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1. Training Details
We present details on the proposed training regime in this

section. The proposed algorithm is presented in Algorithm-
1 of the main paper.

We use coarse hyperparameter tuning (in exponents of
10) to fix the coefficients weighting each loss term in Eq.1
and Eq.2 of the main paper. We set the weights of the Cross-
Entropy loss (`CE) and the KL divergence between latent
space encodings of clean and adversarial samples (KL2) to
1. We assign weight of 1 to the KL divergence between
the softmax predictions of a clean image with and without
sampling (KL4) in L13 of Alg.1, so as to minimize the re-
jection of benign samples. Further, we set the weight of the
KL divergence term that enforces encoder representations
to obey the standard Gaussian distribution (KL1) to 0.01.
Lastly, we utilise a weight of 0.1 for the loss between the
softmax predictions of adversarial images with and without
latent space sampling (KL3). We use the same set of hy-
perparameters across all datasets.

We train the network for 120 epochs, using a cyclic
learning rate schedule. The maximum learning rate is set to
0.1. We use Stochastic Gradient Descent (SGD) optimizer
without momentum, and use a weight decay of 5e-4.

We additionally perform early stopping using 7-step
PGD adversarial samples on the designated validation set
of each dataset, as explained in Section-3. We select the
model which achieves the highest accuracy on adversarial
samples in the No Sampling case (Accadv,NS). We use early
stopping for identifying the best models while training the
baseline models as well.

2. Rejection scheme
In this section, we discuss details on the rejection scheme

described in Section-4.3 of the main paper. During test
time, for each input image, the classifier predicts N out-
puts after sampling N times from the Gaussian distribu-
tion at the output of the encoder. We define the output of
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the Smoothed Classifier to be the most frequently predicted
class among the N samples. Further, the sample is rejected
if the frequency of the predicted class is below a prede-
fined threshold f . We select the threshold for rejection such
that not more than 10% of the samples are correctly classi-
fied and rejected [12]. Based on this criteria, the threshold
for the proposed method is set to 32 for CIFAR-10 and 23
for CIFAR-100. Therefore, for CIFAR-10 dataset, an input
sample is accepted only if the classifier predicts the same
output class at least 33 times out of the 100 outputs.

Output of the ideal Smoothed Classifier SC, is an ex-
pectation of the classifier outputs C(x, ε) over the random
variable ε, which is sampled from the Standard normal dis-
tribution.

SC(x) = Eε∼N (0,I) C(x, ε) (1)

The above output SC(x) is a deterministic value for ev-
ery image x. However, in the absence of an analytical ex-
pression for this expectation, we consider sample statistics
over all N outputs obtained after sampling. This sample
mean is not a deterministic value, and can vary during test
time. A simple trick to make the outputs during test time
deterministic is to pre-sample N vectors from N (0, I), and
use the same set of vectors during test time. Another op-
tion is to increase the value of N during test time, which
makes the predictions more stable to repeated evaluations.
The plot of Accadv,10% vs. N is shown in Fig.1(a). It can
be seen that as the value ofN increases, the output becomes
more stable. For all experiments in this paper, we consider
N = 100.

The metrics reported for any finite value of N hold true
with a fixed probability. In order to find this probabil-
ity, we use the method of hypothesis testing as described
in the work by Cohen et al. [5, 8]. For each test sam-
ple, we find the p-value of the two-sided hypothesis test,
nA ∼ Binomial(nA, nB , p), where nA and nB represent
the number of times the top-2 classes are predicted. We de-
termine the value α, which serves as an upper bound to this
p-value for all test samples. Using this method, we find that
forN = 100, the probability of predicting an incorrect class
for a sample which is claimed to be correct is 0.0045. This
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Figure 1. Plots on CIFAR-10 dataset (a) Accadv,10% is reported across variation in the number of times the latent vector is sampled during
test time (N ). The accuracy becomes stable with increase in N . N is varied from 101 to 105. (b) Plot of Accadv,10% against variation in
the percentage of clean samples that are correctly classified and rejected. Proposed method achieves improved accuracy compared to the
strongest baseline, AWP [14]. (c) Accadv,10% across variation in threshold value used for rejection. Threshold value of 32 is selected to
limit the percentage rejection of samples which are clean and correctly classified to 10%.

Table 1. CIFAR-10: Performance (%) of models under an ensem-
ble of 5 attacks : PGD, APGD-CE, APGD-DLR, FAB, SQUARE.
FC denotes the percentage of samples which are always correctly
classified and accepted for all attacks. FW denotes the percentage
of samples which are accepted and incorrectly classified by at least
one of the attacks. MPR denotes the max % rejected samples.

