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Abstract

Enabled by recent advances in the field of machine
learning, the automotive industry pushes towards auto-
mated driving. The development of traditional safety-
critical automotive software is subject to rigorous pro-
cesses, ensuring its dependability while decreasing the
probability of failures. However, the development and
training of machine learning applications substantially
differs from traditional software development. The pro-
cesses and methodologies traditionally prescribed are
unfit to account for specifics like, e.g., the importance
of datasets for a development. We perform a systematic
mapping study surveying methodologies proposed for the
development of machine learning applications in the
automotive domain. We map the identified primary
publications to a general machine learning–based devel-
opment process and preliminary assess their maturity.
The reviews’s goal is providing a holistic view of current
and previous research contributing to ML-aware devel-
opment processes and identifying challenges that need
more attention. Additionally, we list methods, network
architectures, and datasets used within these publica-
tions. Our meta-study identifies that model training
and model V&V received by far the most research at-
tention accompanied by the most mature evaluations.
The remaining development phases, concerning domain
specification, data management, and model integration,
appear underrepresented and in need of more thorough
research. Additionally, we identify and aggregate typi-
cally methods applied when developing automated driv-
ing applications like models, datasets and simulators
showing the state of practice in this field.

∗The work was financially supported by BMBF (Bundesminis-
teriums für Bildung und Forschung) under the project “reDesigN”
(support code 01IS18074E).

1. Introduction
Automated driving is an active field in both research

and industry alike. It promises to decrease road acci-
dents and increase mobility for people who can not drive
themself. On the software side the key enabler of all
this are recent advances in machine learning like object
recognition[115], decision making[17] and planning[47].

However the development of software used in safety-
critical applications like automotive applications is sub-
ject to a rigorous process. This is necessary to ensure
the level of dependability we come to expect from our
cars. For example, the international ISO 26262 [48]
standard prescribes the software development process
applied in the automotive industry. However, this stan-
dard was created for the development of traditional
software which shows fundamental differences to the
training of machine learning applications. Publications
found and argue that, without modification, machine
learning applications cannot be developed with the pre-
scribed process [41, 57, 87, 43, 98]. This is a problem
for all regulated domains that aim to utilize software
containing machine learning applications.

In this paper, we aim to identify the current state
of research in the field of software development for
automated driving and how this research can be classi-
fied into a consistent development process for machine
learning applications used in safety-critical applications,
i.e., automated driving. More specifically, we overview
current research on machine learning development pro-
cesses intended to be used in safety-critical applications
and propose a general classification of steps within these
processes into phases. We then perform a systematic
mapping study identifying research within the field of
automated driving summarizing proposed methods per
development phase and evaluating their maturity. Ad-
ditionally, we identify methods, tools and datasets that
are used throughout the primary publications. Our
study aims to answer the following research questions:



RQ1 Which are the most used publication venues for
the field of automated driving?

RQ2 How much research was done for each phase of the
development process?

RQ3 How mature is the research of each part of the
development process?

RQ4 What are the technologies used in the field of au-
tomated driving?

The rest of this paper is structured as follows: First
we discuss related work in the field of studies in auto-
mated driving in Sec. 2. We then present core phases
within a general machine learning–based development
process in Sec. 3 and provide an overview about devel-
opment processes to argue its validity. In Sec. 4 we
perform the systematic mapping study to identify cur-
rent research within the domain of automated driving,
classify the research within our proposed development
phases and answer our research questions. Possible
threats to validity are discussed in Sec. 5. Finally we
will conclude in Sec. 6.

2. Related Work
In this section, we discuss related meta-studies on the

development of safe machine learning applications. Pre-
vious studies mainly focus on specific problems or iden-
tify and discuss open challenges in the area. Schwarting
et el. [91] review previous work on planning and decision-
making for automated driving. Borg et al. [11] review
publications on verification and validation methods and
analyze challenges for the automotive industry. Grig-
orescu et al. [39] perform a survey of deep learning
techniques for scene perception, path planning, behav-
ior arbitration and motion control and identified seven
challenges for automated driving. The impact of arti-
ficial intelligence on automated driving was reviewed
in Nascimento et al. [71]. Tahir et al. [99] review lit-
erature concerning testing and safety assurance. All
these meta-studies where focussed on specific activities
within a development process, while ours is the first to
classify and overview methods holistically across the
entire development process of machine learning-base
software used in cars.

