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Abstract

An important pillar for safe machine learning (ML) is the

systematic mitigation of weaknesses in neural networks to

afford their deployment in critical applications. An ubiqui-

tous class of safety risks are learned shortcuts, i.e. spurious

correlations a network exploits for its decisions that have

no semantic connection to the actual task. Networks rely-

ing on such shortcuts bear the risk of not generalizing well

to unseen inputs. Explainability methods help to uncover

such network vulnerabilities. However, many of these tech-

niques are not directly applicable if access to the network

is constrained, in so-called black-box setups. These setups

are prevalent when using third-party ML components. To

address this constraint, we present an approach to detect

learned shortcuts using an interpretable-by-design network

as a proxy to the black-box model of interest. Leveraging

the proxy’s guarantees on introspection we automatically

extract candidates for learned shortcuts. Their transfer-

ability to the black box is validated in a systematic fash-

ion. Concretely, as proxy model we choose a BagNet,

which bases its decisions purely on local image patches. We

demonstrate on the autonomous driving dataset A2D2 that

extracted patch shortcuts significantly influence the black

box model. By efficiently identifying such patch-based vul-

nerabilities, we contribute to safer ML models.

1. Introduction

Deep neural networks (DNNs) have demonstrated state-

of-the-art performance and good generalization properties

on a broad range of tasks. However, this generalization abil-

ity is not thoroughly understood yet and examples of unex-

pected failure are in stark contrast to the many successful

application scenarios. These failure cases are symptoms of

underlying, more fundamental difficulties that come along

with recent learning systems.

Two main challenges for generalization are learned brit-

tle features [27] and learned shortcuts [17] that are both

Figure 1: Detecting vulnerabilities of information-

constrained black-box models. To avoid cumbersome anal-

yses on the trained black box itself (step 1), we rely on an

interpretable proxy model (step 1) that provides a set of so-

called (image) patch shortcuts (step 2). Testing these (im-

age) patch shortcuts on the original black box (step 3), we

efficiently identify vulnerabilities.

over-specific for the training (and in some cases even the

test) dataset. They differ regarding semantics: brittle feature

are mostly considered to be imperceptive statistical artifacts

while shortcuts refer to spurious correlations between rather

high-level semantic concepts. While both concepts are not

fully disjoint, we focus on the more semantic shortcuts here.

To illustrate how networks exploit correlations for their

decisions that have no semantic connection to the actual

task, we outline three examples: first, the poster child of

shortcut learning. Images (e.g. showing horses) that are

in fact classified due to imprinted watermarks or copyright

tags [33]. Second and more critically, models to detect

Covid-19 in e.g. chest radiographs that rely on non-medical

shortcuts (in particular outside the lungs) that are moreover

hospital-specific [11]. Lastly, in the field of autonomous

driving shown here this could e.g. be a patch showing parts

of windows in a building which the model erroneously iden-

tifies as parts of “car”, see left panel of Fig. 2.



Various explainability techniques were put forward to

uncover such network vulnerabilities [45, 20, 51]. However,

information-constrained black-box setups limit the applica-

bility of most of them. At the same time, handling these

black boxes gains importance as ML models are increas-

ingly used in commercial contexts ranging from ML-as-a-

service to ML appliances from technical providers. For,

e.g., auditors and regulators with limited mandates such set-

ups can pose additional challenges.

In this work, we propose an approach to systematically

and efficiently detect learned shortcuts of a black-box clas-

sification model. Our approach, as depicted in Fig. 1,

consists of three steps: in a first step, we train a white-

box proxy model, namely BagNet that is interpretable-by-

design. Next, we make use of its “locality” guarantee and

systematically extract patch shortcuts, i.e. semantic vulner-

abilities, of the proxy network. In the final step, we evaluate

if, and to which extent, the identified patch shortcuts trans-

fer to the black-box network of interest.

The remainder of the paper is organized as follows: First,

we present related work on shortcut learning, interpretable-

by-design architectures, approaches using proxy models

and black-box vulnerabilities in Sec. 2. Next, we outline

how to find and test patch shortcuts using an interpretable

proxy network in Sec. 3. We instantiate this approach for a

binary classification network in the automotive domain and

conduct different ablation analyses to validate this patch-

shortcut-based testing in Sec. 4. An outlook in Sec. 5 con-

cludes the paper.

