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Abstract

An autonomous vehicle (AV) integrates sophisticated

perception and localization components to create a model

of the world around it, which is then used to navigate the

vehicle safely. Machine learning (ML) based models are

pervasively used in these components to extract object in-

formation from noisy sensor data. The requirements for

these components are primarily set to achieve as high accu-

racy as possible. With modern AVs deploying many sensors

(cameras, radars, and LiDARs), processing all the data in

real-time leads to engineers making trade-offs which might

result in a sub-optimal system in certain driving situations.

Due to the lack of precise requirements on individual com-

ponents, modular testing and validation also becomes chal-

lenging.

In this paper, we formulate the problem of deriving ab-

stract world model accuracy needed for safe AV behavior

from top level driving scenario simulations. This is compu-

tationally expensive as the world model can contain many

objects with several attributes and an AV extracts a world

model every time-step during the simulation. We describe

approaches to efficiently address the problem and derive

component-level requirements and tests.

1. Introduction

The field of autonomous driving is rapidly evolving with

the advancement of sensor and computing technologies. Es-

tablishing safety of AVs is a challenging endeavor due to

the variety of conditions an AV has to operate in and the

complexity of their system implementation. The localiza-

tion and perception components in an AV take in sensor and

map information to create a world model to capture the en-

vironment around the AV. This world model is then passed

to the planning module to create a safe trajectory based on

its objective. The perception components based on cameras

and LiDARs are increasingly implemented using ML mod-

els for 2D and 3D object detection.

It is hard to reason about safety requirements for ML

based perception as it is unclear whether (and how) an in-

accurate perception would violate a top level safety goal.

In practice, requirements of different AV components are

driven by subject-matter experts and is largely based on ex-

perience. These requirements, moreover, are set conserva-

tively and are common across different driving conditions

and Operational Design Domains (ODDs). For example,

the localization component should be relatively more accu-

rate on a busy intersection compared to a sparse rural road.

Similarly, a perception component should have both high

recall and precision on a highway, but could do with just

high recall in a pedestrian zone. In an ideal situation, one

would like to perceive everything around the vehicle with

best possible accuracy using many high resolution (e.g.,

24MP) cameras operating at high frame rates (e.g., 120FPS)

and employ multiple high accuracy, complex DNN mod-

els. Since AVs run on resource constrained platforms, sys-

tem designers make trade-offs and design a system that is

accurate enough (using 2-8MP cameras, 30FPS, and opti-

mized/quantized DNN models with slightly less accuracy,

for example). Such a solution based on generic require-

ments may lead to a system that is less safe for certain con-

ditions where highly accurate perception is required in some

areas around the AV (e.g., a fast approaching object from

the side at an intersection may need enhanced tracking).

Hardware-in-the-loop (HIL) and software-in-the-loop

(SIL) simulations offer effective end-to-end testing method-

ology for AV systems. HIL testing uses the automotive

hardware, sensors, and possibly actuators for system veri-

fication and validation. Software-in-the-loop (SIL) simula-

tions are used during the design phase as well as unit and

integration testing, where the inputs to the unit or compo-

nent are either auto-generated or hand crafted to simulate

validity with different input parameters.

To enable a AV system design that makes better use of

the resources for safer driving, we propose a simulation

driven approach to compute world model accuracy require-

ments for safe AV behavior. As this simulation-based ap-

proach is computationally expensive, we also describe effi-

cient methods to explore the state space. Our approach pro-

vides the following benefits: (i) it allows to derive compo-

nent level requirements from the top-level system require-

ments and driving scenarios, enabling traceability, (ii) it

facilitates customization of the world-model accuracy re-
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quirement for the driving scenario, allowing to compen-

sate inaccuracies in one component via higher precision

in another, (iii) it leads to a formal framework for investi-

gating component level failures in integration and system

level testing as needed by classical safety standards ISO

26262 [6] and Safety of the Intended Functionality (SO-

TIF) [7], which is currently missing in top-level driving sce-

nario simulations.

The remainder of the paper is organized as follows. Sec-

tion 2 describes the related work. Section 3 presents a for-

malism for safety in driving scenarios and challenges in

component-level design and testing for AVs. Section 4 pro-

vides the methodology for computing the world model ac-

curacy and its applications to requirements derivation and

testing. Section 5 concludes the paper.

