. Wong, and Graham W. Taylor. Explaining the

unexplained: A class-enhanced attentive response (clear) ap-

proach to understanding deep neural networks. 2017 IEEE

Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), pages 1686–1694, 2017. 3

[17] S. Li, D. Yi, Z. Lei, and S. Liao. The casia nir-vis 2.0 face

database. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition workshops, pages 348–

353, 2013. 3

[18] L. V. D. Maaten and Geoffrey E. Hinton. Visualizing data

using t-sne. Journal of Machine Learning Research, 9:2579–

2605, 2008. 4

[19] A. Makrushin, M. Langnickel, M. Schott, C. Vielhauer, J.

Dittmann, and K. Seifert. Car-seat occupancy detection us-

ing a monocular 360° NIR camera and advanced template

matching. In 2009 16th International Conference on Digital

Signal Processing, pages 1–6, 2009. 3

[20] L. McInnes, J. Healy, N. Saul, and L. Großberger. Umap:

Uniform manifold approximation and projection. Journal of

Open Source Software, 3(29):861, 2018. 4

[21] A. Mukherjee, S. Chakraborty, and S. Saha. Detection of

loop closure in slam: A deconvnet based approach. Appl.

Soft Comput., 80:650–656, 2019. 3

[22] R.A. Naqvi, M. Arsalan, G. Batchuluun, H.S. Yoon, and

K.R. Park. Deep learning-based gaze detection system for

automobile drivers using a nir camera sensor. Sensors,

18(2):456, 2018. 3

[23] F.E. Nowruzi, A.W. El Ahmar, R. Laganiere, and A.H. Gh-

ods. In-vehicle occupancy detection with convolutional net-

works on thermal images. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

Workshops, pages 0–0, 2019. 3

[24] V. Petsiuk, A. Das, and K. Saenko. Rise: Randomized input

sampling for explanation of black-box models. In BMVC,

2018. 3

[25] S. Porta, B. Bossavit, R. Cabeza, A. Larumbe-Bergera, Gon-

zalo G. Garde, and A. Villanueva. U2eyes: a binocular

dataset for eye tracking and gaze estimation. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-

sion Workshops, pages 0–0, 2019. 3

[26] M. Tulio Ribeiro, S. Singh, and C. Guestrin. ”why should

i trust you?”: Explaining the predictions of any classifier.

Proceedings of the 22nd ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, 2016. 3

[27] P. Rousseeuw. Silhouettes: a graphical aid to the interpreta-

tion and validation of cluster analysis. Journal of Computa-

tional and Applied Mathematics, 20:53–65, 1987. 4

[28] SAE International. Taxonomy and definitions

for terms related to driving automation sys-

tems for on-road motor vehicles, Standard

J3016\201806.www.sae.org/standards, 2018.1

[29] R. R. Selvaraju, Abhishek Das, Ramakrishna Vedantam,

Michael Cogswell, D. Parikh, and Dhruv Batra. Grad-

cam: Visual explanations from deep networks via gradient-

based localization. International Journal of Computer Vi-

sion, 128:336–359, 2019. 2, 3, 6

[30] K. Simonyan, A. Vedaldi, and Andrew Zisserman. Deep in-

side convolutional networks: Visualising image classifica-

tion models and saliency maps. CoRR, abs/1312.6034, 2014.

3

[31] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 3

9



[32] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: a simple way to prevent neural

networks from overfitting. J. Mach. Learn. Res., 15:1929–

1958, 2014. 5

[33] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Pat-

naik, P. Tsui, J. Guo, Y. Zhou, Y. Chai, and B. Caine.

Scalability in perception for autonomous driving: Waymo

open dataset. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 2446–

2454, 2020. 3

[34] Ch. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I.J. Goodfellow, and R. Fergus. Intriguing properties of neu-

ral networks. CoRR, abs/1312.6199, 2014. 3

[35] M. Tan and Q.V. Le. Efficientnet: Rethinking model scaling

for convolutional neural networks, 2020. 3, 4, 5

[36] M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and

efficient object detection. In 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages

10778–10787, 2020. 3

[37] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-

ing data using t-sne. Journal of machine learning research,

9(11), 2008. 4

[38] B. Vasli, S. Martin, and M. M. Trivedi. On driver gaze

estimation: Explorations and fusion of geometric and data

driven approaches. In 2016 IEEE 19th International Con-

ference on Intelligent Transportation Systems (ITSC), pages

655–660, 2016. 3

[39] J. Yosinski, J. Clune, Yoshua Bengio, and Hod Lipson. How

transferable are features in deep neural networks? In NIPS,

2014. 3

[40] J. Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and S.

Sclaroff. Top-down neural attention by excitation backprop.

International Journal of Computer Vision, 126:1084–1102,

2017. 3

[41] Z. Zhao, P. Zheng, S. Xu, and X. Wu. Object detection with

deep learning: A review. IEEE Transactions on Neural Net-

works and Learning Systems, 30(11):3212–3232, 2019. 3

10