2. Related work

Our approach resides at the interface of several research

directions, connections to which we detail here. We focus

on shortcut learning and interpretability-by-design but also

(patch-based) augmentations, the question of transferabil-

ity of results, and adversarial vulnerabilities, specifically for

black boxes, as the success of our shortcut patches is mea-

sured by decreased (black-box) DNN performance.

Shortcut learning In our work, we concentrate on find-

ing vulnerabilities in the form of shortcuts in images. For

a more general overview on shortcut learning see e.g. [17].

Recent work [11, 28] analyzes the aforementioned short-

cuts in the domain of medical imaging and emphasize the

necessity to validate the reliability of ML models.

Close to our idea is the work by Shetty et al. [46], in

which the role of context for classification and segmentation

is inspected and, in doing so, also the question of whether

meaningful concepts were learned is addressed. However,

they remove (human understandable) objects (e.g. cropping

out the cars based on their segmentation mask to see how

this affects sidewalk segmentation) whereas we (re-)insert

(not necessarily human understandable) patches from the

dataset into the image. Rosenfeld et al. [44] either insert

some random, trained objects or remove objects and reinsert

them into the images at a different location to see how this

affects object detection. They observe that their “transplan-

tations” have non-local effects to objects “far away”.1 We

conduct a similar analysis systematically evaluating the in-

serted patches’ sensitivity to chosen positions. In addition,

we use an informed approach of selecting the parts which

are to be inserted and in particular, we do not crop whole

objects but only patches.

Interpretability-by-design and surrogate models Par-

ticularly related to our approach are interpretable-by-design

networks such as invertible networks, in which information

is processed in a bijective way [30, 3]. However, due to

the special way of processing information, the applicability

of these invertible networks is limited. Ghorbani et al. [19]

extract semantic visual concepts important for the decision

making. While their approach involves a segmentation that

uses global information, BagNets aggregate purely local in-

formation in a linear fashion. Using human-understandable

concepts, the ProtoPNet [7] is based on comparisons of the

current input to prototypical class parts it learned. The

network-in-network architecture [35] enables discrimina-

tion between local patches in the receptive field.

The idea of using surrogates for explaining black-box

decisions is used in e.g. [15, 1, 47, 43]. Mohseni et al. [37]

use a student model to predict the teacher’s failure modes

from the teacher’s saliency maps in a white-box setup.

While there are some heatmap methods for the black-box

setup, see e.g. [42, 21], many common approaches rely on

backward gradients and are thus not easily applicable as in-

terpretability methods for our black-box setup. Often distil-

lation [25, 16] is employed to train a surrogate model.

Patch-based augmentations Many approaches take

small rectangular pieces of an image, so-called patches, as

their starting point: In image quilting [13], small pieces

of training images are recomposed to resemble inputs

presented at inference, thus enabling texture synthesis and

texture transfer for whole objects and images. Patch-based

augmentations (e.g. [23, 12, 9]) are frequently used

for model training aiming at improving performance or

robustness.

Adversarial vulnerabilities The black-box setup with ac-

cess to solely input-output pairs is common in the con-

text of adversarial attacks, see e.g. [39]. Many approaches

use surrogate models and transferability-based methods in

which attacks are crafted on a white box and successfully

1This susceptibility to position is also observed by Kayhan et al. [31].



transferred to the target black box, see e.g. [41, 38].2 Par-

ticularly, Jacobian-based saliency map attacks [40, 49, 8]

are a related research direction. They employ a saliency

map based on forward gradients to find “influential” pix-

els/features they seek to manipulate. We do not aim at pixel

or feature manipulations and thus neither change nor opti-

mize identified patch shortcuts. This key fact distinguishes

our approach from most works on adversarial attacks. Ad-

ditionally, we want to mention semantic attacks in which

images are modified along human-understandable, semantic

dimensions. For example, hue and saturation or colorization

and texture of images, respectively, are randomly perturbed

while keeping the semantic concept fixed [26, 4]. Jacobsen

et al. [29] show that networks are often invariant to concepts

that are relevant to the task and too sensitive to irrelevant

ones.

