
Adversarial Robust Model Compression using In-Train Pruning

Manoj-Rohit Vemparala1, Nael Fasfous2, Alexander Frickenstein1, Sreetama Sarkar1,

Qi Zhao3, Sabine Kuhn1, Lukas Frickenstein1, Anmol Singh1 Christian Unger1,

Naveen-Shankar Nagaraja1, Christian Wressnegger3, Walter Stechele2

1BMW Autonomous Driving, 2Technical University of Munich,
3Karlsruhe Institute of Technology

Abstract

Efficiently deploying learning-based systems on embed-

ded hardware is challenging for various reasons, two of

which are considered in this paper: The model’s size and

its robustness against attacks. Both need to be addressed

even-handedly. We combine adversarial training and model

pruning in a joint formulation of the fundamental learning

objective during training. Unlike existing post-train pruning

approaches, our method does not use heuristics and elimi-

nates the need for a pre-trained model. This allows for a

classifier which is robust against attacks and enables bet-

ter compression of the model, reducing its computational

effort. In comparison to prior work, our approach yields

6.21 pp higher accuracy for an 85% reduction in parame-

ters for ResNet20 on the CIFAR-10 dataset.

1. Introduction

While convolutional neural networks (CNNs) have been

proven effective in various computer vision applications,

such as image classification [1], semantic segmentation [2],

and object detection [3], their deployment on resource-

limited hardware such as in-vehicle systems remains chal-

lenging. In real-world applications, the high memory re-

quirements and energy consumption of neural networks can

be a limiting factor. Recent works on CNN optimization

are categorized into methods for parameter pruning [4–6],

quantization [7, 8], and knowledge distillation [9]. These

methods contribute to significant improvements in reducing

the computational complexity of neural networks. More-

over, neural networks are vulnerable to attacks, questioning

their suitability for safety-critical applications such as au-

tonomous driving. Adversarial examples, for instance, are

small perturbations to the input that appear insignificant or

even imperceptible to the human eye, but cause a differ-

ent/incorrect prediction by the classifier [10]. As a rem-

edy, the research community has invested significant efforts

to learn more robust models, for instance using adversarial

training [11, 12], where such adversarial examples are ac-

tively incorporated in the learning process. However, only

few studies analyze the impact of adversarial robustness and

network compression [13–16]

Techniques for pruning neural networks aim to remove

redundant structural parameters like channels, kernels or

individual weight elements of neural networks in order to

decrease the memory requirements and accelerate the com-

putation of the network at hand, while maintaining the net-

work’s accuracy. Most pruning methods [e.g. 4–6] follow a

three step approach: First, a model is learned to solve a task

at hand. Second, this very model is pruned according to a

separate objective function. Third, the model is fine-tuned

to maintain the overall accuracy.

Pruning often relies on magnitude-based heuristics that

require incorporating iterative fine-tuning during the prun-

ing search to maintain the model’s effectiveness [6, 17].

This, however, significantly increases the computation ef-

fort (the GPU hours) for the pruning process. To improve

upon this, recent research proposes reinforcement learn-

ing (RL) agents to automate the process of finding the opti-

mal model pruning strategies [5, 18]. While, these learning-

based compression techniques outperform pure heuristic-

based approaches both in efficiency and compression ratio,

they often do not yield an optimal solution.

In this paper, we propose to incorporate the pruning

process, that is, learning an appropriate pruning mask, in

the underlying optimization function of the training. We

thereby break through the barrier between training and

pruning, and circumvent the need for magnitude-based

heuristics. In an extensive evaluation, we demonstrate that

our method yields 80% reduction of multiply and accumu-

late (MAC) operations in a ResNet56 network with minimal

degradation in accuracy. Our joint formulation of the learn-

ing and pruning objectives allows us to additionally incor-

porate recent advantages from adversarial training [12] and

increase the robustness of the pruned network. We provide

a trade-off between task-specific accuracy, adversarial accu-

racy and compression rate. With this, we achieve higher ad-

versarial accuracy than RL-based approaches and also out-

perform the state of the art robust pruning methods.

We summarize our contributions as follows:

1. Higher Compression. Our method identifies redun-

dant weights by minimizing a hardware-aware aux-

iliary loss when updating the network’s connections.

We obtain 80% reduction of operations with only

2.22 pp (percent point) degradation in accuracy for

a ResNet56-based channel-pruned configuration on

CIFAR-10.

2. Sustained Robustness. We show the effectiveness of

our in-train pruning scheme under attack. By augment-

ing the trainable pruning masks with adversarial train-

ing, our method produces 5.91 pp and 8.65 pp higher

natural accuracy with similar adversarial robustness

compared to post-training RL pruning at a 70% reduc-

tion of operations for ResNet20 and ResNet56.

3. Improved Accuracy. We compare our approach

to state-of-the-art robust pruning methods. We

achieve a 6.21 pp higher natural accuracy than Robust-

ADMM [13] while maintaining a similar level of ad-

versarial robustness for 85% channel pruning.

The remainder of the paper is structured as follows: In

Section 2, we discuss related work on post-training and

in-train pruning, as well as adversarial robustness. Sec-

tion 3 introduces our approach on in-train adversarial robust

model compression, which is then extensively evaluated in

Section 4. Section 5 concludes the paper.