Accnat,NS ↑ Accadv,10% ↑ FC↑ FW↓ MPR

RS standard training [5] 86.32 16.17 14.47 75.00 58.16
PNI-W (Noise) [7] 85.48 34.69 25.31 47.67 64.79
Trades+RS (Noise) [3] 75.14 49.28 41.48 42.69 44.52
PGD (Noise) [10] 84.37 51.63 41.88 39.23 45.32
TRADES (Noise) [15] 80.15 50.83 42.24 40.85 40.92
PGD (Conf) [10] 83.80 59.40 44.03 30.09 41.20
Trades (Conf) [15] 81.77 62.10 44.15 26.94 41.19
AWP (Conf) [14] 80.58 63.38 44.06 25.45 40.55
CCAT [12] 89.92 0.00 0.00 1.85 100.00
FLSS (Ours) 80.22 72.40 51.10 19.46 37.69

value corresponds to the criterion of rejecting at most 10%
samples which are clean and correctly classified. We set
the value of N to be 100 since the probability of incorrect
prediction is sufficiently low, however this can be further
reduced by increasing the value of N .

As shown in Fig.1(c), the proposed Smoothed Classifier
can achieve a wide range of accuracies based on the thresh-
old selected, at the cost of an increase in the fraction of
samples which are clean, correctly classified and rejected.
The plot in Fig.1(b) shows that for any given fraction of
clean samples which are correctly predicted and rejected,
the proposed method achieves higher adversarial accuracy
on the accepted samples (Accadv,10%), when compared to
the AWP [14] baseline.

3. Details on Datasets and Model Architecture
To evaluate the proposed approach, we use the bench-

mark datasets, CIFAR-10 and CIFAR-100. CIFAR-10 [9]
is a ten class dataset consisting of RGB images of dimen-
sion 32 × 32, and is commonly used to benchmark results

on adversarial robustness of deep networks. The original
training set consists of 50, 000 images, which we split into
49, 000 images to comprise the training set, and a hold-out
set of 1, 000 images to serve as the validation set. Using
this validation set, we perform early-stopping to identify the
best model parameters for the proposed approach as well
the baseline defense methods. Further, to demonstrate the
scalability of the proposed approach to datasets with higher
number of classes, we present results on CIFAR-100, which
is a 100-class dataset with RGB images of dimension 32 ×
32. We use a class-balanced validation set of size 2500 for
CIFAR-100.

We use ResNet-18 architecture to report the performance
of the proposed approach as well as other existing defenses
such as AWP [14], TRADES [15] and PGD [10]. How-
ever, since we use the pre-trained model for CCAT [12],
the architecture is ResNet-20, as used by the authors. The
CNN backbone of ResNet-18 forms the encoder network of
the proposed approach. We require an additional layer with
1 × 1 convolutions to compute the 512 dimensional mean
and variance vectors in the proposed approach when com-
pared to the baselines. Therefore, the architecture of the
proposed approach uses 5% additional parameters when
compared to the baselines. The MLP in Fig.2 of the main
paper consists of 3 layers. However, to ensure that the ar-
chitecture of the proposed method is close to the ResNet-18
architecture used for baselines, we use 1 layer in the MLP
head. We obtain slight gains (close to 0.5%) in robust accu-
racy by including an additional layer in the MLP head.

4. Experimental results

We present more details on evaluation of the proposed
method, and comparison of results against baselines in this
section. We use Nvidia DGX workstation with V100 GPUs
for our training and evaluation.



Table 2. Ablations on CIFAR-10: Performance (%) of models under an ensemble of 6 attacks : PGD, APGD-CE, APGD-DLR [6], PGD-
CW [4], GAMA-PGD and GAMA-MT [11]. FC denotes the percentage of samples which are always correctly classified and accepted for
all attacks. FW denotes the percentage of samples which are accepted and incorrectly classified by at least one of the attacks. MPR denotes
the max % rejected samples.