Delineated as a reinforcement learning problem, Yang et

al. [50] insert patches with textures into images to fool clas-

sifiers, an approach applicable to the black-box setting. We

state two key differences: First, instead of learning or opti-

mizing texture, we insert original image patches, hence, by

design remaining in the domain of natural image patches.3

Second, as mentioned above, we do not optimize for the size

or the position of the patch. Other work in the field of at-

tacks focuses on patch-based attacks, e.g. [6, 48, 34, 2, 36],

in which, however, patches are optimized.

3. Patch shortcuts

In this section, we detail the conceptual approach of find-

ing patch shortcuts for a given trained black-box classifi-

cation network. We assume access to the training data of

the black box and knowledge of the task it was trained for.

Apart from this, we can only query the network output (or-

acle access). The structure of this section follows our pro-

posed three-step approach shown in Fig. 1. We describe

details regarding training the proxy network, automatically

developing insights on it, and finally systematically testing

these on the black box in the following subsections.

3.1. Training the interpretable proxy network

Dataset requirements Typically, annotations of a dataset

are designed and used to train a specific task, e.g. class la-

bels or segmentation masks. This, however, implies that

all parts of the annotation are encoded in the network and

cannot easily be used to identify shortcuts learned by the

DNN. To investigate shortcut learning, we deliberately use

an under-specified toy task, i.e. learn a binary classification

task for a chosen class of interest (e.g. presence of cars) on

2Naseer et al. [38] show that this transfer is not only possible across

networks but also across domains.
3See also Hendrycks et al. [24], who gather natural images that confuse

models in a dataset, and the real-world attack using stickers [14], which,

however, does not allow for systematic analysis of failure modes.

a public dataset for semantic segmentation. In doing so,

the segmentation mask serves as meta annotation to iden-

tify possible shortcuts (i.e. relevant image regions not oc-

cupied by cars) [10]. Although the overall approach can be

applied for different tasks with the appropriate choice of in-

terpretable network (see Sec. 5), we detail the concept for

the case of image classification using the so-called BagNet

trained on the aforementioned binary classification task as

interpretable-by-design network.

BagNets BagNets are based on the ResNet-50 architec-

ture [22] with some of the 3× 3 convolutions replaced with

1 × 1 convolutions. This results in a strictly smaller recep-

tive field than usual ResNet architectures possess.4 BagNets

perform an individual linear weighting of each “pixel” in

the last feature map, effectively yielding patch-wise classi-

fication logits for the input image. Here, it is important to

note that BagNets only aggregate information from image

patches with the size of the receptive field, thus relying on

truly local features and not aggregating or mixing evidence

from across the entire image.5 These patch-wise logit maps

serve as internal, strictly feed-forward heatmaps (one for

each class), using solely local patch information, which is

computed in a single forward pass. See the heatmap on the

left of Fig. 2 as an example for a “car” heatmap. Averag-

ing the evidence from these heatmaps yields the final logit

output of the BagNet for each class. Please note that to

generate the described patch-logit heatmaps, we need to ex-

change two commutative layers in the BagNet definition so

that the fully connected layer is applied before 2D average

pooling. This allows us to save the representation after the

fully connected layer as our heatmap.

Using BagNets as interpretable local-feature proxies

We choose BagNets as interpretable proxies over producing

e.g. occlusion-based forward heatmaps on the ResNet di-

rectly mainly for two reasons: First, this approach is much

more efficient since a BagNet heatmap is produced in a sin-

gle forward pass whereas a forward heatmap for a black box

would require multiple rounds of inference with systemat-

ically shifted occlusions. Second and more important, we

want to exploit the locality property of BagNets as they do

not rely on global, long-distance features across the image

but aggregate evidence by averaging local patches, see [5].

This enables explanations of model outputs in terms of each

individual image patch irrespective of its position in the im-

age.

4BagNet architectures with receptive fields of 9×9, 17×17 and 33×33

pixels, respectively, have been proposed in literature [5].
5Please note that the patch regions are partly overlapping due to the

used stride in the BagNet.



Figure 2: Identifying (first three panels) and testing (last panel) patch shortcuts. A patch is a BagNet patch shortcut (orange

box in first panel) for class “car” if two conditions are fulfilled: First, it is highly relevant for BagNet’s “car” prediction

(dark red on heatmap in second panel), second, its semantic class is not “car” (light green segment in the third panel). To

systematically test such a BagNet patch shortcut, we create a dedicated testing dataset (last panel).