2. Related Work

There has been substantial work on top-level scenario

based simulation to establish confidence in AV behavior.

OpenScenario [2] is a high level language for describing

scenarios for simulation. Waymo recently published their

study [17] that demonstrates the behavior of their AV on

accident scenarios. Several studies further explore scenario

manipulation to discover unsafe AV behavior. Li et al. [9]

use fuzzing to manipulate scenarios and discover unsafe AV

behavior. Similarly, Tuncali et al. [20] develop a simulation

based adversarial testing framework. Smart scenario gen-

eration to speed search [14] and accelerate rare-event prob-

ability evaluation [15] have also been explored. Ghodsi et

al. [5] also employed a method to generate adversarial sce-

narios along with a method to characterize them based on

the how hard or easy it might be for the AV to maintain

safety. Zhao et al. [23] develop a framework called Surak-

sha to study the impact of degraded perception on AV safety.

Menzel et al. [12] analyze a scenario abstraction to create

an approach for the design of vehicle guidance systems fol-

lowing the development process of the ISO 26262 standard.

ML whitebox testing [16, 10] to analyze scenarios based on

neuron coverage has also been studied.

Given the importance of machine learning in au-

tonomous driving, recent work has extensively focused on

robustness of machine learning for safety critical applica-

tions. Sina et al. [13] discuss challenges and ideas for ex-

tending classical automotive standards to ML safety. Singh

et al. [18] explore the impact of automotive system design

on ML based perception. The recent UL4600 [21] stan-

dard and the ML safety lifecycle [3] provide guidelines to-

wards established safety of ML based perception compo-

nents, however they rely on a sound requirements engineer-

ing methodology to realize such perception components.

Similarly, the Safety First For Automated Driving whitepa-

per [1] recommends using a checklist based approach for

developing the specification for the perception related tasks.

Figure 1. AV Architecture

However it also acknowledges such a checklist is easily out-

dated. Scaling such an approach for different perception

related tasks is challenging. Vogelsang et al. [22] acknowl-

edge the challenges for requirement engineering (RE) for

ML- based systems. They claim that RE lifecycle needs to

be divided into activities such as elicitation, analysis, spec-

ification, validation and verification that requires close co-

ordination between scientists, requirements engineers, le-

gal experts and customers. Caroline Hu et al. [4] propose

an approach for specifying requirements for robustness to-

wards small perturbations to inputs for perception compo-

nent based on ML. This method does not decompose sys-

tem level requirements, rather uses human performance as

a benchmark.

3. Designing and Testing AVs

A modern autonomous vehicle (AV) consists of the fol-

lowing components: a set of sensors to observe the envi-

ronment, a perception module to detect the static and dy-

namic objects in the environment, a localization module to

estimate the location of the AV on the map, a trajectory pre-

diction module to predict the behavior of the dynamic ob-

jects, a planning module to generate a driving trajectory,

and a control module to generate control commands which

drives the vehicle (including an online collision prediction

and avoidance model). For our purposes, we simplify this

architecture and let the planning module include the predic-

tion and the control modules. This is illustrated in Figure 1.

3.1. Driving Scenarios

The output of the perception and localization modules is

a world model that captures the state of all the static and

dynamic objects as well as the ego vehicle. The attributes

of an object include its category (or type), shape, location,

velocity, acceleration, and other information needed for ac-

curate and comfortable driving. We denote the world model

state at a given instance by σ.

An ODD specifies the constraints for the safety analysis

for the AV. These constraints (e.g. an area or a road seg-
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ment with limits on the speeds of the vehicles) bound the

space and allow for a practical analysis. For a given ODD,

a hazard and risk analysis (HARA) is performed using the

ISO 26262 [6] and 21448 (SOTIF) standards [8]. For each

hazard, a set G of safety goals is derived. For example, in

a highway ODD, a hazard is a longitudinal collision due to

sudden change in velocity of the ego vehicle. This yields a

safety goal that the AV shall prevent unintended longitudi-

nal acceleration/deceleration.

For each safety goal g ∈ G, a set Θg of driving scenarios

can be created for testing. Each scenario θ ∈ Θg includes

variations in the environment, number of actors, their start-

ing positions and actions during the course of the scenario.

