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Abstract

Deep neural networks (DNNs) for highly automated

driving are often trained on a large and diverse dataset,

and evaluation metrics are reported usually on a per-frame

basis. However, when evaluated on video sequences,

the predictions are often unstable between consecutive

frames. As such unstable predictions over time can

lead to severe safety consequences, there is a growing

need to understand, evaluate, and improve the temporal

consistency of DNNs. In this paper, we explore such a

temporal characteristic and propose a novel unsupervised

temporal consistency (TC) loss that penalizes unstable

semantic segmentation predictions. This loss function is

used in a two-stage training scheme to jointly optimize for

both, accuracy of semantic segmentation predictions, and

its temporal consistency based on video sequences. We

demonstrate that our training strategy helps in improving

the temporal consistency of two state-of-the-art semantic

segmentation networks on two different road-scenes

datasets. We report an absolute 4.25% improvement in the

mean temporal consistency (mTC) of the HRNetV2 network

and an absolute 2.78% improvement on the DeepLabv3+

network, both evaluated on the Cityscapes dataset, with

only a slight decrease in accuracy. When evaluating on the

same video sequences using a synthetic dataset Sim KI-A,

we show absolute improvements in both, accuracy (2.19%

mIoU) and temporal consistency (0.21% mTC) for the

DeepLabv3+ network. We confirm similar improvements

for the HRNetV2 network.
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Figure 1: Examples of stable and unstable predictions of

semantic segmentation networks on image sequences. The yellow

boxes highlight the segmentation area of interest in the frames.

Top: Left to right are the frames at discrete time instances t−2,

t−1, and t of a video that is fed into a semantic segmentation

network. Center: The predictions of the pedestrian and the

pavement are unstable, i.e., they are not consistent across time

(both t−2 → t−1, and t−1 → t). Bottom: Our approach focuses

on improving temporal consistency of predictions of semantic

segmentation networks over time. With our approach we observe

that the pedestrian is clearly detected in each time instance.

1. Introduction

Deep neural networks (DNNs) have shown great

advances in the fields of bio-imaging, pose detection, and



other computer vision tasks, expanding their application in

use cases such as highly automated driving.

Approaches using convolutional neural networks

(CNNs) achieve state-of-the-art performance in tasks, such

as, object detection, semantic segmentation, and maneuver

detection.

These DNNs are usually trained on a large diverse

dataset. This diversity in the dataset is to ensure

their generalization to varying objects, scenarios and

environmental conditions [23]. The variation in the training

set may include variation in weather such as rain, fog, and

clear weather conditions, variations in types to street scenes

such as inner city and highway scenes, etc. The DNNs

are trained on such a dataset by minimizing some given

loss function on the training set. They perform well if

the test domain is similar to the training domain and when

evaluation is performed on a frame basis. When using

DNNs in real-world applications, however, the inputs are

usually image sequences (video) from a camera, and there

are, therefore, additional characteristics of the network that

have to be evaluated to ensure robust predictions. Not only

is it important for the predictions of the neural network

to be accurate, but also these predictions should be stable

over time. We refer the term stability to denote network

predictions that do not fluctuate over time. A typical

example of an unstable prediction is shown in Figure 1,

where a pedestrian seems to disappear in subsequent

frames, even though the input frames remain mostly

similar. We argue that temporal stability of such DNNs

could be an important safety-relevant criteria, that needs

to be investigated, especially for environment perception

networks used in highly automated driving.

In this paper, we explore the aforementioned property

of network prediction stability, specifically for semantic

segmentation networks. We attempt to solve the problem

of temporally consistent predictions by a learning task

with an additional fine-tuning step. Firstly, we introduce

a novel temporal consistency (TC) loss function that

penalizes unstable semantic segmentation predictions and

we evaluate a two-stage training strategy to jointly

optimize for both, accuracy of semantic segmentation

predictions (frame-based evaluation), and its temporal

consistency (sequence-based evaluation). Second, we

compare our novel object-based stability approach against

a prior art pixel-based stability approach [16] and show on

the Cityscapes dataset [8] that our method outperforms

the prior art. Finally, we extend our approach to a

synthetic dataset, Sim KI-A, to evaluate accuracy and

stability on labelled sequences, which, to the best of our

knowledge, has not been done in any previous temporal

consistency investigation. We show improvements in both,

mean intersection-over-union (mIoU) and mean temporal

consistency (mTC) [22], when evaluated on the same test

sequences.