3.2. Finding patch shortcuts

As a second step we use the trained BagNet to find se-

mantic vulnerabilities. That is, for our selected class of in-

terest, we identify image patches that are highly predictive

for one class yet actually stem from a different class, i.e.

semantic concepts that correlate with the class of choice al-

though not related semantically. We detect these highly rel-

evant patches in the following way: We perform inference

on the whole test set using our adapted version of BagNet.

We only consider those patches whose logit for the heatmap

of the targeted class is above the 99% quantile q0.99logit of logit

values over all patches from the dataset and, thus, highly

predictive of our class of interest. Next, for each obtained

patch, we consult the corresponding part of the segmen-

tation mask to verify whether it contains parts of the tar-

geted class?.6 If not, we identified a patch shortcut for this

class whose prediction only correlates with the chosen class

while holding no direct semantic relation. This procedure is

depicted using an example on the left of Fig. 2.

3.3. Testing transferability to the black box

The last step of our approach aims to evaluate to which

extent the identified BagNet shortcuts also constitute short-

cuts, and thus semantic vulnerabilities, of the black-box net-

work. For that, we propose the following procedure of con-

structing a testing image set: Using the set of images con-

taining the patch shortcuts identified in Sec. 3.2, we con-

sider the subset of images which are correctly classified by

either the black-box or BagNet network as not belonging to

the class of interest, denoting this set by Ishortcut. The re-

spective set of patch shortcuts extracted from the images in

Ishortcut is denoted by Pshortcut. Then, we automatically

copy each patch shortcut from Pshortcut and re-insert it into

the same image but at a new position. We then provide this

manipulated image as input to the black-box network. We

6Classification towards a class could, e.g., be caused by small parts of

an object of said class overlapping with the receptive field, a scenario we

want to avoid with respect to shortcuts.

consider an insertion successful if it changes the prediction

of the network to a misclassification.

To account for possible position-sensitivity of the black-

box network, as observed in other work, e.g. [31, 44], we in-

sert each identified BagNet patch shortcut from Pshortcut in

a grid-based manner into many distinct positions of the orig-

inal image. More concretely, we insert it into every position

that corresponds to exactly one patch logit value (“pixel”) of

the BagNet heatmap. Note that we insert only a single patch

at a time but at varying positions, resulting in a total num-

ber of manipulated images equal to the amount of “pixels”

in the BagNet heatmap.7 The testing image set obtained that

way is referred to as I
aug
shortcut. This procedure is depicted

using an example on the right of Fig. 2. Finally, we statis-

tically evaluate to what extent the black box is susceptible

to the BagNet shortcut patches by conducting inference on

I
aug
shortcut and thereby analyzing how often each patch leads

to misclassifications if inserted into the image at all possible

positions.

4. Experiments

Having outlined our approach to finding and testing

black-box patch shortcuts, we now instantiate and evaluate

it for shortcuts for the class “car” deploying a classification

network from the automotive domain. The structure of the

section follows the steps introduced in Sec. 3: After detail-

ing the dataset and training procedures in Sec. 4.1, we gen-

erate the shortcuts in 4.2 and systematically test these on the

black-box network in Sec. 4.3. To judge the effectiveness of

our approach, baseline as well as further ablation studies are

conducted in Sec. 4.4 and 4.5.

4.1. Training the interpretable proxy network

We first describe the custom dataset on which all ex-

periments in this section are performed. Subsequently, the

7Please note that one of these positions necessarily corresponds to the

original image as the patch is replaced with itself.



training configuration for the interpretable white-box model

(and also the black-box model) is presented.

Dataset A2D2 [18] is a sequence-based traffic-scene

dataset containing 41,277 images that provides (among oth-

ers) semantic segmentation ground truths. However, we do

not intend to segment input images but to classify them ei-

ther as “car” if one or several cars are displayed or as “no-

car” otherwise. More specifically, images that feature at

least 2% “car” pixels belong to class “car” and images con-

taining 0.3% “car” pixels or fewer are counted as “no-car”.

All other images are discarded.8 We refer to the resulting

dataset as binary-classification A2D2 or just binary A2D2.