Description Accnat,NS ↑ Accnat,0% ↑ Accnat,10% ↑ Accadv,NS ↑ Accadv,0% ↑ Accadv,10% ↑ FC ↑ FW ↓ MPR

P Our Proposed Approach 80.51 77.68 89.63 50.64 51.00 56.16 43.16 33.69 47.42
S1 1-step training (Skip Eq.2 of main paper) 72.16 65.81 86.31 53.16 48.10 58.19 37.47 26.92 53.30
S2 1-step training (Combine Eq.1, 2 of main paper) 80.76 78.31 89.25 50.51 49.45 54.22 42.35 35.75 46.97

A1 Set coefficient of KL1 to 0 80.08 77.42 89.41 53.49 49.17 54.84 41.66 34.30 47.86
A2 Set coefficient of KL2 to 0 84.31 84.07 91.88 40.60 41.31 41.92 36.81 50.98 30.05
A3 Set coefficient of KL3 to 0 79.12 77.71 87.95 53.41 48.91 52.42 42.64 38.70 46.08
A4 Set coefficient of KL4 to 0 81.05 77.99 88.62 50.92 50.93 53.85 44.81 38.40 44.02
A5 Increase coefficient of KL1 from 0.01 to 0.1 81.33 74.51 89.97 50.11 50.56 55.25 41.53 33.62 47.06
A6 Increase coefficient of KL3 from 0.1 to 1 80.34 76.78 89.02 50.70 51.16 55.04 43.95 35.90 45.43
A7 Replace KL2 with 0.1 ·KL(adv||N (0, 1)) 85.01 84.09 92.90 43.73 44.01 45.64 39.42 46.94 49.58

4.1. Ablation Experiments

We present results on various ablation experiments in
Table-2, to highlight the importance of different compo-
nents of the proposed algorithm. In S1, we skip training on
the second step (Eq.2 of the main paper), which is impor-
tant for improving the accuracy on clean samples. While
this results in a 2% boost in adversarial accuracy after re-
jection (Accadv,10%), the clean accuracy drops with respect
to the proposed approach (P). In S2, we train on a combina-
tion of the losses in Eq.1 and 2 of the main paper. While this
saves the computation time for one additional back propa-
gation, the adversarial accuracy drops. It is possible that
careful tuning of hyperparameters can retrieve the best ac-
curacy using the combined loss.

We further set each of the KL divergence terms to 0, one
at a time, in A1-A4. While all these experiments result in
sub-optimal results, setting KL2 to 0 causes a very signif-
icant drop in accuracy on adversarial samples, since it di-
rectly relates to the robustness objective. We also try to re-
place KL2 with 0.1 ·KL

(
E(x̃)||N (0, I)), which also leads

to sub-optimal robustness. As seen in A6, increasing the
coefficient of KL1 results in a higher clean accuracy, at the
cost of a drop in accuracy of adversarial samples. Increasing
KL3 from 0.1 to 1 (A6) also leads to a drop in robustness.

4.2. Combining FLSS with CCAT

We present the performance of the state-of-the-art Ad-
versarial Detection method CCAT [12] against random per-
turbations sampled from a Bernoulli distribution of varying
magnitudes (denoted by δ) in Table-3. Since the goal of
Adversarial Detection methods is to be able to detect im-
ages which do not belong to the original distribution, they
are seen to be overly sensitive to even perturbations of small
magnitude. We note that even at δ = 1/255, the network
rejects 78.6% of the images at a rejection threshold of 1%.
The accuracy of a normally trained ResNet-18 network is
indeed very high (92.4%) against images corrupted with
such low magnitude (δ = 1/255) random noise sampled

Table 3. Performance (%) of CCAT [12] against random
Bernoulli noise perturbations of varying magnitude (denoted by δ).
The rejection is done such that not more than 1% of the clean sam-
ples are correctly classified and rejected. FC denotes the percent-
age of samples which are always correctly classified and accepted
for all attacks. FW denotes the percentage of samples which are
accepted and incorrectly classified by at least one of the attacks. R
denotes the % rejected samples. CCAT rejects a high fraction of
samples even at low perturbation magnitudes.

Noise (δ) Acc0% ↑ Acc1% ↑ FC↑ FW ↓ R

1/255 75.82 97.99 20.97 0.43 78.60
2/255 40.04 97.43 1.14 0.03 98.83
3/255 26.03 90.90 0.10 0.01 99.89
4/255 21.06 66.66 0.02 0.01 99.97
5/255 17.75 0.00 0.00 0.01 99.99
6/255 16.21 - 0.00 0.00 100.00
7/255 16.03 - 0.00 0.00 100.00
8/255 15.96 - 0.00 0.00 100.00

from a Bernoulli distribution. In order to address this sen-
sitivity, we propose to combine FLSS with CCAT such that
every image that is rejected by CCAT is re-evaluated for
acceptance by FLSS. This reduces the rejection to 25.4%,
while maintaining a high accuracy of 89.49% after rejec-
tion. For the combined model we consider a threshold
corresponding to 1% rejection of correctly classified clean
samples for CCAT, and 10% for FLSS, which applies to the
samples rejected by CCAT. Therefore the effective criteria
for the combined model is very close to 1%.

