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Abstract

Architectures based on siamese networks with triplet loss

have shown outstanding performance on the image-based

similarity search problem. This approach attempts to dis-

criminate between positive (relevant) and negative (irrel-

evant) items. However, it undergoes a critical weakness.

Given a query, it cannot discriminate weakly relevant items,

for instance, items of the same type but different color or

texture as the given query, which could be a serious limita-

tion for many real-world search applications. Therefore,

in this work, we present a quadruplet-based architecture

that overcomes the aforementioned weakness. Moreover,

we present an instance of this quadruplet network, which

we call Sketch-QNet, to deal with the color sketch-based

image retrieval (CSBIR) problem, achieving new state-of-

the-art results.

1. Introduction

Sketch-based image retrieval (SBIR) is a growing field

in computer vision that consists of retrieving a collection

of photos resembling a sketched query. Aiming to make

the querying process as easy as possible, the input query is

formulated as a simple hand-drawing, composed uniquely

of strokes as showed in Fig. 1. In this way, people just need

to draw what they are looking for or what they are thinking

of.

Figure 1. Examples of simple sketches

An SBIR system brings tremendous advantages in dif-

ferent searching contexts. For instance, in e-commerce, the

search process is a critical component since it is the first

contact with a potential buyer. Thus, Thus, the success of

e-commerce will depend on the success of its search engine.

In a world where customer engagement seems to be a key

concept, SBIR plays an important role, not only in terms

of effectiveness but also in terms of customer experience.

Moreover, the widespread use of mobile devices fosters this

kind of querying modality, since touch-screen interfaces al-

low people to draw easily and in an entertaining way.

During the last decade, we have seen a resurgence in

the interest in SBIR. Works based on low-level features

[12, 6, 9] and mid-level representations [13] marked the

beginning of this resurgence period. However, the explo-

sion of deep learning-based approaches also brings signif-

icant improvements to SBIR models [19, 15]. Further-

more, some researchers were also focused on optimizing

the deep visual representations through deep hashing-based

approaches [10]. After all, the architectures based on

siamese backbones with triplet loss trained incrementally

showed the best performance on different SBIR datasets

[2]. More recently, a sketch representation generated from

a transformer-based model was proposed by Ribeiro et al.

[11] with competitive results.

Although sketch-based retrieval has shown to be a pow-

erful tool for searching environments like e-commerce, it

also has some limitations related to its expressiveness ca-

pacity. The input sketch is composed of strokes that rep-

resent the shape of the product that the user is looking for,

but it lacks relevant attributes in visual perception like color

or textures, which are also relevant in applications like e-

commerce search.

Contrary to the advances on sketch-based querying,

methods dealing with sketches, including color, like those

shown in Fig. 2, have not followed the same direction,

having still few works facing this challenging problem

[1],[17]. Therefore, our contribution in this work is to pro-

pose a quadruplet-based convolutional network architecture

that allows us to incorporate an extra visual attribute to

the learned feature space. We present an instance of this

quadruplet architecture called Sketch-QNet focused on the



color sketch-based image retrieval problem. We also de-

scribe a methodology for training the proposed architec-

tures because of the scarcity of appropriate datasets.

Figure 2. Examples of color sketches

This document is organized as follows: Section 2 de-

scribes the related work on CSBIR, Section 3 describes the

proposed Sketch-QNet architecture, Section 4 shows a de-

scription of our experiments together with the correspond-

ing results, and finally, Section 5 presents the conclusions

of our work.

2. Related Work

Sketch-based image retrieval has undergone significant

growth during the last decade. Initially, through low-level-

based approaches [14, 9, 6] that use oriented gradients as

features. Later, with mid-level-based approaches like the

work proposed by Saavedra et al.[13], which combines low-

level features with a clustering strategy to learn a set of

primitives called keyshapes, that are then used to represent

sketches. However, the big leap in performance came with

the explosion of the deep learning-based methods. In this

context, the architectures showing the best results on simi-

larity search are those combining siamese nets with triplet

loss [19, 2, 15], especially when fine-grained search is de-

sired. Other researchers have also studied architectures fo-

cused on obtaining optimized representations through a bi-

nary feature space [10].