Since binary-classification A2D2 does not require the full

segmentation ground truth, it allows us to use this ground

truth as pixel-wise meta-annotation instead. To prevent both

data leakage and domain shift between train and test data,

we split each sequence from the dataset into three equally

sized sub-sequences and apply a random 80:20 train-test

split on sub-sequence level. For training and evaluation, the

images are resized to 100× 160 pixels and normalized.

Networks and training As our black-box model, we

choose a ResNet-50 that is trained on binary-classification

A2D2 for 150 epochs with a batch size of 128 using the

Adam optimizer [32] with an initial learning rate of 0.001

and a binary cross-entropy loss. Unsurprisingly, the result-

ing model yields an almost perfect performance on the test

set (acc = 0.9748, F1 = 0.9556). We again point out that

our analyses target the question of how these classifications

are made and an over-simplified task provides a reasonable

setup for such a study. In the following, we refer to this

trained ResNet as black box (BB) network and do not make

use of any network-internal properties.

As white-box proxy network, we employ an

interpretable-by-design BagNet with a receptive field

of 17 × 17.9 Its training configuration does not differ from

the one above, except for a smaller batch size of 64. This

BagNet reaches a test performance of acc = 0.9695 and

F1 = 0.9455.

4.2. Finding patch shortcuts

Using the trained BagNet, our local-feature white-box

proxy, we follow the procedure described in Sec. 3.2 to find

patch shortcuts Pshortcut: The BagNet’s forward heatmap10

and the semantic segmentation ground truth mask are com-

pared and the combined selection criterion is applied (see

8In particular, this means that an image labeled as e.g. “no-car” can

still contain very few car pixels, which are however negligible w.r.t. the

total image area.
9We use the BagNet architecture provided here: https://github.

com/wielandbrendel/bag-of-local-features-models
10The heatmap is of size 11× 18 pixels in our case.

Sec. 3.2). To investigate the semantic origin of patches

we use a down-sampled version of the segmentation mask,

compare Fig. 2.11 Two examples of such patch shortcuts

for class “car” and their corresponding BagNet heatmap are

displayed in Fig. 3. We observe that many shortcut patches

belong to the semantic classes of “nature object”, “build-

ing” or “obstacle/trash”. Moreover, edges seem to be com-

mon features of patch shortcuts (see e.g. the bottom row of

Fig. 3).

(a) A BagNet patch shortcut showing trash cans.

(b) A BagNet patch shortcut showing a curb.

Figure 3: Identified BagNet patch shortcuts (orange

frames). We combine the semantic pixel-wise annotations

and BagNet’s intrinsic forward heatmap (rhs: light-blue

means low evidence for “car”, dark red means high evi-

dence for “car”) to identify shortcuts (see lhs), i.e. “no-car”

patches that BagNet correlates with class “car”, see text for

details.

4.3. Testing transferability to the black box

We follow the procedure described in Sec. 3.3 to eval-

uate if, and to what extent, the identified BagNet shortcut

patches in Pshortcut are important for the black-box clas-

sifier. To enable systematic testing, we create the separate

testing dataset I
aug
shortcut for each identified patch shortcut

from Pshortcut by duplicating the respective image (from

Ishortcut) and copying the identified patch shortcut to dif-

ferent positions (see last panel of Fig. 2). We evaluate

the black-box model on both the undistorted image dataset

Ishortcut (that only contains the naturally occurring short-

cuts) and the patch-shortcut-augmented dataset I
aug
shortcut

and compare their (normalized) confusion matrices (see

bottom row of Tab. 1). For comparison, we also report

11If the part of the segmentation mask corresponding to the patch con-

tains the class in question, i.e. “car” or related classes, we count the down-

sampled result as “car”. Otherwise a majority voting among the other

classes present in the patch is used.



the respective results when applying the BagNet instead of

the black-box model (see top row of Tab. 1). For both net-

works, a shift from true negative (TN) to false positive (FP)

can be observed after inserting the patch shortcuts. As ex-

pected, true positive (TP) images are mostly unaffected by

patch-shortcut insertions, see the virtually unchanged sec-

ond and fourth row of Tab. 1. This preliminaryly shows that

the identified BagNet shortcuts also constitute shortcuts for

the black box as they are able to provoke misclassifications.