We further evaluate the performance of CCAT, FLSS
and a combination of both approaches against an enhanced
Maximum Margin attack proposed by Stutz et al. [12] in
Fig.2. As noted by the authors, this attack causes a higher
rate of misclassification on accepted samples (FW) for
CCAT when compared to other attacks. As seen in Fig.2(a),
with a threshold corresponding to 1% rejection of clean
samples that are correctly classified, FW is 36.5%. This re-
duces to 28.56% when the rejection threshold is increased to
10%. For the same threshold of 10%, the proposed method
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Figure 2. Performance against an enhanced Maximum-Margin attack [12] on CIFAR-10 dataset against CCAT and FLSS (Ours) models
(a) Plot of FW on CCAT against attack magnitude (δ) at different FPR values (b) Comparison of FW between CCAT, FLSS (Ours) and
CCAT + FLSS (Ours) (c) Maximum Percentage Rejection (%) for the same models (d) Comparison of Robust accuracy with and without
rejection

has a worst case FW of 25.73% at δ = 8/255 as shown
in Fig.1(b). This is achieved at a significantly lower Max-
imum Percentage Rejection (MPR) as shown in Fig.2(c).
While FW increases to 30.47% when combined with FLSS,
this is again achieved at a very low MPR. We present the
Robust Accuracy after rejection (Accadv,10%) in Fig.2(d).
Since the CCAT model is not adversarially trained, the ac-
curacy is very low. However, when combined with FLSS,
there is a significant boost in accuracy.

4.3. Evaluation against Black-Box attacks

We evaluate the proposed method against transfer based
black-box attacks on CIFAR-10 and CIFAR-100 in Tables-
5 and 6 respectively. Here, we consider FGSM and PGD
7-step transfer-based attacks, as well as the query-based
Square attack [1]. For the transfer attacks, the source model
considered is a normally trained model of the same archi-
tecture as the target network. We note that FGSM black-
box attack is stronger than PGD 7-step attack, while the
Square attack is the strongest as expected, since it performs
zeroth-order optimization on the model. We also observe
that the proposed method performs significantly better than
AWP on the strongest attack (Square), for both 0% as well
as 10% rejection rates. We note that black-box attacks are
significantly weaker than the white-box attacks reported in
the main paper. This shows the absence of gradient masking
in the proposed method.

4.4. Evaluation using Random Restarts

For reliable evaluation of the proposed defense, we
present results against multiple random restarts and multi-
ple steps of the PGD attack on CIFAR-10 and CIFAR-100
datasets in Tables-7 and 8. The purpose of multiple restarts
is to find the worst adversary in the δ-ball around each im-
age. It is to be noted that a naive implementation of a series
of attacks on a single image could lead to an inadvertent
drop in accuracy due to the stochasticity of predictions. In

Table 4. EOT: Accuracy (%) of models against Expectation over
Transformation (EOT) attack [2] on CIFAR-10 and CIFAR-100
datasets. The base attack considered is PGD-100. EOT-k repre-
sents the use of k computations to approximate the expected value
of the gradient. We report results for k = 10, 50 and 100. The
accuracy of the proposed approach is stable to EOT attacks.

CIFAR-10 CIFAR-100
Accadv,0% Accadv,10% Accadv,0% Accadv,10%

Standard Attack 54.00 65.65 29.16 47.83
EOT - 10 54.40 66.61 30.16 53.96
EOT - 50 54.60 66.82 30.00 53.95
EOT - 100 54.60 67.12 30.08 54.01

Table 5. CIFAR-10: Accuracy (%) of models against FGSM,
PGD-7 and Square Black-Box attacks. Attack source for FGSM
and PGD-7 is a normally trained model of the same architecture.

Accnat,0% ↑ Accnat,10% ↑ Accadv,0% ↑ Accadv,10% ↑
AWP - FGSM 80.58 89.14 78.01 87.23
Ours - FGSM 77.68 89.63 75.98 88.96
AWP - PGD 7 80.58 89.14 78.86 88.02
Ours - PGD 7 77.68 89.63 76.32 89.12
AWP - Square 80.58 89.14 55.52 78.69
Ours - Square 77.68 89.63 70.40 85.16

Table 6. CIFAR-100: Accuracy (%) of models against FGSM,
PGD-7 and Square Black-Box attacks. Attack source for FGSM
and PGD-7 is a normally trained model of the same architecture.