3. Processes for ML Developments
The development of machine learning applications

shows substantial differences to traditional software de-
velopment [65, 110, 112]. While traditional software
is requirements-driven, machine learning applications
are data-driven [52]. A development methodology that
shall be applicable to dependable machine learning ap-
plications consisting of both, programmed code and
trained models, needs to unify their individual devel-

opment steps. In this section, we propose and discuss
four core phases that the development of a dependable
machine learning application should consist of. These
phases are: (1) operational domain specification, (2)
data orchestration and preparation, (3) model training,
and (4) model integration (cp. Fig. 1). The aim of this
rather coarse-grained phase classification is having a
description model that allows us to later group primary
publications identified in our review. A development
would typically follow these phases in an incremental
and iterative manner and each phase would likely consist
of V&V activities that we only emphasize where rele-
vant for the discussion of machine learning applications.
The following subsections discuss each phase in detail.
To argue the validity of theses phases, we then briefly
discuss existing development methodologies for such
systems and exemplarily assign the prescribed develop-
ment steps of one methodology to the four proposed
phases.

Operational Domain
Specification

Data Orchestration
and Preparation

Model Training

Model Integration

Figure 1: Core development phases of dependable ma-
chine learning applications.

3.1. Phase 1: Operational Domain Specification

The steps of this phase are performed to specify the
operational design domain (ODD) of the target machine
learning application. SAE J3016 [86] defines the ODD
as:

Operating conditions under which a given driv-
ing automation system or feature thereof is
specifically designed to function, including,
but not limited to, environmental, geographi-
cal, and time-of-day restrictions, and/or the
requisite presence or absence of certain traffic
or roadway characteristics.

The task of this phase is on one hand to specify all
conditions under which the machine learning applica-
tion is designed to function. These conditions contain,
e.g., the road environment, behavior limitations of the
vehicle like speed limit and state of the vehicle like
load. On the other hand in this phase the final machine



learning applications has to be verified to satisfy the
specified behavior within this ODD.

3.2. Phase 2: Data Orchestration and Preparation

In the steps of this phase the main concern is training
data. For machine learning applications training data
represent the source code of traditional software compo-
nents [52]. Which means it needs to satisfy the defined
specification for a given task. As such, the performance
of the trained model depends strongly on the quality
of the utilized training data. For that reason training
data has to be evaluated ensuring that it satisfies the re-
quired quality. Metrics for the quality of a dataset can,
e.g., be coverage of the specified ODD, coverage of out-
of-distribution data, coverage of corner-cases. Other
important considerations are the modality of data to
be analyzed, whether sufficient real data is available
and whether synthetic data support the training, which
data augmentations are advisable and permissible, and
how to split meaningful test data.

3.3. Phase 3: Model Training

This phase is centered around the machine learning
model. There are two main tasks in this phase: (1)
training the model and (2) evaluating the model with
the application of verification and validation (V&V)
methods. The steps to create a model can again be
divided into: (1.a) specifying the model’s architecture,
(1.b) implementing model and training process, and
(1.c) training the model. During model specification, a
data scientist typically not only decides on the model
architecture but also on manifold structural parameters,
such as the number of hidden layers or the chosen acti-
vation function. Furthermore, depending on the task
to solve and available data the type of training has to
be chosen, i.e., supervised, unsupervised, reinforcement
or a combination thereof, as well as an appropriate ob-
jective function. Considerations regarding the training
refer to choosing an optimization technique and mak-
ing decisions on its hyper-parameters, such as learning
rate, momentum, number of training epochs, batch size,
parameter initialization and regularization techniques.
Once the model is trained, verification and validation of
the model is an important part of the development pro-
cess utilizing formal verification and validation as well
as testing approaches. Especially these V&V activities
are an integral part of the development of dependable
software and their realization for machine learning com-
ponents is of great interest.

3.4. Phase 4: Model Integration

In the integration phase, model independent steps
are taken to increase the dependability of the machine

learning application. This is especially important for
safety-critical systems. For such systems a malfunction
during runtime can lead to disastrous outcomes. So
measures for increasing the dependability of machine
learning applications need to be applied that typically
also necessitate accompanying model architectures that
facilitate the desired integration of the trained model
with traditional software and hardware.

