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Abstract

Vector graphics are widely used to represent fonts, lo-

gos, digital artworks, and graphic designs. But, while a

vast body of work has focused on generative algorithms

for raster images, only a handful of options exists for vec-

tor graphics. One can always rasterize the input graphic

and resort to image-based generative approaches, but this

negates the advantages of the vector representation. The

current alternative is to use specialized models that require

explicit supervision on the vector graphics representation

at training time. This is not ideal because large-scale high-

quality vector-graphics datasets are difficult to obtain. Fur-

thermore, the vector representation for a given design is

not unique, so models that supervise on the vector repre-

sentation are unnecessarily constrained. Instead, we pro-

pose a new neural network that can generate complex vec-

tor graphics with varying topologies, and only requires in-

direct supervision from readily-available raster training im-

ages (i.e., with no vector counterparts). To enable this, we

use a differentiable rasterization pipeline that renders the

generated vector shapes and composites them together onto

a raster canvas. We demonstrate our method on a range

of datasets, and provide comparison with state-of-the-art

SVG-VAE and DeepSVG, both of which require explicit vec-

tor graphics supervision. Finally, we also demonstrate our

approach on the MNIST dataset, for which no groundtruth

vector representation is available. Source code, datasets

and more results are available at http://geometry.

cs.ucl.ac.uk/projects/2021/Im2Vec/.

1. Introduction

In vector graphics, images are represented as collections

of parametrised shape primitives rather than a regular raster

of pixel values. This makes for a compact, infinitely scal-

able representation with appearance that may be varied at

need simply by modifying stroke or colour parameters. As

a result, it is favoured by graphic artists and designers.

Unfortunately, creating vector graphics still remains a

difficult task largely limited to manual expert workflows,
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Figure 1: We present Im2Vec that can be trained with

only image supervision to produce a latent space for vector

graphics output. The learned space supports reprojection,

sampling (i.e., generation), and interpolation.

because the same irregular structure makes it ill-suited for

today’s convolution-based generative neural architectures.

There is demand for a generative approach suitable for this

domain, but it is not yet well served by research because

of the difficult design requirements. Suitable approaches

should: (i) produce output in vector format; (ii) estab-

lish correspondence across elements of the same family;

(iii) support reconstruction, sampling, and interpolation;

(iv) give user control over accuracy versus compactness of

the representation; and finally, (v) be trainable directly us-

ing images without the need for vector supervision.

SVG-VAE [24] and DeepSVG [5], the two leading gen-

erative algorithms for vector graphics, cast synthesis as a se-

quence prediction problem, where the graphic is a sequence

of drawing instructions, mimicking how common formats

actually represent vector art. Training these methods there-

fore requires supervision from ground truth vector graphics
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sequences, which are difficult to collect in large volumes.

Furthermore, the mapping from sequences of parametrised

drawing instruction to actual images is highly non-linear

with respect to the parameters and also non-injective, al-

lowing a variety of different sequences to produce the same

visual result. This makes it difficult to consider appearance

as a criterion, and also causes the produced results to inherit

any structural bias baked into the training sequences.

An approach aiming to do away with such vector su-

pervision would need to overcome a number of challenges.

First, the relationship between the representation and its ap-

pearance must be made explicit and differentiable. Sec-

ond, it must operate on an internal representation that di-

rectly maps to a vector graphics representation and is flexi-

ble enough to support a large range of topologies and shape

complexities. Finally, it should extract correspondences be-

tween related shapes, directly from unlabelled images.

In this paper, we propose such a method, called Im2Vec,

based on a representation that mimics the compositing be-

haviour of complex vector graphics. It uses a variable-

complexity closed Bézier path as the fundamental primi-

tive, with the capability to composite a variable number of

these to create shapes of arbitrary complexity and topology

(shown in Figure 2).

I L1, d1 L2, d2 L3, d3 . . . LT , dT

Figure 2: Im2Vec encodes a shape as a layered set of filled

curves (or shapes). Each shape is obtained by deformation

of a topological disk, differentiably rasterized into images

Li, then differentiably composited back-to-front according

to scalar depth variables di.

The key insight that allows the handling of arbitrary

complexity is that we can treat any primitive closed shape as

a deformation of a unit circle, which is modelled as 1D con-

volution on samples from this circle conditioned on a com-

mon latent vector. By recombining these primitive paths

through a differentiable rasterizer [22] and differentiable

compositing [28], we can natively represent vector art while

learning to generate it purely based on appearance, obviat-

ing the need for vector supervision.

We evaluate Im2Vec on a variety of examples with vary-

ing complexity and topology including fonts, emojis, and

icons. We demonstrate that Im2Vec, even without any vec-

tor supervision, consistently performs better reconstruction

compared to SVG-VAE and DeepSVG when trained on the

same dataset. We also compare our approach to a purely

raster-based autoencoder, which we dub ImageVAE. While

ImageVAE and Im2Vec produce comparable reconstruction

quality, Im2Vec outputs vector graphics and hence enjoys

the associated editability and compactness benefits. Finally,

we quantify the compactness versus approximation power

of our method, and demonstrate Im2Vec can be used to vec-

torize the MNIST dataset for which no groundtruth vector

representation is available.