Predicted Class

Ishortcut I
aug
shortcut

no-car car no-car car

A
ct

u
al

C
la

ss

B
ag

N
et no-car 0.63 0.37 0.35 0.65

car 0.01 0.99 0.00 1.00

B
B no-car 0.90 0.10 0.80 0.20

car 0.00 1.00 0.00 1.00

Table 1: Normalized confusion matrices of BagNet (first

two rows) and the black box (BB, last two rows) before (first

two columns) and after (last two columns) insertion of Bag-

Net patch shortcuts. Note that each identified BagNet patch

shortcut is inserted into 11 × 18 = 198 distinct positions

in the image. Hence, one insertion position corresponds to

exactly the original image.

4.4. Random image patches as baseline

To check the soundness of our approach, we compare

the set of patch shortcuts, Pshortcut, with a random “no-

car” patch set, denoted as Prandom, that is obtained using

random “no-car” patches in the Ishortcut images from the

50% logit quantile.12 In total, we consider image patches

from 96 distinct images for this analysis.

For both BagNet and the black-box model, we report the

mean and median numbers of successful patch insertions for

patches in Pshortcut (first column of Tab. 2) and patches in

Prandom (second column of Tab. 2). We find patches from

Pshortcut to be more successful by a big margin.13 Note

that all example images in this work display patches from

Pshortcut (in orange frames) that are among the most suc-

cessful ones on the black box.

12Please note that we use only such images that contain patches from

both logit quantiles.
13As expected, this effect is even stronger for the BagNet since it was

used for patch selection. Please note that due to the overlapping receptive

field of the BagNet, every insertion also slightly manipulates patch logits of

neighboring patches in the heatmap by introducing edges and thus artifacts

in neighboring patches. Thus, not all the insertions can be expected to be

(equally) successful on the BagNet.

Patch Set

Pshortcut Prandom Pmean
shortcut Pshuffled

shortcut

B
ag

N
et mean (↑) 67.42 10.65 16.84 12.24

median (↑) 28.50 1.00 3.50 1.00

B
B mean (↑) 20.59 11.86 7.98 5.27

median (↑) 17.00 7.00 1.67 1.25

Table 2: Mean and median number of successful patch in-

sertions for the BagNet and the black box (BB) per image

(higher is better as this means that the network is more sus-

ceptible to the patch). We report the results from our main

and baseline experiment (first two columns) as well as from

the further ablation study (last two columns, see Sec. 4.5 for

details). Note that each patch is inserted into 11×18 = 198

positions in the image.

Next, we inspect the origin of the patches in Prandom

and Pshortcut and study the position sensitivity of the black-

box network in more detail (see Fig. 4).

Regarding the patch origin, we observe that the informed

and more successful patches in Pshortcut stem from two

triangle-shaped regions of the input images, indicating that

semantic concepts to the sides of the road contain shortcuts.

To verify our procedure, we also show the origins of the

patches from Prandom which exhibit uniform distribution

as expected.

For the black-box model, we observe a high sensitivity

to patches inserted in the bottom part of the image (cor-

responding to common locations of cars on the road) and

almost no effect when patches are inserted in the upper part

of the image, i.e. in the region above the street level. More-

over, the left hand side of the bottom part (corresponding

to the oncoming lane) shows the highest sensitivity to patch

insertions. Overall, we observe that patches in Pshortcut

are less susceptible to the insertion location compared to

patches from Prandom. This lends credence to the fact that

our patches in Pshortcut carry relevant shortcut information

the black box is sensitive to.

4.5. Further ablation analyses

In the above experiments, we find insertions of patches

from Pshortcut to be more effective compared to those from

Prandom. However, all these patch insertions introduce edge

effects w.r.t. the surrounding image information and thus

artifacts that might influence the behavior of the network.

To better understand the impact of such artifacts, two ab-

lation experiments (based on the patches in Pshortcut) are

performed: We either shuffle the pixels inside the shortcut

patch before insertion or replace them by their mean values,

denoting the obtained patch sets by Pshuffled
shortcut and Pmean

shortcut,



Figure 4: Analysis of the patch sets Pshortcut (left panel)

and Prandom (right panel) regarding position. The heatmaps

(blue is rare, yellow is frequent) on the top visualize the ori-

gins of the patches in the respective patch set and the ones

on the bottom show the positions where patch insertions

switched the respective black-box prediction from “no-car”

to “car”. In this regard, patches from Pshortcut are clearly

more effective than random ones from Prandom as they can

be placed more “freely”, i.e. in more possible positions, in

order to provoke misclassification.