The paper is structured as follows: Section 2

reviews the relevant related work. In Section 3, we

describe our intuition and explain our proposed loss to

enforce the temporal consistency of semantic segmentation

predictions. In Section 4, we describe the datasets, semantic

segmentation networks, and optical flow algorithms that we

have used in our experiments. In Section 5, we present

results and provide discussions. Finally, we conclude the

work in Section 6.

2. Related Work

In this section, we introduce the related work in

two fields, namely evaluation metrics for semantic

segmentation, and methods to improve stability of the

predictions of semantic segmentation networks.

Evaluation metrics for semantic segmentation give

a quantitative measurement for comparing and tracking

the performance of the networks. These are classified

broadly into two categories based on two evaluation

criteria [21] namely on the one side the accuracy, or in

other words, the success of the network, and on the other

side the computational complexity in terms of speed and

memory requirements. For measuring the accuracy of the

segmentation, pixel accuracy [1] and variants of the Jaccard

index [9] are the most popular metrics for evaluating

semantic segmentation networks. The Jaccard index, also

known as mean intersection-over-union (mIoU), is

mIoU=
1

S

∑

s∈S

TPs

TPs + FPs + FNs

, (1)

where TPs, FPs and FNs are the class-specific true

positives, false positives, and false negatives, respectively,

and S = {1, 2, . . . , S}, where S is the number of semantic

classes in the dataset. For calculating the computational

complexity, execution time (in seconds), number of floating

point operations (FLOPs), and peak memory usage are

generally reported [14].

Furthermore, other than the criteria mentioned above,

we envision a criterion involving the robustness of the

network. This robustness can be defined with respect to

changing domains [17], changes in weather conditions [11],

and the influence of adversarial perturbations [2, 3].

For evaluating the robustness of the networks to such

corruptions in the input image, metrics such as mean

performance under corruptions (mPC) [11] have been

recently proposed. Additionally, to evaluate the robustness

to temporal changes in the input [15], metrics such as mean

temporal consistency (mTC) [22] have been published. The

instantaneous temporal consistency TCt at time t is defined

as

TCt = mIoU(mt, m̃t), (2)



while the mean temporal consistency mTC is defined as

mTC =
1

T−1

T∑

t=2

TCt, (3)

where T is the number of frames, mt is the semantic

segmentation prediction at time t, and the expected

prediction m̃t is computed based on the prediction of the

network at time t−1 and the movement of the pixel between

time t−1 and t.

In this work, two different evaluation metrics

are employed: The accuracy-based metric mean

intersection-over-union [9], and secondly, the mean

temporal consistency metric [22], based on the influence of

temporal changes in the input.

Methods to improve the temporal consistency of

networks have also been investigated recently. Label

propagation [1, 5, 7, 10, 18, 25] techniques have been

proposed generating an additional pseudo-labelled dataset

based on the video frames and optical flow estimations.

Zhu et al. [25] introduced a modification in the class

label space that allows for predicting multiple classes at

the boundary of objects. This, along with the combined

label-image propagation technique, helped in improving

the performance of the network. As these methods only

aim for improvement in the performance of networks by

increasing the available training data, they are not directly

comparable to our method. For improving the robustness

of the neural network to adversarial attacks, Saemann et

al. [20] proposed a strategy for warping feature maps based

on their entropy-based confidence of predictions. Although

the authors show an increase in the accuracy or robustness

of the network with this network modification, the effect

on the temporal consistency of the networks is largely

unstudied. We also acknowledge some parallel work by

Liu et al. [16], where a loss function

JTL(xt,xt+1) =
1

|I|

∑

i∈I

Vt→t+1,i · ||yt,i − yt+1→t,i||
2
2,

(4)

is introduced to enforce stability within a teacher-student

learning environment. Here, xt ∈ GH×W×C is an image

with height H , width W , number of color channels C, at

time instance t, and G = {0, 1, 2, . . . , 255}. The pixel

position i of the input image x is defined as i ∈ I =
{1, . . . , H · W}, and |I| = H · W . The image xt is