2. Related Work

Post-Train Pruning Han et al. [6] determined the impor-

tance of individual elements in the weight matrix based on

their magnitude, demonstrating the redundancies in deep

neural networks. Pruning individual weights, referred to

as irregular pruning, leads to inefficient memory accesses,

making it impractical for general-purpose computing plat-

forms. Regularity in pruning becomes an important cri-

terion towards accelerator-aware optimization [17]. He et

al. [4] prune redundant channels by applying LASSO re-

gression and solving for least square minimization of the

output error of the remaining feature maps. However, the

above pruning methods are based on heuristics, which can-

not be guaranteed to generalize well for different tasks and

objectives. Recently, auto-machine-learning (Auto-ML)

based approaches are leveraged in the research of model

pruning techniques [5, 18]. Huang et al. [18] proposed

a reinforcement learning based filter pruning framework to

achieve layer-wise filter pruning. An RL-agent prunes a sin-

gle layer at a time before fine-tuning and then moving on to

the next layer. This leads to longer GPU hours and pro-

vides no guarantee of a global optimal pruning strategy for

the entire model. In AMC [5], a deep deterministic policy

gradient (DDPG) based RL-agent is utilized in regular fil-

ter pruning. The RL-agent provides the environment with a

continuous action that can be defined as the compression ra-

tio of each layer. Based on the magnitude obtained from the

L2-norm heuristic and the sparsity ratio of each layer given

by the RL-agent, the redundant channels are pruned. In this

work, we eliminate the need for heuristics and search-time

for pruning and determine the pruning strategy based on

gradient updates during the training process.

In-Train Pruning Integrating the pruning process into

the training phase to jointly optimize the weights and

prune connections is referred to as in-train pruning. The

autoencoder-based low-rank filter-sharing technique (ALF)

proposed by Frickenstein et al. [19] utilizes sparse autoen-

coders that extract the most salient features of convolutional

layers, discarding filters in an unsupervised manner. ALF is

limited to filter pruning and does not support other pruning

regularities. ALF also adds an additional expansion layer

which prohibits the extraction of inter-layer filter pruning

benefits. Zhang et al. [20] present a systematic weight prun-

ing framework for neural networks, where pruning is for-

mulated as a constrained non-convex optimization problem

and solved using alternating direction method of multipli-

ers (ADMM) [21] during the training process. The au-

thors subsequently extend their work in StructADMM [22]

to structured sparsity and provide analysis on row prun-

ing, column pruning and filter pruning. Although the task-

specific and pruning objectives are solved simultaneously,

the authors use predefined sparsity ratios from other prun-

ing works to ensure the convergence. Sparse learning or

training sparse networks from scratch [23–25] can also

be considered as an in-train pruning technique, which has

achieved extremely high pruning rates with negligible ac-

curacy degradation. This method does not require a pre-

trained dense model and the network topology is updated

during training through pruning and regrowing connections.

Parameters are pruned based on magnitude and grown back

at random [23] or based on gradient [25] or momentum [24]

information. However, these methods often require prede-

fined layer-wise sparsities and are mostly effective in reduc-

ing model size through weight pruning, rather than focusing

on the hardware advantages through structured pruning.

Model Compression and Adversarial Robustness Gal-

loway et al. [26] evaluated and interpreted the adversar-

ial robustness of binary neural networks (BNNs). They

highlight the most commonly mentioned benefits of BNNs,

2

Original Neural Network

Pruned Neural Network

Prune

Fine-Tuning

Search (e.g. RL, GA)
→ Heuristic based

Unified
Training

Gradient Update

Al-1 Al

W: Latent Weights M
b
: Configurable
Prune Mask

Sample Batch of Images

e.g. Convolutional Layer

Robust Prune and Train Objective

In-Train Pruning

M: Trainable
Prune Parameter

Forward Propagation

Robustness Task Compression

Conv

1

0000

0 0

00 1

1

1

Original
Image:

+ Noise δ

Attacked
Image:
(FGSM)

Figure 1: Depiction of existing post-train pruning approaches (left) in comparison to our newly proposed method (right).

i.e. the reduced memory consumption and the faster in-

ference. They also point out the improvement in robust-

ness against adversarial attacks for BNNs compared to full-

precision models. The inherently discontinuous and ap-

proximated gradients of BNNs gives them an advantage

over full-precision networks for adversarial attacks. In this

work, we focus on model pruning as the main compression

technique, orthogonal to quantization and binarization ap-

proaches. Inspired by the work of [20], Ye et al. [13] incor-

porated adversarial robustness into the ADMM objective.

One of the main findings of the work for improving robust-

ness of a compact model is to concurrently prune and adver-

sarially train an over-parameterized network. A similar ap-

proach followed by Gui et al [16] constructed framework to

realize a unified constrained robust-aware optimization on

DNN models. The objective function of ADMM is recon-

structed to improve adversarial robustness using three main

compression strategies: pruning, factorization and quanti-

zation. However, a pre-trained model with adversarial ro-

bustness is required before the compression. Differently,

our approach minimizes the associated loss term to obtain

sparsity by updating the differentiable prune masks with-

out relying on a magnitude-based heuristic. Sehwag et

al. [14] recently proposed a new method to make pruning

techniques aware of robust training objectives. After pre-

training an over-parameterized model, the pruning is based

on the importance score computed from the loss. After de-

termining the pruned subgraph, fine-tuning is performed.

As noted in their results, the lowest magnitude based prun-

ing is not suitable for robustness-aware pruning technique.

Our approach does not require a pre-trained model as we

prune and train the compact robust model simultaneously.

3. Adversarial Robust Model Compression

In this paper, we target two objectives: 1) Compressing

a model to reduce the computational effort of a neural net-

work, and 2) increasing the robustness against an adversary

manipulating input data. Both can be effectively achieved

by formulating a joint optimization problem as shown in

Fig 1.