A scenario consists of a map section where the actors and

AV are traveling, environmental conditions (e.g. weather

and road condition), initial speeds and locations of a set of

actors and the AV, a set of maneuvers each actor will take

during the execution. We assume that the actors follow an

intelligent driver model (IDM) [19]. A scenario θ starts at

time 0 and ends at T . We say that the AV is safe in a scenario

if AV does not come within a distance r from any other ob-

ject at any timestep during the scenario. The parameter r

depends on the safety goal. In this work, we only consider

scenarios that are safe assuming an IDM for AV.

3.2. The Design Challenge

The classical automotive safety standard ISO 26262

starts with an item definition, followed by a hazard analy-

sis and risk assessment. This provides a set of safety goals,

which lead to safety requirements. Traditionally, the top

level system safety requirements are allocated or decom-

posed across components.

Such a decomposition is hard for the increasingly com-

plex AV software stacks because (i) allocating or decom-

posing the requirements to an adaptive planning algorithm

is challenging, (ii) the AV system consists of multiple com-

ponents such as sensors, perception models (e.g., obstacle,

lane, intersection, road-sign detection) and localization that

work together to create a world model where each com-

ponent is intrinsically inaccurate, and (iii) the perception

component in AVs is based on ML, introducing new, less-

understood failure modes due to its black-box nature, that

are not captured in classical automotive standards.

In the absence of a top-down requirement decomposi-

tion, a bottom up design approach imposes requirements on

individual sensor, localization, and perception components.

For example, the sensor component imposes a requirement

bounding sensor noise, and the perception component im-

poses an accuracy requirement on object detection. Such

generic constraints result in over-engineering certain com-

ponents and restrict engineers to provision a static system,

i.e., deploying same amount of resources independent of the

world model and the driving scenario. This misses the op-

portunity for adaptive design: for example, an AV could

boost perception ability for cross-traffic at intersections and

allow to track fast-approaching vehicle that may violate a

traffic signal and collide. While the AV is not at fault in

this example, the overall safety can increase with adaptive

perception.

To tackle this problem, our proposal uses top-level sce-

nario simulation to derive requirements for localization and

perception. Intuitively, we bound the world model error in

the state observation in order to obtain component-level re-

quirements in a way that the AV does not violate the safety

goal.

3.3. The Testing Challenge

The general verification problem for a safety goal g is to

ensure that the AV is safe for all driving scenarios Θg . This

is intractable as the number of possible scenarios is theoret-

ically unbounded: two scenarios could differ in the speed,

the location, or the size of an object, or the total number

of objects. Instead, automotive safety standards [6, 8] re-

quire rigorous hierarchical validation through unit, integra-

tion, and system level tests. Unit tests ensure proper func-

tioning of the individual units through structural coverage.

The integration tests ensure that the static and dynamic as-

pects of the interaction between the units is well tested. The

system tests validate the system behavior. ISO26262 man-

dates that multiple objectives are met at each level to min-

imize safety risk. For example, it is highly recommended

that system level tests consist of an equivalence class anal-

ysis and fault injection tests.

Today, the practice of limiting ourselves to top-level sce-

nario based simulation falls short of the expectations of

classical safety standards. We show how our top-down re-

quirement derivation also helps to perform more systematic

tests.

4. Simulation Driven Requirement Derivation

We now describe our methodology to characterize safe

world model error and create component level requirements

using top-level scenario based simulation.

4.1. Approach and formulation

We leverage the driving scenario simulation framework

to decompose the safety requirements down the AV stack

to derive the component-level requirements. Our methodol-

ogy is summarized in Figure 2. For a scenario θ, the goal is

to obtain Γθ, a set of sequences of perceived world model

error values that will not result in a safety violation. We

refer to the sequence of errors as γ̂ ∈ Γθ and the errors in

each timestep as γ0...γT (subscript refers to the time-step)

where the scenario θ is implicit for sake of notation, and T

is the length of the scenario θ.
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Figure 2. Methodology for computing safe contour of world model error and deriving component level requirements

At each timestep ti in the scenario θ, an error component

γi is added to the world model state σi and given as input to

the planning algorithm which then generates actuator values

(actions). The actuation changes the state of the AV in the

simulator for the next time-step ti+1. The simulator also

updates the states of all other actors based on the scenario

description and passes the state σt+1 to the AV for ti+1.