passed as an input through the neural network F(xt,θ),
with θ being its network parameters. The class scores yt

are defined as

yt = F(xt,θ) ∈ IH×W×S , (5)

where I = [0, 1]. Each element in yt can be understood

as a posterior probability yt,i,s(x) for the class s ∈ S =

{1, 2, . . . , S} at pixel position i of the input image. The

warped class scores yt+1→t at time instance t are computed

by warping the class scores yt+1 from time instance t+1
to time t. To do this, the pixel-wise displacements between

input images xt+1 and xt computed by FlowNet2 [12] are

used. The occlusion mask Vt→t+1 ∈ RH×W is defined

pixel-wise as Vt→t+1,i = exp(−||xt,i − xt+1,i||1), where

xt,i ∈ GC is the three-dimensional color pixel. On a closer

inspection of the JTL loss (4), we observe that the loss

inherently penalizes the pixel-wise instability in the class

probabilities yt,i and yt+1→t,i of the individual pixels i.

In this work, we introduce and compare a novel

object-based stability approach against the pixel-based

stability approach by Liu et al. and show that our method

performs consistently better. Additionally, our approach

does not require any modification to the architecture of

the semantic segmentation network and is unsupervised,

i.e., requiring only unlabelled, sequential video frames in

a second training stage.

3. Method

In a video sequence, assuming a sufficiently high frame

rate, there is only a continuous and therefore limited

movement of objects across frames. Therefore, it is highly

unlikely for objects to be present in one frame, then be

absent in the next frame, and abruptly be present again

in the next. Temporally consistent (also called stable)

predictions of semantic segmentation networks means that

movement of detected objects is also limited. To correct

errors due to ego motion, i.e., moving objects and actual

missing objects, we warp the prediction of the semantic

segmentation model from the current frame to the previous

frame based on optical flow calculations. The error

between semantic segmentation predictions can be used as

an optimization objective to improve the stability of the

segmentation predictions. In this section, we describe the

idea of our proposed temporal consistency (TC) loss and

present details of our method.

3.1. Supervised Semantic Segmentation Training

The supervised training involves a loss function that

penalizes the incorrect predictions of the network when

compared with ground truth labels. This supervised training

is necessary for ensuring the accuracy of the semantic

segmentation is maintained in the second step of the training

process. The segmentation mask mt = (mt,i) ∈ SH×W of

the network prediction at time t consists of elements

mt,i = argmax
s∈S

yt,i,s, (6)

where a class s ∈ S is assigned to each pixel i in the class

score yt. Let mt ∈ SH×W be the labelled ground truth

in the dataset M corresponding to image xt, having the
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Figure 2: Overview of our training strategy enforcing temporal consistency in a self-supervised fashion for a semantic segmentation

network. For calculating our temporal consistency (TC) loss, a pair of sequential frames (x̃t−1, x̃t) is passed to the semantic segmentation

network. Based on the optical flow ut−1→t [19] calculated between the input frames, the prediction of the semantic segmentation network

at time t−1 is warped (9) to time t, yielding ỹt−1→t. The temporal consistency loss JTC
t (12) is calculated between this warped prediction

ỹt−1→t and the prediction ỹt at time t. Along with the cross-entropy loss JCE
t (7), it is used in the training process.

same dimensions as the segmentation mask mt. Likewise,

yt ∈ {0, 1}H×W×S is the one-hot encoded vector ground

truth in three-dimensional tensor format. For supervised

training, we optimized the network using the cross-entropy

(CE) loss (see Figure 2) between the posterior probabilities

of the network yt and the labels yt. Taking the mean

over all pixels, the loss function for the image’s posterior

probabilities yt,i,s ∈ I is defined as

JCE
t = −

1

|I|

∑

i∈I

∑

s∈S

wsyt,i,s · log(yt,i,s), (7)

where |I| = H ·W is the number of pixels, and ws are the

weights assigned to each class during training as in [24].