3.5. Existing Development Processes

Various processes aiming to support the development
of dependable machine learning applications, have been
introduced in the last decades. In 1993, Peterson [79]
proposed a process for developing machine learning ap-
plications proposing explicit V&V steps for data gather-
ing and model design. In 1999, Rodvold [83] proposed a
process inspired by the prominent waterfall model that
comprises explicit development steps for data gathering
and preprocessing; training and testing of the model;
as well as for deploying the model. In 2019, Amershi et
al. [5] derived a development process for machine learn-
ing applications in general, i.e., without explicit focus
on dependability. The most recent process for the devel-
opment of safety-critical components utilizing machine
learning applications we could identify is EASA AI Task
Force’s and Daedalus AG’s evolved W-Model published
last year [22]. The W-Model prescribes nine develop-
ment steps: requirement management, data manage-
ment, learning management, model training, learning
process verification, model implementation, inference
model verification, data verification, and requirements
verification (cp. Fig. 2). In order to argue the validity
of our proposed four core development phases, Fig. 2
also shows how we map them to the W’s development
steps. We classified the requirements management and
verification step within the phase of operational domain
specification. The data management and verification
step within the phase data orchestration and preparation.
The steps classified within the phase model training are
learning process management and verification as well as
model training. The inference model verification step
was classified within the phase of model integration. The
step model implementation contains aspects of both the
model training and model integration phase.

4. Method Study

In this section we present the systematic mapping
study we performed to identify relevant research in the
field of automated driving. First, we briefly describe
the review process (cp. Sec. 4.1) and then, we present
and discuss our findings in (cp. Sec. 4.2).
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Figure 2: Classification of W model’s process steps into the four development phases.
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Figure 3: Review process illustrating the search and
pruning of primary publications.

4.1. Study Process

To identify relevant research in the field of automated
driving, we perform a systematic mapping study [78].
We restrict our focus to peer-reviewed, english publica-
tions published at workshops, conferences or journals.
The study’s goal is identifying which parts of the de-
velopment process described in Sec. 3 are covered in
current research and to what extend as well as identify-
ing methods and datasets utilized across the primary
publications. As such, we include publications which
cover at least one of the phases introduced above in com-
bination with a focus on automotive machine learning
applications and, e.g., cover the following topics:
• hazard and risk analysis, safety case creation, and

safety requirements elicitation [Phase 1];
• dataset generation and evaluation [Phase 2];
• model training and V&V [Phase 3];
• model integration architectures and runtime safety

measures [Phase 4].
Based on this focus, we derived the following search

term structure:
• technology ∧ property ∧ domain, where

– technology: machine learning ∨ deep learning ∨

artificial intelligence ∨ neural network ∨ reinforce-

ment learning ∨ convolutional network ∨ data ∨

simulation ∨ verification ∨ testing ∨ requirements
– property: safety ∨ assurance ∨ reliable ∨ depend-

able
– domain: iso 26262 ∨ autonomous driving ∨ au-

tonomous vehicle ∨ automated driving ∨ driver-
less ∨ self-driving car

We iteratively searched four digital libraries with the
derived search term structure: ACM Digital Library,
IEEExplore, Springer Link, and Google Scholar (cp.
Fig. 3). In the first iteration, we entered the search
term into the database and selected the first 40 publica-
tion retrieved by each digital library resulting in a total
of 160 publications. In the second iteration, we removed
duplicates and retained only relevant publications based
on their title and abstract resulting in a set of 87. In the
third iteration, we excluded publications based on their
content. We exclude publications that propose meth-
ods focussed solely on hardware development rather
than software; those that focus on cooperative driving,
which we deem out of our scope; and those that are
only applicable to lower automation levels (≤ 2) (cp.
SAE J3016 [86]) focusing on collaborative interaction
with the driver. This iteration yielded 44 publications
conforming to all study criteria. As a final step, we
performed backward snowballing [113] on the references
of all identified publications. The goal is identifying fur-
ther research relevant to our study. With this step we
identified an additional 8 publications to a final total of
52 primary publications further discussed in this paper.

4.2. Results and Discussion

In this section, we discuss the 52 primary publications
identified and classified into the development phases
introduced in Sec. 3. Publications that propose methods
contributing to multiple phases are represented multiple
times in the respective discussions. Below, we discuss
findings along our four research questions.

RQ1: publication venues. Fig. 4a and 4b show
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Figure 4: Overview of the reviewed primary publication identified within our study.
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ing.
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Figure 5: Overview of used methodologies in the core development phases.

where and when primary publications have been pub-
lished respectively. The International Conference on
Intelligent Transportation Systems (ITSC) is the most
popular publication venue (six primary publications);
followed by the International Conference on Software
Engineering (ICSE) (three primary publications); and
the International Conference on Intelligent Robots and
Systems (IROS), the International Conference on Com-
puter Safety, Reliability, and Security (SAFECOMP),
and the European Dependable Computing Conference
(EDCC) (two primary publications each). Furthermore,
we find that publication activity increased from about
2017. From these results, we derive two interesting
observations: (1) research in this area span multiple
research communities in the area of computer science,
and (2) the majority of research is still mainly pub-
lished at conferences indicating a fast pacing but not
yet mature research topic.