Figure 5: Illustration of a patch shortcut (orange frame) that

is averaged (left red frame) or shuffled (right red frame) be-

fore being inserted into another part of the image. Different

from this visualization, we never insert more than one patch

into an image.

respectively. Shuffling the patch pixels removes the spatial

relations between the pixels while keeping the color distri-

bution unchanged. Replacing all pixels by the average color

collapses this distribution onto its mean value. Both vari-

ants erase most of the semantic information that the original

patch carried, see Fig. 5 for an example of both. This allows

us to disentangle the effect of edge artifacts and of semantic

concepts. The statistical analysis is performed as in Sec. 4.3

above and the results are shown in the last two columns of

Tab. 2. We find the mean and median numbers of success-

ful patch insertions to drop significantly—even if compared

to patches from Prandom. The outcomes provide evidence

for a “base” effect that can be attributed to edges and fur-

ther artifacts since both ablations lead to a small number of

successful patch insertions. This base effect, however, is

minor compared to the effect of semantically intact patch

shortcuts, thus, stressing the semantic meaningfulness and

effectiveness of our approach.

5. Conclusion

We introduced an approach to identify learned shortcuts

of a black-box network by analyzing a white-box proxy net-

work, namely an interpretable-by-design BagNet that builds

on local feature statistics. The patch shortcut candidates

extracted via BagNet are transferred to and tested on the

black-box model. The empirical evaluation on the binary-

classification A2D2 dataset demonstrated the efficacy of our

approach. Detected BagNet patch shortcuts, if tested on the

black box, lead to significantly more misclassifications of

the considered black-box network than, e.g., random inser-

tions. Hence, they enable us to efficiently find vulnerabili-

ties of the black box. An ablation study demonstrated that

only a smaller fraction of the observed effects can be ex-

plained by edge artifacts. Most of it can be attributed to the

semantics of the patch.

The employed coupling between BagNet and black box

is relatively loose: Both networks are trained for the same

task on the same dataset but, apart from this, share no in-

formation. We therefore expect more direct couplings, e.g.

teacher-student approaches [25], to show even higher trans-

ferability rates. Further investigating how shortcut transfer

depends on the chosen coupling technique seems promis-

ing.

Employing BagNet, our approach leverages the “local-

ity” guarantees provided by this specific interpretable-by-

design model. However, there are other classes of in-

terpretable models such as invertible architectures, e.g.

iRevNet [30], providing different guarantees and thereby

offering alternative means for model assessment. It might

further be possible to lift the need for fine-grained meta-

annotations (in our case the pixel-wise semantic “car” or

“no-car” information): Clustering the image patches that

are crucial for BagNet decisions would enable a human-in-

the-loop to readily detect predominant shortcut concepts.

Transferring the approach of a patch-based proxy model

from images to other types of unstructured data, e.g. au-

dio, video or text seems feasible. The concept of “image

patch” then translates to short audio snippet or frequency

band, volumetric cube or chunk of words.

Having instantiated our approach on a toy task, we em-

phasize that shortcut learning is by no means limited to such

simple setups. It is a problem of more general nature [17]

and shortcuts are an “ubiquitous” property of ML, affecting



it for tasks of various complexity. As part of future work,

one could extend the analysis to other datasets, more com-

plex tasks and various kinds of black-box models. A sys-

tematic analysis of learned shortcuts, as made possible with

the presented approach, contributes to safe ML by an early

discovery of potential weak spots and failures. Further on,

such insight opens the possibility for mitigation. Similar to

e.g. adversarial training, shortcut patches could be used to

augment and robustify training procedures. Using the image

augmentation presented here not for testing but to generate

new images, one could increase the prevalence of identi-

fied shortcuts within the dataset. To avoid misclassification,

a network trained on this enhanced data would have to be

more robust with respect to those shortcuts. Furthermore,

a shortcut exploitation score reflecting the vulnerability of

a given DNN could be used as secondary metric for model

comparison.
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