Intuitively, Γθ specifies the requirement for (and can also

be used to test) the combined perception and localization

task, i.e., if the observed error is less than the values in Γθ

during a scenario θ the AV will be safe. This is discussed in

more detail in Section 4.4. Our goal is to obtain the contour

that encompasses Γθ, i.e., all the safe sequences of world

model error γ̂ for the scenario θ.

4.2. Computing the safe contour

Uniformly sampling the discretized N-dimensional

space is an approach that remains practical only for small

N and relatively large discretization granularity. A fully

stochastic approach would randomly sample the entire

space with the desired granularity of discretization for each

dimension. This approach (shown in Figure 3) can identify

the set of points (one point per γ̂) where the AV remains safe

and the set where it does not, which can be used to define

an approximate contour. This approach can be bounded by

first finding the maximum γi for each dimension by keeping

all other γj = 0 (i 6= j).

Our approach produces conservative requirements for a

world model that leads to safe AV behavior. We can further

refine the requirements by examining the range of world

model state between the established safe state Γθ and states

that are unsafe by using fault injection to directly perturb

the world model state. The world model state is multi-

dimensional with many objects, each of which have mul-

tiple parameters such as position and velocity. Accordingly,

the search of the world model state to find the unsafe states

may be complex because the parameters may be interde-

Figure 3. An example visualization of the N-dimensional space

(N=2) for Γθ where each green colored dot represents a sequence

of world model errors γ̂ that does not impact safety for a given

scenario. The two axes represent the world model error in each of

two timesteps (which represent the dimensions in this example).

pendent with regard to safety. A straightforward approach

for fault injection is to perturb a single parameter at a time

while hold other parameters constant. For example, fault

injection could be performed using hazard and operability

study (HAZOP) based guidewords such as more (qualita-

tive increase), less (qualitative decrease), early (relative ar-

rival/departure), late (relative arrival/departure), no or not

(negation), other than (substitution). As the world model

state space is explored, the specific boundary between safe

and unsafe states yields the more precise requirements for
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world model accuracy.

4.3. Efficient error space exploration

We now look at techniques to efficiently explore the

world model error space.

Constrained error: One natural way to limit the error

space is to obey the physical and realistic constraints. For

example, limit an error in a non-AV vehicle’s location from

placing it in sky or out of the road, or a lane can only be

straight and and shift but still be on the road. Error that

do not follow such constraints can easily be detected and

corrective actions can be taken, e.g., fall back to a back-up

system or alert the human driver.

Equivalence class analysis based on a safety score:

Change (or error) in some attributes of the world model can

have similar effect on the safety of the AV while driving in a

specific scenario. Such errors can be considered equivalent.

With the use of heuristics that predict the safety score, we

can skip the simulation if the safety metric is expected to be

similar to a simulation that has been already performed.

Limit to obstacles that are most likely to collide:

Given that we know the scenario, we can determine the ob-

stacles that are close and are likely to collide with the AV

if the AV misbehaves. For example, relative velocity and

distance can be used to determine whether an accident is

possible if the AV accelerates with some constraints. Meth-

ods that estimate Time To Collision (TTC) can be leveraged

to identify the objects to define the error space [11]. These

objects can be ahead, behind, or on the sides of the AV. This

object pruning (or selection) method can significantly re-

duce the total explored error space. This approach has been

consider in the Suraksha framework [23].

Abstract models for fast exploration: Using a detailed

simulator that models all the world objects in a photo-

realistic manner to capture realistic sensor data and a de-

tailed production-quality AV may be prohibitively slow for

deriving the requirements (and eventually tests based on

them). Using a setup that can simulate a scenario that takes

about 10 seconds in wall-clock time to just a few millisec-

onds (offering 100-1000x speedup) can make the explo-

ration feasible. Such a setup can be possible with the use

of a fast simulator that only models kinematics and trans-

fers the world model directly to the AV by skipping the fol-

lowing steps: sensor data extraction in the simulator, trans-

ferring the data to the AV, processing the sensor data in the

AV, perception and localization modules in the AV, and ac-

tuation step in the AV.

Gradient-based requirement propagation: Attributes

of the world model objects include continuous variables.

For example, the distance of an object from the ego vehi-

cle or the velocity of that object are continuous variables.