RQ2: process phase focus. We find that 9 of the
52 primary publications focus on the domain specifi-
cation phase, 9 focus on data orchestration and prepa-
ration, 32 focus on the machine learning model, and
10 focus on trained models’ integration (cp. Fig. 4c).
This distribution shows that a primary research focus
is the training of the model and its validation being
roughly three times more prominent than research into
the other phases. Taking a closer look at this phase, we
find that 15 primary publications are concerned with
models and their training, while 17 publications focus
on model V&V.

RQ3: research maturity. Of 9 primary publica-
tions that propose methods for the domain specifica-
tion phase, 4 are proposals without evaluation, 4 are
comprised by a qualitative evaluation, and merely 1
is supported by a quantitative evaluation. Of the 9
primary publications with focus on data orchestration
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Figure 6: Overview of tools used within all primary publications.

and preparation, 3 are proposals without evaluation, 3
are comprised by qualitative evaluation, and 3 are sup-
ported by a quantitative evaluation. Of the 32 primary
publications focussing on model training and validation,
4 are proposals without evaluation, 5 are comprised
by a qualitative evaluation, and 23 are supported by a
quantitative evaluation. Of the 10 primary publications
with focus on model integration, 5 are proposals without
evaluation, 2 are comprised by a qualitative evaluation,
and 3 are supported by a quantitative evaluation.

RQ4: proposed methods per phase. Below,
we discuss prominent primary publications and their
proposed methods grouped per development phase. Ta-
bles 1 to 2 show all primary publications along with a
brief summary of their methodological contribution.

A prominent share of primary publications that we
associate to the operational domain specification phase,
propose evolved and adjusted methods to the needs of
machine learning development. Fig. 5a shows a coarse-
grain classification of proposed methods. Paul et al. [77],
e.g., apply existing methodologies like FMEA and HA-
ZOP to identify safety requirements of an experimental
autonomous vehicle. Juez et al. [49] propose to leverage
fault injection already within the early concept phase
to derive safety goals and requirements, while Sini et
al. [95] propose simulations for the initial specification.
The applicability of the goal structuring notation (GSN)
to support safety argumentation is demonstrated by
Schmid et al. [90]. Girard-Satabin et al. [37] present
formalisms to verify safety properties.

Fig. 5b groups publications of the data orchestra-
tion and preparation phase into analysis, generation,
and enhancements. For example, publications propose
methods to improve dataset quality with fuzzy inference
to identify specific scenarios [75], or to automatically
label lane markers in images [9]. Furthermore, research
focusses on extending existing datasets by adding syn-
thetic or simulated data derived from existing data, e.g.,
by using GANs [117] or by applying image transforma-
tions [16, 101]. We observe that these methods are often
not the main focus of a publication but a by-product

that is often not individually evaluated for its effects.
Primary publications focusing on the model train-

ing phase can be divided into those mainly concerning
supervised and those mainly concerning reinforcement
learning. No publication proposed an unsupervised
learning approach. The dominant model architecture
for supervised learning are CNNs, for reinforcement
learning they are DQNs (cp. Fig. 5c). Holen et al. [44]
propose a reinforcement learning approach which uses a
CNN-based lane detection as reward function. McAllis-
ter et al. [68] propose and study Bayesian deep learning
greatly improving both uncertainty estimation and in-
terpretability of models. Other authors propose the
use of attention architectures to reduce the complexity
and to increase the performance of the training pro-
cess [88, 17, 115]. Another distinction we identified
within this phase is that some of the publications con-
sider the process from sensor input to model prediction
(aka driving decision) as an end-to-end process [31, 47],
while others separate this into layers, e.g., sensing [3],
perception [93] and decision making [17], thereby, gain-
ing potentially more control over the inference process.

Fig. 5d gives a brief overview of methods proposed
for the model V&V development phase. Examples of
these methods are: fault injection [58, 18], simulation-
based black-box testing [26], Markov Chain Monte Carlo
algorithms [92], and formal methods-based forward
reachability analysis [103]. Various other publications
contribute methods to model testing, e.g., by system-
atically generating specific test cases extracted from
real world data [109], by leveraging DNNs [117], by
using neuron coverage [101], by analyzing parameter
correlations [100], by agent-based modeling [14], or by
considering ontologies [56].