3.2. Unsupervised Temporal Consistency (TC) Loss

We define a sequential and unlabelled dataset X̃ with

video sequences x̃T
1 = (x̃1, x̃2, . . . , x̃t, . . . , x̃T )

containing image frames x̃t at discrete time

instants t ∈ T = {1, 2, . . . , T}. We use optical

flow functions to capture the notion of network prediction

stability, and to estimate the apparent motion within the

video sequence. Optical flow estimates the displacement

of each pixel between the consecutive frames x̃t−1 and

x̃t. Following [19], the optical flow computed between

x̃t−1 and x̃t is defined as a tensor ut−1→t ∈ UH×W , where

U is the set of two-dimensional pixel-wise displacements

∆h,∆w ∈ R, representing the coordinate-wise shift of

each pixel from x̃t−1 to x̃t.

Using the optical flow tensor ut−1→t generated by the

optical flow block in Figure 2, the prediction of the semantic

segmentation network ỹt−1 is warped from time t−1 to

time t. To do this, we first define pixel coordinates for an

image as tensor p ∈ PH×W , where P = (h,w) is an

index pair with h ∈ {1, . . . , H} and w ∈ {1, . . . ,W}.

Tensor p thus only contains the pixel-wise coordinates of

a pixel in an image and does not carry any information

about pixel intensity values. Now we can add the pixel-wise

displacement vectors ut−1→t to the original pixel positions

pt−1 to receive a tensor

pt−1→t = pt−1 + ut−1→t, (8)

which provides the projected pixel coordinates

pt−1→t ∈ UH×W . Subsequently, we have to shift

the segmentation output ỹt−1 to pixel positions pt−1→t.

As the pixel coordinates pt−1→t are non-integer numbers,

we use nearest neighbour sampling nearest() as described

by [13] to obtain valid integer coordinates in a grid-like

structure as in pt. For the mapping of ỹt−1 to the flow-based

estimate ỹt−1→t we thereby obtain

ỹt−1→t = nearest(ỹt−1,pt−1→t). (9)

Accordingly, ỹt−1→t is the expected prediction at time t

based on the optical flow, conditioned on the change in

the pair of inputs x̃t−1 and x̃t, which compensates for the

movement of the camera and the objects in the consecutive

frames.



Ideally, for a good semantic segmentation model, the

distance between the network output ỹt and the prediction

based on the optical flow ỹt−1→t should be small. To

enforce this, we borrow from the temporal consistency

metric interpretation in [22], defining temporal consistency

as the mean intersection-over-union (mIoU) [9] of the two

predictions ỹt and ỹt−1→t. As per definition, the mIoU

between the segmentation masks m̃t and m̃t−1→t is given

as

mIoU(m̃t−1→t, m̃t) =
1

|S|

∑

s∈S

TPt,s

TPt,s + FPt,s + FNt,s

,

(10)

where TPt,s, FPt,s and FNt,s are the class-specific true

positives, false positives and false negatives, respectively,

which are calculated for m̃t, considering m̃t−1→t as

reference. A value of mIoU(m̃t−1→t, m̃t) = 1 indicates

that both overlap perfectly and the prediction of the network

is completely stable. However, the mIoU metric cannot

be optimized by gradient descent as set operations are

non-differentiable. To be able to still use (10) as part of

a loss function, we follow the suggestions by Berman et

al. [4] to approximate (10) to ensure differentiability for

gradient descent. An approximation of the mIoU (10)

is made using class probabilities ỹt−1→t and ỹt and this

approximation is given by

m̃IoUt =
1

S

∑

s∈S

∑
i∈I

|y
′

t,s,i · ỹt,s,i|

∑
i∈I

|y
′

t,s,i + ỹt,s,i − (y
′

t,s,i · ỹt,s,i)|
,

(11)

where y
′

t,s,i = ỹt−1→t,s,i and m̃IoUt = m̃IoU(ỹt−1→t, ỹt).
The temporal consistency (TC) loss between the prediction

at time t and the warped prediction from time t− 1 (see

Figure 2) is then defined as

JTC
t = 1− m̃IoUt. (12)

Note that since m̃IoUt is larger for stable predictions, the

loss needs to be minimized. The temporal consistency loss

JTC
t therefore enforces the stability of the predictions of a

semantic segmentation model by motion flow calculations,

given sequential images in a self-supervised manner, i.e,

without requiring labels.