Accnat,0% ↑ Accnat,10% ↑ Accadv,0% ↑ Accadv,10% ↑
AWP - FGSM 58.21 74.31 56.52 73.01
Ours - FGSM 47.50 74.35 46.03 73.21
AWP - PGD 7 58.21 74.31 56.78 73.56
Ours - PGD 7 47.50 74.35 46.15 73.62
AWP - Square 58.21 74.31 30.96 53.27
Ours - Square 47.50 74.35 40.35 70.75

fact, even if a single clean image is repeatedly evaluated (n
times) on the proposed classifier, it is likely to be rejected
at least once as n → ∞. We capture the same by reporting
the probability of correct predictions using hypothesis test-



Table 7. CIFAR-10: Accuracy (%) of models under attacks with
varying number of steps and restarts. Accuracy with no rejection
and 10% rejection is reported for each attack.

Acc0% ↑ Acc10% ↑ Acc0% ↑ Acc10% ↑ Acc0% ↑ Acc10% ↑
No. of steps 100 100 1000 1000 100 100
No. of restarts 1 1 1 1 10 10

AWP [14] 53.92 66.36 53.87 66.30 53.92 66.30
FLSS (Ours) 54.61 67.89 54.55 67.88 54.57 67.72

Table 8. CIFAR-100: Accuracy (%) of models under attacks with
varying number of steps and restarts. Accuracy with no rejection
and 10% rejection is reported for each attack.

Acc0% ↑ Acc10% ↑ Acc0% ↑ Acc10% ↑ Acc0% ↑ Acc10% ↑
No. of steps 100 100 1000 1000 100 100
No. of restarts 1 1 1 1 10 10

AWP [14] 31.28 45.66 31.24 45.86 31.11 45.51
FLSS (Ours) 29.16 48.00 29.08 47.88 29.01 47.62

Table 9. Adaptive Attacks on CIFAR-10: Performance (%) of the
proposed model against various adaptive attacks. MPR denotes the
maximum percentage rejected samples.

Accadv,0% ↑ Accadv,10% ↑ FC ↑ FW ↓ MPR

A1: FA (KL, targ) 58.50 69.71 47.20 20.50 41.90
A2: FA (MSE, targ) 59.20 71.57 48.60 19.30 43.60
A3: FA (KL, untarg) 62.70 74.61 50.60 17.20 39.90
A4: FA (MSE, untarg) 62.90 74.88 49.50 16.60 41.00
A5: FA (MSE + min var, targ) 58.60 70.57 47.50 19.80 43.20
A6: Diverse CE (sample) 70.20 84.27 55.20 10.30 40.30

RA1: Max entropy 66.80 84.19 45.80 8.60 50.80
RA2: Max entropy + Min CE 77.60 88.38 62.40 8.20 33.30
RA3: Output diversify (all classes) 73.60 86.12 59.60 9.60 34.60
RA4: Maximize variance 73.80 85.67 60.40 10.10 31.60
Ensemble of 6 attacks 50.40 55.39 41.10 33.10 49.50
PGD 53.30 67.40 42.40 20.50 43.60

ing in Section-2. However, since the goal in this section is
to merely find an adversary in the δ-ball of each image, we
consider a fixed set of noise vectors sampled from N (0, I)
for each attack in Tables-7 and 8. The same is considered
for all other evaluations in the paper which use a series of
attacks on a single image.

We observe from the first two partitions of Tables-7 and
8 that there is only a marginal drop in robust accuracy be-
tween the PGD-100 and PGD-1000 step attacks. This indi-
cates that the robust accuracy saturates and does not deteri-
orate further as the number of steps used in the PGD attack
is increased. Further, from the first and third partitions, we
observe that the robust accuracy is preserved even with mul-
tiple random restarts of the PGD attack, thereby indicating
the absence of the gradient masking effect.

4.5. Evaluation against Adaptive attacks

We evaluate our proposed model against various adap-
tive adversarial attacks, which are constructed specifically
for the defense at hand, as recommended by Tramer et al.
[13]. The results for CIFAR-10 are reported in Table-9. We
use a 1000-sample balanced subset for reporting our results.