Among the diversity of SBIR methods, the work of Bui

et al. [2] mainly attracts our interest. This method proposes

a 4-stage incremental methodology for training a network

capable of producing a feature space where sketches and

photos can exist together. The four stages are designed in

such a way that they can incrementally improve their dis-

criminatory power. To this end, they also use siamese and

triplet networks jointly with cross-entropy loss but trained

from a coarse-grained similarity at the beginning to a fine-

grained similarity at the end. This idea showed to be very

effective, as it achieves the state of the art results in different

public SBIR datasets with colorless sketches.

In color sketch-based image retrieval, the goal is to re-

trieve photos sharing both shape and color w.r.t. a given

query, in such a way that it allows us to formulate queries

for retrieving targets like that special red-blue chair or a

fancy blue lamp. Although we have seen tremendous ad-

vances in the direction of sketch-based retrieval, there are

still few works dealing with colorful sketches. A recent ap-

proach dealing with color sketches is the method proposed

by Dutta and Biswas [5], where a colorless sketch is used

to define the shape of the target images, and color informa-

tion is provided by a keyword. However, in the domain of

querying by sketches, we can incorporate visual attributes

into the drawing itself, making the query formulation easier

for users.

Closer to our proposal is the work presented by Bui and

Collomose [1], which processes shape and color indepen-

dently using the well-known BoW strategy and features

produced by gradient fields. Similar to this work is that

proposed by Xia et al. [17] which extracts shape features

through a convolutional neural network to retrieve the N

most similar images. The resulting ranking is then resorted

using color histograms. In the two proposals, two scores are

computed, one for shape similarity and the other for color.

Both scores are merged at the end, setting a weight for each

attribute. Contrary to these approaches, we aim to construct

a convolutional architecture capable of representing shape

and color information in one model.

So far, we know that siamese architectures alongside a

triplet loss have shown the best performance in the context

of similarity search. These architectures are designed to re-

ceive triplets as inputs. A triplet is defined as a (Ia, Ip, In)

tuple, where Ia is an anchor image, the sketch in our case.

Ip is a positive photo that is considered similar to the query,

while In is a negative photo, one considered different from

the sketch. Therefore, under this approach, the model tries

to learn a feature space where positive pairs come closer to

each other, while negative pairs remain afar. Indeed, triplet

loss tries to minimize the following expression:

max(0, δ(Ia, Ip) + λ− δ(Ia, In)) (1)

where δ(·) is a distance function, and λ is the minimum sep-

aration between positive and negative distances (the mar-

gin).

As we can observe from Eq. 1, given a query q, the triplet

loss tries to separate positive photos from negative ones by a

margin of λ, no matter how different or similar the positive

pairs are from q. When we incorporate other attributes like

color, we would expect the feature space to be able to differ-

entiate between photos sharing shape and color from those

that only share the shape. Designing an architecture capa-

ble of incorporating this kind of extra visual information is

a challenge we need to deal with.

Therefore, in this work, we propose a novel quadru-

plet architecture named Sketch-QNet for learning a feature

space in the context of color sketch-based image retrieval

where colorful sketches and photos can exist together. Our



work is inspired by siamese networks as well as the incre-

mental methodology proposed by Bui et al. [2].

Close to our proposal is the work of Seddati et al. [16]

about quadruplets networks for SBIR. However, there are

significant differences. They use a quadruplet architecture

in the context of colorless sketch-based retrieval to discrim-

inate between two kinds of positive objects, those sharing

the same class and those representing the same instance for

an input query. In contrast, our proposal focuses on color

sketch-based retrieval. Our model uses a cross-entropy

branch to allow the model to retrieve objects from the same

class as the query. Furthermore, the architecture we pro-

pose is focused on discriminating objects sharing color and

shape with the query (the positives) from those that only

share shape (the positive-negatives). Consequently, our ap-

proach requires defining a suitable methodology to form up

quadruplets that serve as inputs to the proposed model.

3. Sketch-QNet for CSBIR

In this section, we describe Sketch-QNet, a quadruplet

convnet for CSBIR able to produce a shared feature space

for photos and color sketches that takes into account shape

and color features. Inspired from [2], we propose a par-

tially shared network and a training methodology in multi-

ple stages. The basis of our proposal is for the network to

learn shape-based features in the early stages of the training

and jointly learn shape and color features in the last stage.