3.3. Total Loss

For the total loss, we finally combine both the losses

during the second-stage training, i.e., the fine-tuning

process. The cross-entropy loss and the temporal

consistency loss are combined as

J total
t = (1− α)JCE

t + αJTC
t , (13)

where α is the loss weight that controls the influence of the

individual losses, and JCE
t is computed on dataset X , while

JTC
t is computed on dataset X̃ .

Table 1: Details of the datasets used in the experiments. The

image resolution of the dataset images and split into training,

validation and test sets are described. The training set of the

unlabelled dataset is used for calculating J
TC
t (12), and the test

set is used for evaluating the mTC (3) metric for the semantic

segmentation networks. A star (⋆) indicates availability of ground

truth labels in the synthetic dataset.

Dataset Resolution
Labelled X Unlabelled X̃

X train X val X test X̃ train X̃ val X̃ test

Cityscapes 2048 × 1048 2,975 500 1,525 2,300 399 200

Sim KI-A 1920 × 1080 4,547 386 386 1,276
⋆

111
⋆

111
⋆

4. Experimental Setup

In this section, we initially describe the road-scenes

datasets that have been used in our experiments. Next,

we present the implementation details of the semantic

segmentation networks that we employ.

4.1. Datasets

In the following, we will briefly give an overview of the

Cityscapes dataset [8]1 and the Sim KI-A2 dataset,

focusing on the availability, split and resolution of the

images and labels. This overview is given in Table 1.

For Cityscapes, the baseline networks are trained

with 2,975 images of the training set X train. A

total of 500 images X val and 1,525 images X test are

used for validation and testing, respectively. For the

calculation of JTC
t (12) we make use of the unlabelled

image sequences X̃ from Stuttgart that are provided

by Cityscapes. For our experiments, we use the

stuttgart 01 (1,100 frames) and stuttgart 02

(1,200 frames) sequences for fine-tuning, i.e., X̃ train. We

divide the stuttgart 00 (599 frames) sequence into

a validation sequential set (frames 0-399) X̃ val, and test

sequential set (frames 400-599) X̃ test. These frames are

sampled by a video camera at a frame rate of 17 Hz. We

chose the Cityscapes dataset due to diverse and highly

dynamic objects present in road scenes. Cityscapes is

also a widely used and accepted benchmark for semantic

segmentation in general.

The Sim KI-A dataset is a synthetic dataset with 4,257

images X train, 387 images X val, and 387 images X test.

The images in the Sim KI-A dataset are taken from

video sequences sampled from various camera angles with

a frame rate of 4 Hz. For calculating the loss JTC
t (12)

and evaluating the mTC (3), we use higher frame

rate sequences X̃ to enable more accurate optical flow

estimations. The frames are sampled from a sequence

containing car-mounted camera angles at a frame rate of

12 Hz. We split such a higher frame rate sequence X̃

1https://www.cityscapes-dataset.com/downloads/
2This dataset will shortly be available online.



into 1,276 training images X̃ train for calculating (12). A

total of 111 images each are used as validation (X̃ val) and

test (X̃ test) set, respectively. The dominant characteristic of

any synthetic dataset is the inherent availability of ground

truth labels and additional meta-information regarding the

perception environment. In addition, the sequential and

labelled sequences allow for evaluation of accuracy and

stability on the same test scenario (i.e., sequence), unlike

Cityscapes.

Optical Flow Algorithms are used for calculating the

pixel movement between consecutive sequential frames.

The large displacement optical flow (LDOF) method from

Narayanan et al. [19]3 is used in this work. For LDOF, a

sub-sampling parameter r ∈ N defines the granularity of the

optical flow estimation. A value of r = N , indicates that

every N th pixel movement is estimated. The missing pixels

values, if any, are then interpolated. For all our experiments,

we have used r=1, indicating dense estimation of the pixel

movements, without introducing any interpolation errors.

Based on a comparison between the optical flow algorithms

conducted in [22] for a temporal consistency metric, we

identified and used the neural network-based optical flow

estimation FlowNet2 [12]4 for our ablation study.

4.2. Semantic Segmentation Networks

In the following, we briefly introduce the two semantic

segmentation networks, namely HRNetv2 [24]5 and

DeepLabv3+ [6]6, that we have used for our experiments.