We adopt the concept of adversarial training [11] but in-

corporate pruning edges in the network using a binary mask

Mb ∈ {0, 1} derived from a trainable continuous mask M ,

that is, weights W are canceled out if the corresponding

dimension of the mask is 0 and left unchanged if it is set

to 1: W ⊙Mb (c.f . Sections 3.1 and 3.2). Attacks against a

neural networks are described as finding a minimal pertur-

bation δ of an image I (forming the the adversarial example

Iadv = I + δ) that changes the outcome of a given model

represented by the prediction function f(·) [27]. For ad-

versarial training, we make use of this generation principle,

while maximizing the loss L for a given perturbation budget

ǫ:

min
W,M

E
(I,Y)∼D

[

max
|δ|≤ǫ

L (f(I + δ,W ⊙Mb), Y)

]

. (1)

The outer minimization problem in Eq. (1) involves a set

of randomly sampled images from dataset D, where the ex-

pected loss E on the random samples is minimized through

an adversarial training scheme, such as Fast Adversarial

Training (FastAT) [12].

Exposing a model to adversarial images Iadv results

in the adversarial accuracy Accadv, representing the mea-

sure of adversarial robustness of the underlying model.

Our in-train pruning approach aims to achieve a balanced

trade-off between natural accuracy Accnat (calculated from

the ground-truth labels Y for the corresponding images

I), adversarial robustness Accadv, and model complexity

sum(Mb) during the training process, rather than introduc-

ing separate (post-training) phases for pruning and fine-

tuning.

In principle, one may use different methods for gener-

ating adversarial examples for training, such as Fast Gra-

3

dient Sign Method (FGSM) [27], Projected Gradient De-

scent (PGD) [11] and Carlini-Wagner (C&W) [28]. Wong

et al. [12], however, show that using FGSM in combination

with random initialization is particularly effective. With

this, the cost of training, measured in GPU hours, with one

iteration of FGSM is significantly lower than with other

variants like PGD-based adversarial training [11]. We inte-

grate the in-train update operations of the pruning mask Mb

in the FastAT procedure as shown in Algorithm 1.

Algorithm 1: Joint selection of pruning masks and

adversarial training.

Require: Training samples D, perturbation strength

ǫ, step size α
1 Initialize θ, Mb ← 1
2 for Epoch = 1, . . . Nepochs do

3 for Batch B ⊂ D do

4 Initialize perturbation

δ ← random uniform(−ǫ,+ǫ)
5 Sample a batch of K examples

{(I(1), Y (1)), · · · , (I(K), Y (K))} from

data distribution.

6 Use FGSM attack to generate perturbations

on batch K to update δ
7 δ ← δ+α·sign(∇δL(f(I+δ,W⊙Mb), Y)
8 δ ← max(min(δ, ǫ),−ǫ)
9 Iadv ← I + δ

10 Update weights W and pruning masks M
using SGD for adversarial images:

11 W ←W − η · ∇WL(f(Iadv,W ⊙Mb), Y)
12 M ←M − η · ∇ML(f(Iadv,W ⊙Mb), Y)

13 end

14 if EPrune, Start ≤ Epoch ≤ EPrune, End then

15 if Epoch mod Prune step = 0 then

16 M ←M − η · ∇MLPrune(M,ψbase)
17 end

18 Mb ← round(0.5 · tanh(M)+0.5)

19 end

20 end

During each training step, we generate a uniform random

initialization for the adversarial perturbation as shown in

line 4, followed by performing a step into the ascent gradi-

ent direction (line 7) is scaled by the step size α. We update

the weights and pruning masks of the neural network jointly

in lines 11 and 12 for clean and adversarial images with

learning rate η. During these update steps the importance

scores for masks Mb get accumulated. Lines 15 and 16
zero out prune masks based on a hardware loss LPrune (c.f .

Section 3.2). As shown in line 14, we start and freeze the

optimization of prune masks at the epoch corresponding to

EPrune, Start and EPrune, End respectively. As part of our ex-

periments in Section 4, we discuss the training behavior for

different pruning constraints with and without the adversar-

ial setting in more detail.

3.1. Pruning

We aim for obtaining a pruning strategy directly when

optimizing the network’s weights W during the training

process and thus save the effort of additional post-train

pruning. We use binary pruning masks Mb to derive pruned

weights as W̃=W ⊙ Mb. At each layer l ∈ {1, ..., N}
of an N -layer CNN, we append a binary pruning mask

M l
b to the network’s weights W l. All but the last layer

have an input shape Ll−1 ∈ R
Ain×Bin×Cin , where Ain,

Bin, and Cin indicate the spatial height, width, and in-

put channels, respectively. L0 represents the input image I
and LN the classification output of the CNN. The weights

W ∈ R
Kh×Kw×Cin×Co are the trainable parameters of the

individual layers, where Kh, Kw, and Co refer to the ker-

nel’s dimensions, and the number of output channels/filters,

respectively.

The binary masks for irregular weight pruning are struc-

tured as M l
b = {0, 1}Kh×Kw×Cin×Co , kernel pruning re-

quires masks as M l
b = {0, 1}1×1×Cin×Co and channel

pruning requires masks M l
b = {0, 1}1×1×Cin×1. The size

of the binary mask increases as the pruning tends to become

more irregular leading to higher compression rates. How-

ever, irregular and kernel pruning demands dedicated hard-

ware implementation [29] for load balancing and additional

memory for mask indices, resulting in sub-optimal benefits

on general-purpose platforms. The masked weights are ob-

tained using the the Hadamard product ⊙ along the pruning

dimension as W̃ l as shown in Eq. (2).