Fig. 5e groups publications of the model integration
phase into those that focus on model deployment and
those that propose techniques for runtime monitoring of
models aiming to increase the dependability of machine
learning applications by runtime safety measures. Ex-
amples of the earlier are, e.g., layered architecture-based
observe, orient, decide, act [8] or sensing, perception,



Ref Contribution

[42] Proposes changes to safety assessment.
[58] Proposes a phased development by progressively extending the operational domain, to help with identifying corner cases.
[49] Proposes Sabotage, a framework for using fault injection in concept phase for hazard identification, safety goal refinement,

definition of Fault Tolerant Time Interval and establishing safe state.
[1] Proposes methodology for conducting safety and risk assessment.
[95] Perform HARA through use of vehicle-level simulators to test initial specification.
[90] Safety argumentation for fail-operational driving systems and provides a continuous example for the proposed safety argumen-

tation discussed in context of ISO 26262.
[37] Presents formalism for formally describing and verifying safety properties based on simulation data.
[38] Propose adaptation of hazard identification for ADS.
[77] Proposes assessment of safety requirements by applying FMEA and HAZOP. *

[75] Proposes the analysis of datasets using fuzzy inference system. Identified scenarios in dataset in which 2 second rule was
violated.

[9] Proposes methodology to automatically label lane markers in images.
[84] Presents framework based on statistical learning and model-based analysis to assess safety impact of AD functions and to

identify relevant scenarios.
[82] Discusses data set criticality and proposes usage of synthetic and simulation data to enhance existing datasets.
[117] Proposes using a GAN for synthesizing driving scenes with various weather conditions.
[51] Presents a methodology to model GPS errors with the help of auto-regressive models with Gaussian mixture model distribution.
[101] Increase dataset coverage by synthetic images. Utilize nine different image transformations. *
[16] Applied random majority under sampling, normalization of input data and augmentation (flipping). *
[97] Provides labeled scenarios. *

[68] Proposes use of Bayesian deep learning to solve problems in uncertainty and interpretability,
[88] Propose framework for deep reinforcement learning with attention model.
[108] Proposes hybrid CNN/SVM system for object recognition.
[82] Discusses CNNs’ interpretability via visualisations using Picasso framework.
[31] Deep reinforcement learning using DQN for urban navigation.
[47] Use DQN for navigating partially occluded intersections.
[33] Proposes implementation to capture uncertainty in 3D LiDAR point clouds.
[16] Use a deep CNN-LSTM for characterizing driving environment and controls movement.
[17] Proposes lane change via reinforcement learning. Leverages CNN (Recognition), and attention for better Interpretability.
[115] Improve object recognition for sparse LiDAR point clouds via ground-aware attention model.
[55] Proposes methodology to adaptively restrict action space with DFSM according to current driving situation and combine this

with DQN.
[62] Proposes end-to-end implementation of multi-objective deep reinforcement learning.
[93] Proposes single shot multi-box detector (SSD) to detect non-vehicles and vehicles, with an embedded model for lane detection.
[3] Proposes a DNN for sensor-less brake state estimation.
[44] Proposes reinforcement learning application with lane detection as reward function.

[58] Proposes fault injection as a useful tool for validation.
[92] Validate machine learning applications via Markov Chain Monte Carlo algorithm with subsampling.
[109] Proposes to test and validate AD components with two step methodology: (1) feed real world data into machine learning

system which will classify different functionality (2) deduce test scenarios from available data.
[56] Proposes test framework based on ontologies.
[117] Unsupervised DNN-based framework utilizing metamorphic testing for testing ADS and online validation.
[101] Systematic testing utilizing neuron coverage and test case generation.
[111] Proposes formal verification of safety properties in two steps: (1) symbolic linear relaxation (2) direct constraint refinement.
[116] Propose formal operational verification approach based on stochastic hybrid automata (SHA).
[18] Binary-search like fault injection for finding safety-critical parts in ML applications to measure resilience.
[53] Evaluate test quality with surprise adequacy for deep learning (SADL).
[35] Test case identification with Bayesian optimization to drive the system to violate its safe boundaries.
[103] Safety verification via forward reachability analysis applicable for reinforcement learning.
[19] Proposes verification framework for direct perception neural networks.
[72] Introduces a sensitivity analysis approach for developing and validating radar simulation. Goal is to identify radar sensor

effect with the greatest impact for system under test.
[26] Simulation-based black-box testing. Simulate Oracle vehicle and EGO vehicle to test the decisions of the EGO vehicles

behavior.
[14] Present methodology of guided testing via agent-based modeling.
[100] Structured test case generation via parameter correlation.