We also provide the training parameters of the networks.

Table 2 shows an overview of the baseline performance

of these networks on the aforementioned datasets. The

HRNetv2 baseline is trained on the Cityscapes dataset

with an image resolution of 1024 × 512 and a batch size of

4 on a single Nvidia GTX 1080 Ti GPU. The network

is trained with the class frequency-weighted cross-entropy

loss JCE
t (7) and optimized using SGD. An initial learning

rate of 0.01 and a polynomial decay with the momentum

of 0.9 are used. The network is trained to convergence for

484 epochs following [24]. Data augmentation by image

flipping and multi-scale cropping is applied during the

training of the baseline. A similar setting of parameters is

used for training the HRNetv2 baseline on the Sim KI-A

dataset with image crops of 901 × 901. The network is

trained to convergence for 100 epochs.

The DeepLabv3+ baseline with Resnet-101

backbone is trained on the Cityscapes dataset with

image crops of 513 × 513. The network is trained with the

JCE
t (7) loss and optimized using SGD. An initial learning

rate of 0.01 and a polynomial decay with the momentum

3http://lmb.informatik.uni-freiburg.de/resources/binaries/
4https://github.com/lmb-freiburg/flownet2-docker
5https://github.com/HRNet/HRNet-Semantic-Segmentation
6https://github.com/jfzhang95/pytorch-deeplab-xception

of 0.9 are used. The network is trained to convergence

for 240 epochs. Data augmentations of image flipping

and multi-scale cropping are applied during the training of

the baseline. A similar setting of parameters is used for

training the DeepLabv3+ baseline on the Sim KI-A

dataset with image crops of 901 × 901. The network is

trained to convergence for 50 epochs.

5. Simulation Results and Discussions

In this section, we evaluate our proposed training

methodology from Section 3 with the datasets and networks

from Section 4. We evaluate our JTC
t loss (12) along with a

cross-entropy loss JCE
t (7) in a two-stage learning setup. In

the first stage, we train the baseline network on the JCE
t (7)

loss alone until convergence. Thereafter in the second

stage, we add an additional JTC
t (12) loss and fine-tune

the network using the total loss J total
t (13). We randomly

sample mixed batches from X and X̃ to compute JCE
t (7)

and JTC
t (12), respectively. With our initial experiments, we

observed that with respect to convergence, such a two-stage

training approach is better than training from scratch. In

this paper, we therefore focus on only the two-stage training

approach in more detail.

Figure 3 shows a plot of the effect a hyperparameter

tuning (learning rate, and loss weight α) has on the

HRNetv2’s accuracy and temporal consistency, when

trained on Cityscapes. The mIoU is calculated on

the validation set X val and the mTC is calculated on the

sequential validation set X̃ val.

Effect of learning rate: We observe that the learning

rate plays a significant role in such a two-stage learning

setup. We vary the learning rate by keeping all the other

parameters constant. The parameter α, that controls the

contribution of the TC loss within the total loss (13), is

kept constant at α=0.5. From Figure 3a, we observe that

a higher learning rate showed a larger drop in the mIoU,

and higher fluctuations in the mTC. A learning rate of 10−5

helps in improving the temporal consistency of the network

and retains the accuracy of the semantic segmentation

predictions. We observe similar behaviour of the learning

rate on HRNetv2 network trained on Sim KI-A dataset,

and also with the DeepLabv3+ network.

Effect of loss weight α: We further investigate the effect

of the parameter α (13) on the fine-tuning process. A loss

weight α=0 indicates that only JCE
t (7) is used and α=1

indicates that only JTC
t (12) is used. In Figure 3b, we

vary α and we keep the learning rate constant at 10−5,

which gave the best results in the previous experiments. We

observe that a higher α negatively affects the cross-entropy

loss and the mIoU on the validation set. We also perform

the experiment with α=0 excluding the effect of JTC
t . A

lower α>0 helps in improving the temporal consistency,

while not adversely affecting the accuracy of the semantic
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(a) Effect of learning rate: Here, we vary only the learning rate while

keeping the other parameters constant, with α = 0.5 being chosen.