Our training scheme intends to influenceMb using cross-

entropy and hardware (HW) objectives (c.f . Section 3.2),

by updating the continuous-valued, and thus trainable,

mask M with the same shape as Mb. We use tanh, scale,

and shift operations to normalize the value range of masks

Mnorm to [0, 1] as shown in Eq. (2). We apply the round op-

eration and restrict the mask values to the binary set {0, 1}.

W̃ l =W l ⊙Mb, W̃
l ∈ R

Kh×Kw×Cin×Co

Mb = round(Mnorm)

Mnorm = 0.5 · tanh(M)+0.5

(2)

Any discrete parameter with a limited range set would in-

troduce zero gradients. We use Straight-Through Estima-

tors (STE) similar to [30] to overcome the vanishing gra-

dient effect and obtain updates for continuous masks M ,

later discretized to Mb for applying pruning decisions on

the weights.

4

3.2. Loss Formulation

We define the loss function that allows us to account for

hardware-specific compression objectives. The inference

complexity of the CNN depends on the number of non-zero

values in the binary pruning masks sum(M l
b) at every layer

l. We represent the shape of layer l after the masks are ap-

plied as lshape and hardware inference complexity as a func-

tion of lshape and M l
b given as ψl(lshape, M l

b). Increasing the

number of zeros in the prune masks leads to a lower num-

ber of computations and parameters. However, this impacts

accuracy Accnat for extreme compression rates.

The latent weights W are optimized to improve the task-

specific accuracy and adversarial robustness with respect to

the sum of the cross-entropy lossLce and regularization loss

Lreg . The trainable prune masks M are also considered in

the regularization loss to avoid too many binary masks Mb

elements biased at the early stages due to exploding mag-

nitude. We provide more details about the regularization

Lreg in supplementary material S.1. We optimize the train-

able masks M based on an auxiliary loss term LHW , which

captures hardware HW benefits. It is important to select

pruning masks which not only produce HW benefits but also

allow smooth minimization of cross-entropy loss during the

training process. Therefore, we formulate prune loss Li
prune

at step i in Eq. (3), which is an accumulation of Lce and

LHW . The HW loss LHW is the difference between the

relative complexity of neural networks at iteration i and a

target constraint ψ∗. We accumulate the complexity of all

the N layers to obtain the complexity of neural network.

Li
Prune = L

i
ce + b× Li

HW

Li
HW = max(

∑N
l=1(ψ

i
l)

∑N
l=1(ψ

0
l)
− ψ∗, 0)

(3)

We use the scaling factor b to control the convergence speed

for the prune masks M during the training process. For

extreme constraints such as 70% HW reductions, we use

higher b=50. The complexity of the neural network can be

represented using the number of parameters or MAC op-

erations. In Eq. (4), we represent the complexity by also

incorporating the binary prune masks Mb. We first calcu-

late the compression ratio µl for every layer l based on the

number of non zeros present in the weight matrix. For this

purpose, we introduce M l
base having the same dimensional-

ity as M l
b, consisting of all ones, representing the unpruned

model. We observe that the number of zeros in the binary

prune masks directly affect the complexity of layer l, which

can be represented using either parameters ψl(params) or

operations ψl(ops).

µl = ||M
l
b||/||M

l
base||

ψl(params) = Kl
w ×K

l
h × C

l
in × C

l
o × µ

l

ψl(ops) = Al
o ×B

l
o ×K

l
w ×K

l
h × C

l
in × C

l
o × µ

l

(4)

Eq. (4) can be extended to pruning regularities such as

channel/filter pruning, where inter-layer HW benefits must

be taken into consideration. For channel pruning, we cap-

ture the inter-layer benefits by incorporating µl and µl+1,

thereby reducing Cl
in and Cl

o respectively. We use an op-

timizer similar to that of adversarial training, such as Mo-

mentum/ADAM, to update the prune masks. As shown in

Eq. (5) and Eq. (6), we approximate the gradients gmce and

gmHW derived from Lce and LHW to update the contin-

uous prune mask M , incorporating STE as mentioned in

Section 3.1.

gml
ce =

∂Lce

∂M l
=
∂Lce

∂W̃
·
∂W̃

∂M l
b

·
∂M l

b

∂M l
norm

·
∂M l

norm

∂M l

STE!
=

∂Lce

∂W̃
·
∂W̃

∂M l
b

·
∂M l

norm

∂M l

(5)

As shown in Eq. (6), the gradients updating prune masks

due to LHW scales depending on the baseline complex-

ity ψl
base of the layer l. We derive ψl

base by setting µl = 1.

We discuss the influence of various hyper-parameters on the

pruning efficiency in supplementary material S.1.

gml
HW =

∂LHW

∂M l
=

∂ψl

∂M l
=

∂ψl

∂M l
b

·
∂M l

b

∂M l
norm

·
∂M l

norm

∂M l

STE!
=

∂ψl

∂M l
b

·
∂M l

norm

∂M l
=

ψl
base

||M l
base||

·
∂M l

norm

∂M l

(6)

4. Experiments

We evaluate the proposed in-train pruning technique on

CIFAR-10 [31] and ImageNet [32] datasets. For CIFAR-

10, we use 50K train and 10K validation images to train

and evaluate our method respectively. The images have

a resolution of 32 × 32 pixels. ImageNet consists of ∼
1.28M train and 50K validation images with a resolution

of 256 × 256 pixels. We use ResNet20 and ResNet56 as

baseline models for the CIFAR-10 dataset, and ResNet18

as a baseline model for the ImageNet dataset. If not other-

wise mentioned, all hyper-parameters specifying the task-

related training were adopted from ResNet’s base imple-

mentation [1]. For defensive training against adversarial

attacks, we use FastAT [12].