This is achieved by using a quadruplet neural network with

a custom loss function.

3.1. Idea Behind The Method

The core of our proposal is the use of a quadruplet,

which will be used to feed our model during training. A

quadruplet Γi is defined as follows:

Γi = (qi, pi+, p
i
+−

, pi
−
) (2)

where, i is the i-th input during the training phase, q is a

color sketch, p+ is a photo with the same class and color

as q, p+− is a photo of the same instance than p+ but with

a different color, and finally p− is a photo from a differ-

ent class than q. A quadruplet must be accompanied by a

distance function D(·, ·), applied as follows:

D+ = D(q, p+) (3)

D+− = D(q, p+−) (4)

D− = D(q, p−) (5)

without loss of generality, we define D(·, ·) to be the Eu-

clidean distance. Our target goal is to train a network capa-

ble of producing a feature space where the following rela-

tions must be accomplished:

D+ < D+− < D− (6)

Figure 3. Distances between images must comply D+ < D+−
<

D
−

.

A schematic illustration of how the target feature space

should behave is depicted in Fig. 3.

Therefore, we need to appropriately train a convnet for

extracting embeddings from photos and sketches in order

to fulfill the inequalities in Eq. 6. To solve this problem we

separate the equation into two inequalities and add a margin

to each one, obtaining Eq. 7.

D+ + α · λ < D+−

D+− + (1− α) · λ < D−

(7)

In Eq. 7, λ is a positive number representing the margin

between D+ and D−, and α is a trade-off parameter be-

tween 0 and 1 which indicates how closer is p+− from p+
and p−. In this work, p+− is considered as a positive sam-

ple, but not as relevant as p+. Therefore we choose α < 0.5
to allow p+− to get closer to p+ than to p−. We will evalu-

ate the impact of α afterwards.

The following two losses are inferred from Eq. 7:

Losstriplet 1 = max{0, D+ + α · λ−D+−}

Losstriplet 2 = max{0, D+− + (1− α) · λ−D−}
(8)

It is interesting to note the dynamic of the proposed

loss functions during training. At the beginning, neither

Losstriplet 1 nor Losstriplet 2 are less than 0. There-

fore the optimizer will focus on minimizing the expression

D+ + λ − D−. It will try to separate positives from neg-

atives samples according to the margin λ. Accomplished

that, the optimizer will focus on simultaneously satisfying

the two specific losses of Eq. 8.

3.2. Training Quadruplets and Dataset

In this section, we describe how quadruplets are built

during training in order to optimize our convolutional ar-

chitecture according to the proposed loss function (Eq. 8).

As shown in Eq. 2, for each qi, we need to select three

regular images (photos) that complete the quadruplet Γi.

However, due to the lack of a suitable dataset focused on

this problem, we develop a methodology for training our



Figure 4. Example of training photos.

proposed architecture where color queries are generated

from a target photo.

For training, we use a collection of photos obtained from

an online store. This dataset consists of 10,600 items dis-

tributed among 140 classes, mainly formed with kids and

household items. Some of the products we can find in

this collection belong to categories like toys, clothing, baby

items, appliances, sports, among others. Figure 4 shows a

sample of the training photos.

Since the system must be able to distinguish color, we

increase the number of items in the training collection by

changing the colors from the original images. To this end,

each item is processed in the HSV color space, adding a

constant value to the hue channel. This allows the dataset

to grow by a factor of 5. We also generate gray-toned pho-

tos of different brightness, transforming the original images

to gray-scale, segmenting the foreground by thresholding,

and applying a contrast enhancement. The final extended

dataset consists of 56,337 items.

A critical problem when training a neural network that

learns color sketch-based embeddings is the lack of datasets

with plenty of color drawings. To handle this problem,

we generate a synthetic color sketch from each item of the

training catalog through a function s(p), where s(·) trans-

forms the photo p to its corresponding sketch. This process

is illustrated in Fig. 5. First, p is smoothed by an edge-

preserving smoothing filter [7], then its color range vari-

ation is reduced to have flat colors, and finally, edges are

highlighted. To obtain flat colors, we apply k-means clus-

tering in the RGB space over the smoothed images. The

number of clusters is selected randomly between 7 and 10.