(1
)

(3
)

(b) Effect of loss weight α: Here, we vary only the loss weight α, keeping

the learning rate constant at 10−5.

Figure 3: Effect of hyperparameters for our two-stage training approach for the HRNetv2 network trained on the Cityscapes dataset.

The mIoU (1) is calculated on the validation set X val of Cityscapes and the mTC (3) is calculated on the stuttgart 00 unlabelled

sequential validation set, X̃ val. The black dotted line indicates the performance of the baseline network.

segmentation predictions. We observe that α=0.5 shows a

large gain in mTC, with marginal decrease in mIoU. Similar

to the learning rate hyperparameter above, we observe

similar behaviour of the loss weight parameter α on the

HRNetv2 network trained on the Sim KI-A dataset, and

also with the DeepLabv3+ network.

Observations on a real dataset: Table 2 shows a

summary of the results of evaluating the mTC (3) on the

Cityscapes test set X̃ test. The sequential test set X̃ test

is only used for evaluation of mTC, and is not used in the

training and the fine-tuning steps. The best hyperparameters

for evaluation are chosen based on tuning the parameters

(α=1, learning rate=10−5, see Figure 3). In comparison

to the HRNETv2 baseline, we observe that the mean

temporal consistency (mTC) is improved on the unlabelled,

sequential test sequences X̃ test by absolute 4.25 %, with a

drop of 1.33% mIoU on the labelled validation set X val. For

the DeepLabv3+ network, we observe an improvement of

2.78 % mTC on X̃ test, with a drop of around 6 % mIoU on

the labelled validation set X val. Furthermore, we observe

that our approach is consistently better than the approach

suggested by Liu et al. [16], in terms of improving temporal

consistency, but falls behind in mIoU. It is important to

note, however, that for Cityscapes we are not able to

report mIoU and mTC on the same sequential test dataset,

due to the lack of labelled videos in Cityscapes. It is,

however, intuitive that the mIoU should improve with the

improvement in mTC.

Observations on a synthetic dataset: To investigate

this further, we make use of our synthetic dataset,

Sim KI-A, that allows for calculating the mIoU and mTC

on the same sequential test set X̃ test, due to the inherent

Table 2: Test set evaluation based on mIoU (1) and mTC (3)

for the baseline models and the models fine-tuned with the TC

loss. We also compare this against the pixel-based approach

J
TL (4). The test set was used neither during training/fine-tuning,

nor during hyperparameter tuning. Best numbers in bold.

Dataset Method

X val X̃ val X̃ test

mIoU mTC mTC

[%] [%] [%]

C
i
t
y
s
c
a
p
e
s

HRNetv2 [24] 74.07 71.29 64.05

with JTL [16] (4) 73.34 72.56 64.10

with JTC (ours) (12) 72.74 74.74 68.30

DeepLabv3+ [6] 69.06 70.05 65.08

with JTL [16] (4) 64.99 71.78 65.71

with JTC (ours) (12) 62.20 72.05 67.86

Dataset Method

X val X̃ test ˜X test

mIoU mIoU mTC

[%] [%] [%]

S
i
m

K
I
-
A

HRNetv2 [24] 85.05 50.66 76.04

with JTL [16] (4) 84.36 50.28 74.93

with JTC (ours) (12) 85.23 51.32 76.38

DeepLabv3+ [6] 80.44 52.26 83.16

with JTL [16] (4) 81.34 53.69 80.21

with JTC (ours) (12) 84.52 54.45 83.37

availability of labels in the synthetic dataset. Table 2 also

shows a summary of the results on the Sim KI-A dataset.

In comparison to the HRNETv2 baseline, we observe that



Table 3: Ablation study for optical flow on the HRNetv2

network, trained on the Cityscapes dataset. We only vary

the choice of optical flow algorithm keeping all other training

parameters constant. A lower MSE indicates higher accuracy of

optical flow estimation. The - indicates that optical flow is not

used in the baseline training. Best results are highlighted in bold.