This section is organized as follows. In Section 4.1, we

analyze the effectiveness of incorporating trainable masks

during standard training without any adversarial training.

In Section 4.2, we demonstrate the effectiveness of in-

train pruning on robust models by comparing the ap-

proach against an RL-search based state-of-the-art pruning

scheme [5]. Finally, we compare our method with state-of-

the-art robust pruning techniques in Section 4.3.

5

4.1. In­Train Pruning

We investigate the effectiveness of in-train channel prun-

ing in Table 1 based on different constraints on the operation

(Ops) reduction metric. As shown in column 3 of Table 1,

we set the target reduction factor for operations ψ∗ from

Eq. (3) to {1.0, 0.4, 0.3, 0.2} for ResNet20 and ResNet56 on

the CIFAR-10 dataset, {1.0, 0.7, 0.5} for ResNet18 on the

ImageNet dataset. We observe -2.91 pp and -0.53 pp (per-

cent point) of accuracy degradation for operation constraint

ψ∗ = 0.4 in ResNet20 and ResNet56 respectively. We also

report the corresponding parameter reduction in column 5.

Table 1: In-train pruning for various operation constraints.

We use ResNet20 and ResNet56 on CIFAR-10 dataset and

ResNet18 on ImageNet dataset.

Model/ Acc Ops Reduction Param

Dataset [%] Target Actual Reduction

ResNet20

CIFAR-10

92.47 1.0 - 1.0

89.56 0.4 0.38 0.68

88.67 0.3 0.31 0.58

88.17 0.2 0.17 0.30

ResNet56

CIFAR-10

93.56 1.0 - 1.0

93.03 0.4 0.35 0.55

92.38 0.3 0.28 0.50

91.57 0.2 0.18 0.37

ResNet18

ImageNet

68.53 1.0 - 1.0

67.22 0.7 0.69 0.88

65.06 0.5 0.45 0.78

For an extreme target constraint ψ∗ = 0.2, we observe an

accuracy degradation of −4.3 and −1.99 pp for ResNet20

and ResNet56 respectively. The training behaviour which

incorporates joint optimization of trainable weights and

prune masks is analyzed in Fig. 2. We plot the Top1 ac-

curacy and HW loss LHW , detailed in Eq. (3), across the

training steps. The noisy behaviour in accuracy improve-

ment can be seen across the iterations, indicating the joint

optimization of the compression task (prune masks) and the

0 1 2 3 4

·10
4

0
0
.
2

0
.
4

0
.
6

0
.
8

1

Iteration

A
cc

u
ra

cy

ψ∗=0.4 Top1 Acc

ψ∗=0.3 Top1 Acc

ψ∗=0.2 Top1 Acc

·10
4

0
0
.
2

0
.
4

0
.
6

0
.
8

1

H
W

L
o

ss
(L

H
W

)

ψ∗=0.4 HW Loss

ψ∗=0.3 HW Loss

ψ∗=0.2 HW Loss

Figure 2: Comparison of in-train pruning behaviour across

several training iterations for different operation constraints

ψ∗=0.4, 0.3, 0.2.

learning task (weights). The operation constraints of ψ∗ =

0.3 and 0.2 converge slightly slower compared to the oper-

ation constraint of ψ∗ = 0.4. In Table 1, we also investigate

the consistency of these trends on more challenging datasets

such as ImageNet. We observe a minor degradation of -1.31

and -3.47 pp for operation constraints of 0.7 and 0.5 on the

ResNet18 model trained on the ImageNet dataset. We also

extend the method for the task of object detection to high-

light its scalability in supplementary material S.3.

Table 2 evaluates the proposed in-train pruning scheme

for different pruning regularities. We observe that irregular

weight pruning produces lower accuracy degradation (-1.16

pp, -0.38 pp) compared to structured channel pruning (-4.30

pp, -2.22 pp) for ResNet20 and ResNet56. Although weight

pruning shows lower accuracy degradation for extreme tar-

get reductions, it is challenging to obtain inference benefits

from such regularities on general-purpose structured execu-

tion hardware, e.g. GPUs.

Table 2: Exploring different pruning regularities for opera-

tion reduction factor ψ∗=0.2.

Model
Prune Acc Ops Reduction

Regularity [%] Target Actual

ResNet20

baseline 92.47 1.0 -

weight 91.31 0.2 0.16

kernel 89.78 0.2 0.19

channel 88.17 0.2 0.17

ResNet56

baseline 93.56 1.0 -

weight 93.18 0.2 0.19

kernel 92.25 0.2 0.21

channel 91.34 0.2 0.21

4.2. Robust Pruning

In this section, we demonstrate our proposed in-train

pruning method’s ability to achieve compressed models

which balance the trade-off between natural accuracy and

adversarial robustness.

Baseline Training As a baseline for adversarial training,

we implement FastAT [12] (see Section 3). For FastAT on

the CIFAR-10 dataset, we use random FGSM with strength

ǫ = 8/255, step size α = 10/255 to generate adversarial

perturbations during the training process. We train for 300

epochs and set the initial learning rate to 0.1 and scale it

down by a factor of 10 every 80 epochs. For evaluating ro-

bustness of the pruned models, the PGD attack is performed

with ǫ = 8/255 and α = 2/255 for 20 iterations.