We broadly consider two kinds of attacks. The first set
of attacks, A1 to A6 are implemented with the objective of
fooling the model, whereas the second set of attacks, RA1 to
RA4 are crafted to encourage the model to reject the image.
For the proposed model, we claim improved adversarial ac-
curacy on accepted samples (Accadv,10%), while maintain-
ing a reasonable limit on the maximum percentage rejection
(MPR). Therefore performance against both types of attacks
needs to be considered. In most of the attacks (unless spec-
ified), the image is sampled once during the forward propa-
gation for attack generation.

Since the proposed training method relies on the prop-
erties of the feature space of an image, we consider a wide
range of feature level attacks (FA) at the output of the en-
coder, to generate an adaptive adversary. In A1 and A2, we
craft an adversary that closely resembles a different image
from a target class in the feature space. A1 crafts an adver-
sary to minimize the KL divergence between the encoder
outputs of the two images, whereas A2 crafts an adversary
to minimize the MSE between the predicted mean vectors.
For A1 and A2, we consider a random image from each of
the 10 classes, and report the worst case accuracy across all
attacks. We find that A1 is the strongest among all the adap-
tive attacks considered, yielding an accuracy of 69.71% on
accepted adversarial samples for CIFAR-10 dataset. A3 and
A4 are untargeted versions of the attacks A1 and A2 respec-
tively. These attacks generate an adversary to maximize the
KL divergence and MSE with respect to the corresponding
clean images in the latent space.

A5 optimizes an objective which is similar to A2, how-
ever, it also attempts to find an adversary with minimum
variance at the output of the encoder. Having a low vari-
ance enforces the outputs of all random samples at test time
to be similar, thereby encouraging the adversary to be ac-
cepted even if it is incorrectly classified. In A6, each of the
100 outputs of the test image are encouraged to be predicted
as a fixed random target class, by minimizing cross-entropy
loss of each of the softmax vectors with respect to this tar-
get. The overall loss which is optimized is the sum of all
100 cross-entropy losses.

The next set of adaptive attacks consider the objective
of increasing MPR (Maximum Percentage Rejection). RA1
generates an adversary that maximizes entropy of the output
probability vector. This would possibly diversify the pre-
diction of the image when sampled multiple times, thereby
resulting in rejection of the image. In RA2, we consider
the same objective of maximizing entropy, but additionally
enforce that the image is correctly predicted, by minimizing
cross-entropy of the image with respect to the true class. We
find that RA1 is the strongest attack, leading to 50.8% re-
jection. In RA3, each of the 100 sampled outputs of the test
image are encouraged to be predicted as a different random
class. This is done by minimizing cross-entropy loss of each
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Figure 3. Accuracy and loss on adversaries in a no-sample case (a) Accuracy (Accadv,NS) against PGD-7 step attack on CIFAR-10 dataset.
(b) Loss on FGSM adversaries for CIFAR-10 dataset. (c) Accuracy (Accadv,NS) against PGD-7 step attack on CIFAR-100 dataset. (d)
Loss on FGSM adversaries for CIFAR-100 dataset. We note that Accadv,NS goes to 0 for higher perturbation magnitudes, and loss on
FGSM samples increases monotonically with δ, indicating the absence of gradient masking.

of the softmax vectors with respect to a different random
target, and finding the gradient of sum of all losses. This
attack is marginally weaker than RA1 and RA2, possibly
because of inconsistency in the loss, resulting in a weak gra-
dient direction. In RA4, an adversary is generated by max-
imizing variance at the output of the encoder. Higher vari-
ance can possibly lead to inconsistent predictions, thereby
leading to higher rejection rate. However, we find this to be
weaker than the other attacks.

Overall, we find that the ensemble of 6 attacks consid-
ered in Table-1 of the main paper are significantly stronger
than attacks which can possibly exploit the specific nature
of the defense. The attack RA-1 however is able to increase
the Rejection rate higher than the ensemble of attacks con-
sidered for the main evaluations in the paper. We there-
fore consider the RA-1 attack on the CIFAR-100 dataset as
well. This increases the MPR on CIFAR-100 from 65.61%
to 72.28%, while maintaining a significantly high accuracy
on adversarial samples before and after rejection.

4.6. Sanity Checks to ensure absence of Gradient
Masking

The plots in Fig.3 show that for both CIFAR-10 and
CIFAR-100, accuracy against PGD 7-step attack goes to 0
as the magnitude of perturbation (δ) increases. Also, loss
on FGSM adversaries for small perturbation magnitudes in-
creases monotonically. Both of these trends indicate the ab-
sence of gradient masking in the proposed method [2]. We
consider the No Sampling case here, since this is primarily
a check to verify the efficacy of the defense, and hence the
rejection scheme need not be considered.
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