Method

X val X̃ val X̃ test

MSE mIoU mTC mTC

[%] [%] [%]

HRNetv2 [24] - 74.07 71.29 64.05

with FlowNet2 [12] 0.0031 72.46 73.62 67.86

with LDOF [19] 0.0016 72.74 74.74 68.30

our JTC loss improves mTC on the test sequences X̃ test by

absolute 0.34 %. Here, we also observe an improvement

of absolute 0.66 % in mIoU when calculated on the same

sequential test set X̃ test. For the DeepLabv3+ network,

we observe an improvement of 0.21 % mTC on X̃ test, and an

improvement of absolute 2.19 % in mIoU when calculated

on the same sequential test set X̃ test. With the Sim KI-A

dataset, we observe that we are always better than the

approach by Liu et al. [16], in terms of both mIoU and mTC.

Ablation study on the effect of optical flow: We

can observe from our training strategy (see Figure 2),

that the results of the computation of JTC
t (12) are

dependent on the accuracy of the optical flow algorithm.

To better understand this dependency, we perform an

ablation study on the choice of optical flow algorithm.

From Table 2, we observe that although we excel the

baseline network and the state-of-the-art method [16]

with respect to temporal consistency, the improvements

in mTC (3) of both the networks (HRNetv2 and

DeepLabv3+) on the Sim KI-A dataset are not as large

as their respective improvements with the Cityscapes

dataset. Cityscapes sequences are sampled at a

higher frequency (17 Hz) in comparison to Sim KI-A

sequences (12 Hz), which means a lower error in optical

flow estimations for the Cityscapes dataset. This raises

the question: Is the difference in the effectiveness of our

strategy to enforce temporal consistency in DNNs due the

optical flow estimation error? Does a lower optical flow

estimation error lead to better results? To investigate

these questions, we fine-tune the HRNetv2 network on

the Cityscapes dataset using two different optical flow

algorithms, LDOF [19] and FlowNet2 [12]. The results

are shown in Table 3. The mean-squared error

MSE(x̃t, x̃t−1→t) =
1

|I|

∑

i∈I

(x̃t,i − x̃t−1→t,i)
2 (14)

between the image x̃t at time t and the expected

image x̃t−1→t is calculated based on the optical flow

estimation between images x̃t−1 and x̃t. We report a

larger improvement in both mIoU (1) and mTC (3), when

using LDOF [19], which has lower MSE in comparison to

FlowNet2 [12]. An unlabelled sequence with a higher

frame rate will naturally have a lower MSE, and will further

aid our proposed method. We are currently restricted by the

unavailability of higher frame rate sequences in road-scenes

datasets to report an optimal frame rate. The authors

envision the use of synthetic datasets for such an evaluation

of optimal frame rate, as possible future work.

6. Conclusions

As deep neural networks for highly automated driving

are trained and evaluated on a per-frame basis, they often

times lead to temporally unstable predictions. In this

paper, we investigated the temporal consistency of semantic

segmentation networks in more detail. We proposed

and formulated the problem of temporal consistency of

predictions as an additional fine-tuning step on unlabelled

image sequences. We introduced a novel temporal

consistency (TC) loss function that penalizes unstable

semantic segmentation predictions and then evaluated a

two-stage training strategy to jointly optimize for both,

accuracy of semantic segmentation predictions, and its

temporal consistency based on video sequences. Using

our proposed method, we report improvements of temporal

consistency of two state-of-the-art semantic segmentation

models on two different datasets. In comparison to the

existing state-of-the-art, we show that our method provides

the better temporal consistency. We reported an absolute

4.25% improvement in the temporal consistency (mTC)

of the HRNetV2 model and an absolute 2.78% on the

DeepLabv3+ model on Cityscapes videos with some

decrease in the accuracy (mIoU) of the network on isolated

images. For the first time, we extend such a temporal

consistency investigation to a synthetic dataset to enable

accuracy and temporal consistency evaluations on the same

sequential test set. With the synthetic dataset, we show

that our method improves both, accuracy and temporal

consistency of the semantic segmentation networks, and

excels state of the art consistency improvement methods

also both in mIoU and mTC.
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Hüger, Peter Schlicht, and Tim Fingscheidt. Robust

Semantic Segmentation by Redundant Networks With a

Layer-Specific Loss Contribution and Majority Vote. In

Proc. of CVPR - Workshops, pages 1348–1358, Seattle, WA,

USA, June 2020. 2
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