AMC-based Robust Pruning For the purpose of com-

parison with post-train pruning approach, we implement

the state-of-the-art reinforcement learning-based pruning

6

scheme AMC [5] to find pruning configurations generating

a trade-off between natural accuracy and adversarial accu-

racy. We constrain the number of operations to the target

specified in Table 3 and Table 4 and allow the RL-agent to

search for 500 episodes to obtain the pruning strategy. We

adversarially fine-tune the resulting network with a cyclic

learning rate of 0.1 for 30 epochs.

Improved Robustness with In-Train Pruning We aug-

ment our pruning approach with FastAT [12]-based ad-

versarial training and start zeroing the prune masks at

EPrune, Start = 20 and freeze the masks at theEPrune, End = 240.

We use an initial learning rate of 0.1 and decrease it by a

factor of 10 at the 80th and 160th epoch. We use the same

attack strength as baseline training.

In Table 3, we make a comparison between the RL-based

post-train pruning approach and the proposed in-train prun-

ing method. Across all experiments, we observe an im-

provement in natural accuracy, while maintaining similar

adversarial robustness. For a target reduction ψ∗=0.3 on

ResNet20, we obtain an improvement of 5.91 pp in natu-

ral accuracy. For ResNet56 and ψ∗=0.3, we obtain an im-

provement of 8.65 pp in natural accuracy and with similar

adversarial robustness. Similar improvements are achieved

for the ImageNet dataset, see supplementary material S.2.

Table 3: Comparison between post-train RL-based robust

pruning and the proposed in-train robust pruning for various

operation constraints.

Model
Operations

Reduction

FastAT + RL Prune FastAT + In-train Prune

Acc PGD-Acc Acc PGD-Acc

[%] [%] [%] [%]

ResNet20

1.0 81.52 40.65 81.52 40.65

0.70 78.89 40.39 80.63 39.27

0.50 77.11 39.65 80.32 40.14

0.30 66.97 33.89 72.88 34.33

ResNet56

1.0 84.03 38.45 84.03 38.45

0.70 82.78 42.47 84.52 36.91

0.50 81.88 41.78 84.56 36.78

0.30 74.75 36.95 83.40 36.89

In Fig. 3, we plot the training behaviour to compare the

in-train pruning approach with (red) and without (blue) ad-

versarial robustness, for ψ∗ = 0.3. Compared to Fig. 2, we

sample more data points to clearly perform the compari-

son. We observe noisy improvement in natural accuracy

behaviour for the in-train robust pruning (red). The sudden

fluctuation in accuracy at 15K and 30K iterations indicates

the change in training behaviour due to the step learning rate

policy. During these iterations, we observe large changes in

the HW loss, indicating a phase of exploration in the binary

prune masksMb (0↔ 1). The changes in the pruning masks

result in noisy accuracy improvement but eventually stabi-

lize within 5K training iterations. We freeze the changes in

pruning masks at the 45K iteration as the pruning constraint

ψ∗ is satisfied (LHW = 0).

0 1 2 3 4

·10
4

0
0
.
2
0
.
4
0
.
6
0
.
8

1

Iteration

A
cc

u
ra

cy

Vanilla Pruning: Acc

Robust Pruning: Acc

·10
4

0
0
.
2
0
.
4
0
.
6
0
.
8

1

H
W

L
o

ss
(L

H
W

)

Vanilla Pruning: Loss

Robust Pruning: Loss

Figure 3: Comparison of the proposed in-train pruning

scheme for operation constraint ψ∗ = 0.3 with (red) and

without (blue) the consideration of adversarial robustness.

We also verify the robustness of our in-train pruning

scheme with stronger adversarial attacks such as Carlini-

Wagner (C&W) [28] as shown in Fig. 4. C&W is an iter-

ative attack guided by an optimizer such as Adam, which

produces strong adversarial examples by simultaneously

minimizing perturbation distance and manipulating the pre-

dictions based on a target class. Different loss functions can

be applied in C&W attacks. In our experiments, the most ef-

ficient l2-bounded loss is used for the evaluation. We run the

attack for 100 iterations and set the C&W constant c=100,

which is responsible for controlling the trade-off between

the attacked image similarity and the success rate of the tar-

get class. We do not perform a binary search on the c value

as suggested in the paper, since our focus is not on mini-

mizing adversarial distance. Instead, we use a high value

of c to ensure that the models are subjected to the strongest

attack for reasonable image perturbations. In Fig. 4, we ob-

serve that the vanilla model trained without adversarial per-

turbations breaks very early at the 10th iteration. However,

robust models withstand the attack for more iterations (≥
20) with adversarial accuracy at least greater than 20%. Our

pruned models obtain even higher adversarial accuracy than

the unpruned RobustAT network after 30 iterations. We also

observe higher adversarial accuracy starting from the 20th

iteration for our in-train pruned model with target constraint

ψ∗ = 0.3. This indicates the generalization capability of the

in-train pruning approach as the compression rate increases.