2. Related Work

Deep learning techniques for parametric vector shapes

have recently garnered significant interest from the machine

learning community [19, 11, 13, 40, 27].

Learning-based image vectorization. Our autoencoder

encodes raster images. It can therefore address the single-

image vectorization problem [3, 9, 31, 20, 1, 17], for which

learning-based solutions have been proposed. Egiazar-

ian et al. [7] vectorize technical line drawings. They pre-

dict the parameters of vector primitives using a transformer-

based network, and refine them by optimization. Deep-

Spline [11] produces parametric curves of variable lengths

from images using a pre-trained VGG network [33] for fea-

ture extraction followed by a hierarchical recurrent network.

Guo et al. [14] use neural networks sub-divide line drawings

and reconstruct the local topology at line junctions. The net-

work predictions are used in a least squares curve fitting step

to estimate Bézier curve parameters. Liu et al. [23] focus on

vectorization of rasterized floorplans. They use a network

to extract and label wall junctions, and use this information

to solve an integer program that outputs the vectorized floor

plans as a set of architectural primitives. These works pro-

duce high-quality vectorizations but, unlike ours, focus on

the single image case. In contrast, our objective is to train a

latent representation which can serve both for vectorization

of existing raster images, and for generating new graphics

by sampling with no post-processing.

Parametric shape estimation. Deep learning methods

for parametric shape estimation typically encode shapes as

an assembly of primitives, often with fixed topology and

cardinality [13]. Smirnov et al. [36] fit rasterized fonts us-

ing quadratic Bézier curves, and 3D signed distance fields

using cuboids. Their outputs have predetermined, fixed

topologies that are specified as class-dependent templates.

Zou et al. [41] train a recurrent network that predict shapes

as a collection of cuboids from depth maps; they super-

vise directly on the shape parameters. Tulsiani et al [39]

also use hierarchies of cuboids, but from occupancy vol-

umes. Similar techniques have explored other primitives

like superquadrics [27] and Coon patches [35] as primi-

tives. Sinha et al. [34] represents watertight 3D shapes as

continuous deformation of a sphere. This is analogous to

our representation of closed 2D curves.



Shape-generating programs. Ganin et al. [10],

Huang et al. [18], and Nakano [25] train Reinforce-

ment Learning (RL) drawing agents. They circumvent

the need for direct supervision on the drawing program

by simulating a rendering engine to produce images from

which they compute a reward signal. Ellis et al. [8] use

program synthesis to generate graphics expressed using a

subset of the LATEX language from hand drawings. They

do not work with complex parametric shapes like Bézier

curves, which are the basic building block of most vector

designs. Another notable work is the CSGNet [32] that

present impressive performance in estimating constructive

solid geometry programs. It uses the REINFORCE [37]

algorithm to learn in an unsupervised manner, but runs into

issues like drawing over previous predictions in the later

stages of the generation process. Further, it can only output

32 × 32 raster images, which lacks the flexibility of vector

graphics and is insufficient for applications that require

high fidelity. Strokenet [40] trains an agent that draws

strokes after observing a canvas image and a generator that

maps stroke parameters to a new image.

Generative vector graphics model. Our goal is to obtain

a generative model for vector graphics. Previous works in

this area have focused predominantly on the case where di-

rect vector supervision is available. In contrast, our model

can be trained from raster data alone. SketchRNN [15] in-

troduces a model for both conditional and unconditional

sketch generation. Sketches are encoded as a sequence of

pen position and on/off states. An LSTM is then trained

to predict the parameters of a density function over the

sketch parameter space, which can then be sampled to pro-

duce a new sketches. Similarly, Sketchformer [29] pro-

posed a transformer based architecture for encoding vector

form sketches. They show how the encoding can be used

for sketch classification, image retrieval, and interpolation.

SVG-VAE [24] is the first method that attempts to esti-

mate vector graphics parameters for generative tasks. They

follow a two stage training process. First, they train an im-

age Variational Auto Encoder (VAE). Second, they freeze

the VAE’s weights and train a decoder that predicts vector

parameters from the latent variable learned on images. They

show a style-transfer application from one vector graphic to

another. Unlike ours, their method is not end-to-end, and it

requires vector supervision. More recently, DeepSVG [5]

showed that models operating on vector graphics benefit

from a hierarchical architecture; they demonstrate interpo-

lation and generation tasks. Prior works [2, 12] can gen-

erate new font glyphs from partial observations, but they

only work in a low-resolution raster domain. Li et al. [22]

have recently proposed a differentiable rasterizer that en-

ables gradient based optimization and learning on vector

graphics, using raster-based objectives. This is a key build-

ing block for our method. However, we go beyond the gen-

erative models they demonstrate. In particular, our network

can generate graphics made up of closed curves with com-

plex and varying topologies; it does not produce artifacts

like overlapping paths.