Thus, the N-dimensional error space is largely continuous.

Each point in the space can be associated with a continuous

Figure 4. Parametrized requirements for localization and percep-

tion.

safety score that represents the relative safety of that point.

This view of the world model space allows a gradient-based

search that potentially finds the boundary between safe and

unsafe points. The procedure for a gradient-based search

first requires the defining of a safety score as a scoring func-

tion of the N dimensions of the world model space. For

example, the distance from the ego vehicle to the nearest

object is a possible scoring function. The gradient-based

search is conducted by evaluating points in a chosen dimen-

sion until an unsafe point is discovered. Thereafter, each

dimension is explored until a safe point is discovered. To

account for dependencies among the dimensions, several

rounds of evaluating each dimension may be required.

4.4. Deriving requirements and tests

Translating safe contour to requirements: A primary ob-

jective for the safe contour computation is to identify the

safety tolerance due to error in the localization and percep-

tion components. To do this, the world model error can

be divided into two parts: (i) a localization error that is

parametrized by Llong in the longitudinal and by Llat in

the lateral direction (ii) a perception error characterized by

portions of a circular area with radius Pf in the front of

the AV, Pr in the rear, and Ps at the side of the AV. Here,

we choose a static definition of front, rear, side (fixed an-

gles with respect to heading direction of the ego vehicle).

We can assume that the perception component accurately

identifies an object if the bounding box of the object over-

laps with the ground truth bounding box with IoU (Intersec-

tion over Union) above a certain threshold, and the detected

class matches the class of the ground truth object. This is

shown in Figure 4.

Requirements traceability and aggregation: The safe

contour model provides traceability between driving scenar-
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ios and derived requirements for localization and perception

components, as every requirement can be traced to a driv-

ing scenario simulation resulting in an unsafe state. Since

derived requirements may marginally vary across different

scenarios, it is desired to aggregate these requirements ac-

cording to similar driving scenarios. Exploring methods to

group scenarios into equivalence classes based on error tol-

erance is an interesting research direction. Such a method

enables specialization to provide better safety. For exam-

ple, boosting perception for cross-traffic at intersections can

make an AV safer as cross-traffic violating signals or road-

signs are among the common driver mistakes that lead to

unsafe situations.

Component-level testing methodology: Derived

component-level requirements provide a natural de-

composition from driving scenarios to component level

tests. These tests can be used in HiL and SiL simulations

to ensure that the localization and perception components

satisfy these tests. Precise requirements also allow to

easily inject low-level faults in localization and perception

components to validate our safe contour analysis, i.e. if

a derived requirement is not satisfied, it results in world

model error going outside the safe contour, entering the

unsafe territory.

Depending upon the methods used in efficient error

space exploration, the derived requirements might make ab-

stract assumptions about the system functionality. Accurate

testing shall ascertain the validity of these assumptions, and

help diagnose the discrepancies between the deployed sys-

tem and the assumptions made.

We note that as these simulations for test rely on actual

localization and perception components, they are bound to

be slower than the safe contour analysis simulation - open-

ing new directions for statistical analyses to perform inte-

gration and fault injection tests.

Challenges: Despite the techniques described for efficient

state space exploration, several challenges in applying this

methodology remain. The parameterized model described

in Section 4.4 for perception and localization requirements

can include more parameters. Research is needed to un-

derstand the effect of using a simpler versus sophisticated

parameterization on the system’s efficiency. Moreover,

the adequacy of the requirements obtained through this

simulation-driven approach needs to be tested in real-world

settings – primarily to ensure that the artifacts of the simu-

lator do not affect real-world safety.

5. Conclusion

AV systems consist of multiple components for localiza-

tion and perception to create a world model that is passed

to a planning component to create a trajectory. The require-

ments for different components are based on experience and

driven bottom-up, while the safety of AV systems is gener-

ally guaranteed using top-level scenario simulations.

We presented a methodology to derive component re-

quirements from top-level driving scenarios. We character-

ize the permissible world model error as a safe contour, and

discuss techniques to efficiently compute the approximate

safe contour. We then present ideas to derive component-

level requirements from the safe contour and a methodology

to test individual components against their requirements.

Such a methodology opens new research directions for effi-

cient top-down requirement derivation and modular testing.
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