Table 1: Overview of publications contributing to the operational domain specification, data orchestration and
preparation and model training and V&V phase. Contributions marked with * are not the main focus of the
publication, but a by-product that is not individually evaluated.



Ref Contribution

[8] Proposes functional architecture based on Observe, Orient, Decide, Act (OODA) loop.
[58] Proposes failover strategies as redundant paths for machine learning based components.
[2] Proposes safety supervisor to avoid specified critical combinations of vehicle behavior and runtime situation.
[64] Proposes architecture pattern for automated driving: Safety Channel. The goal is to provide a strategy to ensure safety in

presence of functional errors. ASIL decomposition for components.
[70] Proposes architecture based on Sensing, Perception, Decision, Planning and Action.
[104] Proposes architecture for dynamic safety management during runtime.
[34] Proposes a CNN for risk assessment during runtime.
[77] Proposes a safety-bag architecture to reduce risk during runtime.
[54] Proposes wrapper for uncertainty estimates during runtime.
[97] SafeOracle: Detect dangerous situations at runtime via confidence.

Table 2: Overview of publications contributing to the model integration phase.

decision, planning, acting [70], while examples of the
later group are safety-bag concepts [77], CNN-base dy-
namic risk assessments [34], uncertainty wrapper to
assess decisions (aka predictions) of the model [54], and
a SafeOracle termed technology that aims to detect
dangerous driving situations [97].

A majority of primary publications evaluates their
proposed methods on existing datasets. We divide these
into datasets specific for a domain and more general
ones (cp. Fig. 6b). The majority of these datasets com-
prises domain-specific data, twelve focus on automated
driving [66, 4, 13, 23, 28, 45, 96, 36, 73, 74, 105, 25], one
is aviation-specific [50], one is healthcare-specific [40],
and one originates from malware detection [6]. Addi-
tionally, five mostly well-known multipurpose datasets
are used [63, 12, 20, 24, 69]. In addition to these bench-
mark datasets, publications often apply their meth-
ods to driving scenarios (cp. Fig. 6c). Five publi-
cations perform this evaluation in real-world imple-
mentations of their method [31, 19, 64, 70, 77], while
all others providing implementations utilize simula-
tions. These simulations mostly refer to driving en-
vironments [27, 29, 46, 76, 89, 59, 102, 106, 80] and
only two publications use formal simulations [67, 107].

We also found that primary publications typically
benchmark their work against previously published
prominent models (cp. Fig. 6a). These models can
be divided into those specific to a certain domain
and those that are general, e.g., for computer vi-
sion tasks [60, 61, 114, 94]. We identified a total of
seven models specifically used for automated driving
[7, 15, 21, 10, 30, 81, 85], one focussed on the aviation
domain [50], and one focussed on malware detection on
the android platform [6].

5. Threats to Validity
In this section we will discuss threats to the va-

lidity of our study and structure our discussion into
commonly accepted categories [32]. Internal Validity.

Our method study followed a well-defined and accepted
study procedure [78]. We applied justified inclusion
and exclusion criteria for primary publications and the
classification of publications was discussed among the
authors in case of uncertainty. External Validity. We
included four databases and peer-reviewed publications
to increase generalizability of our results. However,
since publications considered grey literature were ex-
cluded from our meta-study there is the possibility that
we miss proposed methods or do not correctly report
the distribution of applied methods among all research.

6. Conclusion
In this paper we contribute to a continuous develop-

ment process for machine learning applications used in
safety-critical applications, i.e. automated driving. We
proposed a general machine learning–based development
process with the core phases of: operational domain
specification, data orchestration and preparation, model
training and model integration. To argued the validity
of these phases we gave an overview of existing machine
learning–based development processes with a focus on
safety-critical applications. We furthermore presented
our findings gathered through a systematic mapping
study in the field of automated driving. Our findings
are: that the phase concerning the model training is by
far the most researched one. Phases concerning domain
specification, data and integration are still in develop-
ment. We identified that not many publications are
published in journals which indicates that the field is
still in a state of flux. However we could identify a num-
ber of tools for the specific applications in the domain of
automated driving like models, datasets and simulators.
In future work we want to extend our survey to include
publications developed for other safety-critical areas
such as health care and aviation since we did find a
number of cross-references to publications focusing on
these domains and also take a closer look at findings
within grey literature.
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