To highlight edges, we apply the Canny edge detector [3]

over the smoothed image.

Therefore, a quadruplet Γi as defined in Eq. 2 is gen-

erated by each item pi from the training collection. Here

the anchor sketch q is s(pi), p+ is pi, p+− is pi but with a

different color, finally, p− is randomly selected from items

having a different class than pi.

3.3. Backbone Architecture

We use a Squeeze and Excitation [8] ResNext 50 [18]

network as backbone. Since this is a cross-domain prob-

Figure 5. Color sketch generation process.

lem including photos and color sketches, we need two net-

work branches to produce the embeddings. The first lay-

ers of both networks use non-shared weights to extract spe-

cific features from each domain, while the final layers share

weights to learn a common representation between both do-

mains.

At the top of the network, two fully connected layers

are used. The last one is devoted to learn a 1024-d feature

vector that is then normalized by the Euclidean norm. This

layer also feeds a classification layer. The complete Sketch-

QNet architecture is presented in Fig. 6.

3.4. Training Procedure

The training procedure is inspired by the work of Bui et

al. [2] in which an incremental training procedure is carried

out. In our case, we divide the procedure into three stages,

as shown in Fig. 6, training each one as follows:

• Stage 1: This stage aims to train the backbones before

they are plugged into the quadruplet architecture. In

this step, each backbone is trained in a classification

problem with the classical cross-entropy loss function.

The sketch backbone is trained using the sketch dataset

proposed by Eitz et al. [6], and the photo backbone is

trained on the ImageNet dataset [4].

• Stage 2: This stage aims to train both networks to-

gether, trying to learn a shared embedding for both,

photos and sketches. The loss is defined as a multi-

task function that combines contrastive loss with cross-

entropy. The network is trained so that the learned

embeddings produce short distances between objects

from the same class and a large distance between ele-

ments from different classes. The definition of the used

loss is shown in Eq. 9, where β is set to 2 during train-

ing, CEsk is the cross-entropy for sketch classification,

and CEph is for photo classification.

losspt 2 =CExsk
+ CExph

+ (9)

β · contrastive(xsk, xph)



Figure 6. Architecture and training stages.

• Stage 3: The goal of this stage is to learn embeddings

that take into account color and shape features, ac-

cording to Section 3.1. Thus, a quadruplet network is

trained receiving four inputs, the first one is an anchor

sketch and the rest are photos. In this way, we have

four branches, the first one processing the input sketch

and the other three focused on processing photos.

The objective function to minimize is presented in Eq.

10. It consists of adding the cross-entropy loss to each

branch to provide information about the classes, to-

gether with the triplet losses given in Eq. 8. The

weight β is initialized at 2, and increased by 0.5 each

epoch to give more importance to triplet losses as train-

ing progresses.

losspt 3 =CExsk
+ CExp+

+ CExp+−

+ CExp−
+

β · {Losstriplet 1 + Losstriplet 2}

(10)

4. Experimental Results

4.1. Experimental Settings

We use the following experimental settings for training:

• In stages 1 and 2, the network was trained for 10

epochs, while in stage 3 it was trained for 25 epochs,

and the best epoch was selected by evaluating the loss

on the validation set.

• The sketches are centered, and white padding of about

10% of the largest dimension is added. In the case of

photos, they are resized, keeping their aspect ratio, and

adding a white background if necessary. Both sketches

and photos are resized to 224 × 224 before passing

through the network.

• Data augmentation was applied to both photos and

sketches, consisting of random rotation between −20
and 20 degrees, random resize between 90% and 110%
of the original size of the images, random flip and

color augmentation, changing contrast, saturation and

the value of the hue channel.

4.2. Baseline Approach

So far we know, the current methods dealing with color

sketches for image retrieval are the approaches proposed by

Bui and Collomosse [1] using gradient fields together with

a BoW strategy; and the proposal of Xia et al. [17] that uses

a convnet to extract shape features. In general terms, both

proposals are similar as they have two independent paths

to process shape and color, producing two scores for each

of these attributes. In the end, these scores are weightily

merged to compute the final one.

Based on the specifications provided by the aforemen-

tioned CBIR proposals, we implemented two baselines that

are described below.