In Table 4, we analyze the proposed in-train pruning ap-

proach with different pruning regularities in the context of

adversarial robustness. Additionally, we compare our re-

sults with the post-train RL-based pruning scheme. The

RL-agent proposed in the original work of AMC [5] is only

suited for channel-wise pruning. We adapted the RL-agent

to also perform pruning for different regularities. We ob-

7

20 40 60 80 100

0
0
.
2

0
.
4

0
.
6

0
.
8

CW Attack iterations

A
cc

u
ra

cy

Vanilla

RobustAT

Intrain-0.3

Intrain-0.5

Intrain-0.7

Figure 4: Comparison of adversarial robustness for different

CNN models using C&W attack for ResNet20.

serve that irregular weight pruning gives the best trade-

off between natural and adversarial accuracy. These ob-

servations also align with the robust pruning works in lit-

erature [13, 14]. The effectiveness of the in-train prun-

ing scheme compared to the RL-based pruning scheme be-

comes more evident as the pruning becomes more struc-

tured (weight-wise → channel-wise). Compared to RL-

based weight pruning, we observe a slight degradation in

natural accuracy (-0.65 pp) for the in-train pruning scheme

on ResNet20. However, the proposed method produces 5.91

pp, 0.44 pp better natural and adversarial accuracy respec-

tively for channel pruning. The same trend also applies to

ResNet56. As channel pruning is more advantageous on

general-purpose accelerators such as GPUs, this strengthens

the motivation for the proposed in-train pruning scheme.

Table 4: Robust pruning for various pruning regularities

with target operation constraint ψ∗ = 0.3.

Model
Pruning

Regularity

FastAT + RL Prune FastAT + In-train Prune

Acc PGD-Acc Acc PGD-Acc

[%] [%] [%] [%]

ResNet20

1.0 81.52 40.65 81.52 40.65

weight 79.08 40.35 78.43 38.59

kernel 75.79 38.63 77.92 38.64

channel 66.97 33.89 72.88 34.33

ResNet56

1.0 84.03 38.45 84.03 38.45

weight 83.94 41.04 83.21 38.64

kernel 81.68 40.82 83.31 38.68

channel 74.75 36.95 83.40 36.89

4.3. Comparison with State of the Art

We compare the proposed in-train pruning approach to

the robust pruning works in literature. In Table 5, we

report the results of RobustADMM [13], Hydra [14] and

ATMC [16]. RobustADMM, Hydra and ATMC use differ-

ent baseline models, PGD evaluation parameters and adver-

sarial training schemes. RobustADMM considers an over-

parameterized ResNet as a baseline model and prunes it

for various parameter constraints. We report their channel

pruning results which achieve a model size of 0.04 × 106

(mentioned as w = 1 in [13]) and 0.17 × 106 (mentioned

as w = 2 in [13]). Differently, our approach uses the

smaller ResNet20 as a baseline model and achieves 6.21 pp

and 6.31 pp better natural accuracy while maintaining sim-

ilar adversarial robustness for model sizes with 0.04 × 106

and 0.16×106, respectively. The results from our approach

dominate in terms of natural as well as adversarial accuracy

for the same pruning constraints due to dynamic sparsity

ratios across layers and heuristic-free pruning.

Compared to the work in Hydra [14], we achieve a sig-

nificant improvement for channel pruning configurations.

Different from RobustADMM, Hydra performs a PGD at-

tack for 50 iterations to measure adversarial robustness.

Compared to a 50% constrained channel-pruned VGG-16

model, we achieve 69.08% model reduction and 29.64 pp

improvement in natural accuracy, while maintaining a simi-

lar level of adversarial robustness. The work in ATMC [16]

evaluates robustness of compressed ResNet-34 with the

PGD attack for 7 iterations. For the comparison, we use

the weight pruned configuration of ATMC-32bit model with

same attack hyper-parameters and obtain 6.63%, 14.43%

higher robustness for ǫ = 4/255, 8/255 respectively with

similar model size. Different from [13, 14, 16], our pruning

method does not require a pre-trained model.

Table 5: Comparing the in-train pruning scheme with SoTA

on CIFAR-10 dataset.

Work
Baseline

Model

Pre-trained

Model

Pruning

Regularity

PGD Model

Size
Acc

[%]

Adv. Acc

[%]
attack.

ǫ, α, iter ×106

FastAT

Wong et al. [12]
ResNet20 ✗ no prune

8, 2, 10 0.27 82.06 40.97

8, 2, 50 0.27 82.06 40.52

RobustADMM

Ye et al. [13]
ResNet18 ✓

channel 8, 2, 10 0.04 64.52 38.01

channel 8, 2, 10 0.17 73.36 43.17

In-train Prune

(Ours)
ResNet20 ✗

channel 8, 2, 10 0.04 70.73 39.31

channel 8, 2, 10 0.16 79.67 43.22

ATMC

Gui et al. [16]
ResNet34 ✓

weight 4, 0.7, 7 0.11 84.00 62.00

weight 8, 1.4 , 7 0.11 84.00 39.00

In-train Prune

(Ours)
ResNet56 ✗

weight 4, 0.7, 7 0.13 82.68 68.63

weight 8, 1.4, 7 0.13 82.68 53.43

Hydra

Sehwag et al. [14]
VGG16 ✓

weight 8, 2, 50 0.76 78.90 48.70

weight 8, 2, 50 0.15 73.20 41.70

channel 8, 2, 50 7.65 52.90 38.00

In-train Prune

(Ours)
VGG16 ✗

channel 8, 2, 50 5.51 82.54 38.36

channel 8, 2, 50 0.76 73.40 30.20

5. Conclusion

In this work, we propose an in-train pruning technique,

which eliminates the need for pre-trained models, prun-

ing heuristics and computationally expensive model explo-

ration time, traditionally required in literature. We highlight

the effectiveness of our approach by comparing it against

RL-based robust pruning method, producing improvements

in natural accuracy and maintaining similar robustness at

higher compression ratios. We also compare our approach

with state-of-the-art robust pruning schemes. Our approach

yields higher compression rates on channel pruning regu-

larity, producing significant improvements in accuracy and

adversarial robustness.

8

References

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016.

[2] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,

“Encoder-decoder with atrous separable convolution for se-

mantic image segmentation,” in European Conference on

Computer Vision (ECCV), 2018.