4.3. Baseline 1

For shape description, we trained a convnet following

the work of Bui et al. [2], using a SE-ResNext-50 [8] as

backbone. For color description, we use a color histogram

computed from RGB color spaces, quantized into 5× 5× 5
cells. In addition, to keep spatial coherence, we split the

images into a 2× 2 grid, computing the color histogram for

each cell, and finally, all of them are concatenated. There-

fore, this baseline produces a 500-size color histogram.



For similarity search, we first compute two distances,

one for shape and the other for color description that then

are merged by a weighted distance function as shown in

Eq. 11. Here, D(Ssk, Sph) is the distance between shape

representations of a sketch and a photo, D(Csk, Cph) is the

distance between the corresponding color based representa-

tions, and γ is a weight between 0 and 1.

D(sk, ph) = (1− γ) ·D(Ssk, Sph) + γ ·D(Csk, Cph) (11)

4.3.1 Baseline 2

This baseline uses the same strategy as Baseline 1 to de-

scribe shapes and slightly modifies the color representation.

The differences in color processing are that we do not use

spatial splitting, and only the pixels of strokes are consid-

ered to construct the color histogram. A bigger difference

is related to the manner in which similarity is computed.

Here, for color-based similarity we use the same function

as proposed by Bui and Collomosse[1], that is defined as

below.

Simc(sk, phi) =
1

MskMphi

×

∑

b∈sk∩phi

(1 + lnfsk,b)(1 + lnfphi,b
)IDFb,

(12)

where Msk =
√
∑

b∈sk(1 + lnfsk,b)2, Mphi
=

√

∑

b∈phi
(1 + lnfphi,b

)2, IDFb = 1 + lnN
fb

, N is the num-

ber of indexed images in the dataset, fb is the number of

images containing the bin b, fsk,b and fphi,b
are the counts

of the bin b in the query sketch and the photo i respectively.

This similarity measure resembles tf-idf for color space. Fi-

nally, the similarity between a sketch sk and a photo phi is

presented by Eq. 13, which represents the geometric mean

between the color similarity, and the cosine distance of the

shape features (shape similarity).

Sim(sk, phi) = Simc(sk, phi)
ω(

Ssk · Sphi

||Ssk|| ||Sph||
)(1−ω) (13)

Both baselines were tested in the Bui’s dataset [1], where

Baseline 2 reaches a mAP of 0.30, outperforming the per-

formance reported previously (mAP=25.8). In contrast,

Baseline 1 yielded a lower performance (mAP=24.55) but

very close to the state-of-the-art. These baselines will be

used for comparison in the following sections.

4.4. Testing Dataset

Our interest rests on making the querying formulation

easier for users, in such a way that they can simply draw-

ing what they are looking for, incorporating color informa-

tion in the drawing itself. Therefore, we are interested in

testing the proposed methods with queries representing the

high variability of drawing styles (see Fig. 2). To this end,

we present a challenging testing dataset containing sketches

that incorporate color in the form of shadows, color stripes,

color strokes, etc. To our knowledge, this dataset is the first

one that covers such variability of styles, and it is described

in the following lines.

The dataset used for testing consists of photos of home

& decor items from online stores, distributed in 187 classes,

among kitchen items, garden, decoration, and others. It is

worth noting that the evaluation dataset is entirely different

from the one used in training. The number of items in the

testing catalog is 10560, which was increased to 50482, by

using the color augmentation technique presented in section

3.2. Additionally, we collected 446 hand-drawn sketches

based on photos from the dataset. To this end, we asked ten

different people to make drawings resembling some exam-

ple photos. Each target photo was shown for a few seconds,

and then the user drew it from memory.

To evaluate the performance of the described meth-

ods, we employ the following metrics, reminding that each

sketch has only one groundtruth photo:

• Mean Reciprocal Rank (MRR) : This measures the

average of the inverse rank of the correct answer

(groundtruth photo).

• Recall Ratio (RR) : This shows the percentage of

queries that retrieve the groundtruth photo after retriev-

ing N items.

• Mean Average Precision (mAP) : We use mAP to

evaluate the precision of retrieving photos from the

same class of the query (regardless of the color).

4.5. Baseline Results

4.5.1 Baseline 1

Table 1 shows the MRR and mAP achieved by the first base-

line approach for different values of γ in the range [0, 1]. We

can observe that smaller values of γ produce higher mAP,

ignoring color information, focusing instead on the class of

the objects. On the other hand, as γ increases, then the

MRR also increases because the retrieved photos with simi-

lar color as the query go to the first positions. This happens

until a point where both metrics start decreasing because the

retrieval system begins to overuse the color features. We

select γ = 0.6 as the best value because it reaches a good

trade-off between MRR and mAP (0.1511 and 0.1437, re-

spectively).

4.5.2 Baseline 2

Table 2 shows the MRR and mAP achieved by this approach

for different values of ω in the range [0, 1]. As in the first



γ 0.0 0.2 0.4 0.6 0.8 1.0

MRR 0.081 0.105 0.138 0.151 0.143 0.022

mAP 0.160 0.163 0.160 0.143 0.095 0.011

Table 1. MRR and mAP for the baseline 1 changing the value of

γ.

ω 0.0 0.05 0.1 0.2 0.4 0.6

MRR 0.081 0.150 0.150 0.118 0.057 0.030

mAP 0.160 0.125 0.099 0.057 0.024 0.013

Table 2. MRR and mAP for the baseline 2 changing the value of

ω.

baseline, ω has a similar effect to γ, but achieves a lower

performance than the first baseline. This is related to the

fact that the method does not consider spatial information

in the color features.

4.6. Sketch­QNet Results

We follow the training procedure explained in section

3.4. We train the network with the loss of Eq. 8 with

λ = 1.5 and α ∈ {0.1, 0.25, 0.5, 0.75}. The evaluation

metrics from stages 2 and 3 of the training are shown in

Table 3. The best mAP is reached at stage 2 of the train-

ing process because this stage considers class information

only. On the other hand, in stage 3, mAP decreases, but

MRR increases more than 50% compared to stage 2. This

growth in MRR is explained by the fact that stage 3 focuses

on bringing the photos of the same color and shape as the

query closer to it in the feature space. We can also note that

higher values of α make mAP decrease because when α is

larger, photos of the same class but with a different color

than the sketch are mapped further away from it. This ef-

fect shows that λ in our proposal has a similar behavior as

the γ parameter in the first baseline approach.

Stage
Stg.

2

Stg 3

α=0.10
Stg. 3

α=0.25
Stg. 3

α=0.50
Stg. 3

α=0.75
MRR 0.126 0.208 0.206 0.197 0.192

mAP 0.186 0.133 0.083 0.051 0.037

Table 3. MRR and mAP for Sketch-QNet at different stages of

training.

Another way to compare the performance of the pro-

posed methods is through a recall ratio chart. In Fig. 8 we

present the recall ratio for the baseline 1 with γ = 0.6, the

stage 2 of Sketch-QNet and the stage 3 of Sketch-QNet with

α = 0.10. The figure shows that the proposed method in

stage 3 has a higher performance than the baseline. For in-

stance, in stage 3 only 37 photos need to be retrieved (from

the 50,482 dataset images) to get a relevant result for 50%
of the queries, while for the baseline, 72 images must be

retrieved to reach the same percentage. Of course, it is im-

portant to note the performance of a method when retrieving

a small number of photos, since users commonly prefer to

change the query if there is not a hit among the first results.

In Figure 7, we include examples of different retrieved

photos, for the baseline 1 and for stage 3.

5. Conclusions

In this work, we present a novel quadruplet-based con-

vnet architecture together with a loss function that extends

the behavior of siamese and triplets networks in the context

of the similarity search problem, which is limited to handle

positive and negative pairs only. Our proposal allows us to

incorporate new intermediate pairs, which can be selected

according to visual similarity with the anchor. Therefore,

this proposal allows us to generate a feature space that can

additionally discriminate among positive results, adding an

extra visual feature to the model like color or texture.

To show the advantages of our proposal, we trained an

instance of the quadruplet model named Sketch-QNet, that

achieves new state-of-the-art results on the problem of color

sketch-based retrieval. In addition, to handle the lack of

datasets in this problem, we also present a methodology for

generating a training dataset from a collection of photos.
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