[3] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,”

in arXiv preprint arXiv:1904.07850, 2019.

[4] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerat-

ing very deep neural networks,” in International Conference

on Computer Vision (ICCV), Oct 2017.

[5] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC:

AutoML for model compression and acceleration on mo-

bile devices,” in European Conference on Computer Vision

(ECCV), 2018.

[6] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-

pressing deep neural networks with pruning, trained quan-

tization and huffman coding,” International Conference on

Learning Representations (ICLR), 2016.

[7] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srini-

vasan, and K. Gopalakrishnan, “PACT: parameterized clip-

ping activation for quantized neural networks,” CoRR,

vol. abs/1805.06085, 2018.

[8] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary con-

volutional neural network,” in NIPS, 2017.

[9] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowl-

edge in a neural network,” in NIPS Deep Learning and Rep-

resentation Learning Workshop, 2015.

[10] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. Goodfellow, and R. Fergus, “Intriguing properties of neu-

ral networks,” in International Conference on Learning Rep-

resentations (ICLR), 2014.

[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and

A. Vladu, “Towards Deep Learning Models Resistant to Ad-

versarial Attacks,” in International Conference on Learning

Representations (ICLR), 2018.

[12] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free:

Revisiting adversarial training,” in International Conference

on Learning Representations (ICLR), 2020.

[13] S. Ye, K. Xu, S. Liu, H. Cheng, J.-H. Lambrechts, H. Zhang,

A. Zhou, K. Ma, Y. Wang, and X. Lin, “Adversarial robust-

ness vs. model compression, or both?,” in International Con-

ference on Computer Vision (ICCV), October 2019.

[14] V. Sehwag, S. Wang, P. Mittal, and S. Jana, “Hydra: Pruning

adversarially robust neural networks,” Advances in Neural

Information Processing Systems, vol. 33, 2020.

[15] M. R. Vemparala, A. Frickenstein, N. Fasfous, L. Fricken-

stein, Q. Zhao, S. Kuhn, D. Ehrhardt, Y. Wu, C. Unger,

N. S. Nagaraja, and W. Stechele, “BreakingBED – Breaking

Binary and Efficient Deep Neural Networks by Adversar-

ial Attacks,” in Intelligent Systems Conference (IntelliSys),

September 2021.

[16] S. Gui, H. Wang, H. Yang, C. Yu, Z. Wang, and J. Liu,

“Model compression with adversarial robustness: A unified

optimization framework,” in Proceedings of the 33rd Con-

ference on Neural Information Processing Systems, 2019.

[17] A. Frickenstein, M. R. Vemparala, C. Unger, F. Ayar, and

W. Stechele, “DSC: Dense-sparse convolution for vectorized

inference of convolutional neural networks,” Computer Vi-

sion and Pattern Recognition Workshops (CVPRW), 2019.

[18] Q. Huang, K. Zhou, S. You, and U. Neumann, “Learning

to prune filters in convolutional neural networks,” in 2018

IEEE Winter Conference on Applications of Computer Vision

(WACV), pp. 709–718, 2018.

[19] A. Frickenstein, M.-R. Vemparala, N. Fasfous, L. Hauen-

schild, N.-S. Nagaraja, C. Unger, and W. Stechele, “ALF:

Autoencoder-based low-rank filter-sharing for efficient con-

volutional neural networks,” Design Automation Conference

(DAC), 2020.

[20] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and

Y. Wang, “A systematic dnn weight pruning framework us-

ing alternating direction method of multipliers,” in European

Conference on Computer Vision (ECCV), 2018.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,

“Distributed optimization and statistical learning via the al-

ternating direction method of multipliers,” Foundations and

Trendsin Machine Learning, 2011.

[22] T. Zhang, K. Zhang, S. Ye, J. Li, J. Tang, W. Wen, X. Lin,

M. Fardad, and Y. Wang, “ADAM-ADMM: A unified, sys-

tematic framework of structured weight pruning for dnns,”

CoRR, vol. abs/1807.11091, 2018.

[23] D. Mocanu, E. Mocanu, P. Stone, P. Nguyen, M. Gibescu,

and A. Liotta, “Scalable training of artificial neural networks

with adaptive sparse connectivity inspired by network sci-

ence,” Nature Communications, vol. 9, 2018.

[24] T. Dettmers and L. Zettlemoyer, “Sparse networks from

scratch: Faster training without losing performance,” ArXiv,

vol. abs/1907.04840, 2019.

[25] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rig-

ging the lottery: Making all tickets winners,” in Proceedings

of Machine Learning and Systems, 2020.

[26] A. Galloway, G. W. Taylor, and M. Moussa, “Attacking Bi-

narized Neural Networks,” in International Conference on

Learning Representations (ICLR), 2018.

9

[27] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and

harnessing adversarial examples,” in International Confer-

ence on Learning Representations (ICLR), 2015.

[28] N. Carlini and D. A. Wagner, “Towards Evaluating the Ro-

bustness of Neural Networks,” in IEEE Symposium on Secu-

rity and Privacy (SP), 2017.

[29] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,

and W. J. Dally, “Eie: Efficient inference engine on com-

pressed deep neural network,” in International Symposium

on Computer Architecture (ISCA), 2016.

[30] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio, “Binarized neural networks,” in Proceedings of

the 30th International Conference on Neural Information

Processing Systems, 2016.

[31] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (canadian

institute for advanced research),”

[32] J. Deng, W. Dong, R. Socher, et al., “ImageNet: A Large-

Scale Hierarchical Image Database,” in Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2009.

10