3. Method

Our goal is to build a generative model for vector graph-

ics that does not require vector supervision, i.e., that only

requires raster images at training time. Our model follows

an encoder–decoder architecture (Fig. 3). The encoder has

a standard design [16]; it maps a raster image I to a la-

tent variable z ∈ R
d, which is then decoded into a vector

graphic structure. Our decoder has been carefully designed

so that it can generate complex graphics, made of a variable

number T of paths, with varying lengths and no predeter-

mined topology (§ 3.1). We also train an auxiliary model to

predict the optimal number of control points for each path

(§ 3.2). Finally, each vector shape is rasterized using a dif-

ferentiable rasterizer [22] and composited into a final ren-

dering [28], which we compare to a raster ground truth for

training (§ 3.3).

3.1. Vector Graphics Decoder

We choose to represent a vector graphic as a depth-

ordered set of T closed Bézier paths, or equivalently, a set

of T simply connected solid 2D shapes. The first opera-

tor in our decoder is a recurrent neural network (RNN) that

consumes the global latent code z representing the graphic

as a whole (§ 3.1.3). At each time step t, the RNN outputs

a per-path latent code zt. This mechanism lets us gener-

ate graphics with arbitrary numbers of paths, and arbitrary

topology (using fill rules to combine the shapes). The path-

specific codes are then individually processed by a path de-

coder module (§ 3.1.1) which outputs the parameters of a

closed path of arbitrary length using cubic Bézier segments.

3.1.1 Single path decoder with circular convolutions

To ensure the individual paths are closed, we obtain them

by continuous deformation of the unit circle. Specifically,

for each shape, we sample 3k points along the circle, corre-

sponding to the control points of k cubic Bézier segments.

We compute the 2D cartesian coordinates pi of each of these

points, and annotate them with a 1-hot binary variable ci to

distinguish between the segment endpoints — every third

point, which the Bézier path interpolates — and the other

control points.

We replicate the path’s latent code zt and concatenate it

with the sample position and point type label, so that each

sample on the circle is represented as a vector
[

pi ci zt
]

,

i ∈ {1, . . . , 3k}, which we call a fused latent vector. These
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Figure 3: Architecture overview. We train an end-to-end variational autoencoder that encodes a raster image to a latent

code z, which is then decoded to a set of ordered closed vector paths (top). We then rasterize the paths using DiffVG [22] and

composite them together using DiffComp to obtain a rasterized output, which we compare to the ground truth raster target

for supervision at training time. Our model can handle graphics with multiple component paths. It uses an RNN to produce

a latent code zt for each path, from the global latent code z representing the graphic as a whole. Our path decoder (bottom)

decodes the path codes into closed Bézier paths. Our representation ensures the paths are closed by sampling the path

control points uniformly on the unit circle. These control positions are then deformed using a 1D convolutional network with

circular boundary conditions to enable adaptive control over the point density. Finally, another 1D circular CNN processes

the adjusted points on the circle to output the final path control points in the absolute coordinate system of the drawing canvas.

The auxiliary network that predicts the optimal number of control points per path is trained independently from our main

model; it is not shown here.

are then arranged into a cyclic buffer, which is then pro-

cessed by a neural network performing 1D convolutions

with cyclic boundary conditions (along the sample dimen-

sion) to obtain the final spatial locations of the path’s control

points: x1, . . . , x3k. The cyclic convolution along the sam-

ple axis corresponds to convolution along the perimeter of

the unit circle. It is a crucial component of our method be-

cause it enables information sharing between neighbouring

samples, while respecting the closed topology of the shape.

We use 3-tap filters for all convolutions and ReLU activa-

tions.

Sampling the unit circle rather than using a fixed-length

input array allows us to adjust the complexity (i.e., the num-

ber of segments k) of the Bézier path by simply changing

the sampling density. In Section 3.2, we show this sampling

density can be determined automatically, based on com-

plexity of the shape to match, using an auxiliary network.

Figure 4 shows the impact of the number of segments on

the reconstruction quality.

3.1.2 Adaptive control point density

The most natural choice for our control point parameter-

ization would be to choose equally spaced sample points

along the unit circle (in angle). We found this uniform

control points allocation was often sub-optimal. Ideally,

more control points should be allocated to sections of the

path with higher complexity (e.g., sharp creases or serifs

for fonts). To address this, we propose an adaptive sam-

pling mechanism, which we call the sample deformation

subnetwork. This module is a 1D convolutional network

with cyclic boundary condition acting on the fused latent

vectors
[

pi ci zt
]

, where the pi are uniformly spaced

along the circle. It outputs a displacement δpi for each sam-

ple point. We parameterize this output in polar coordinates

so that pi + δpi remains on the circle.

With our adaptive sampling mechanism turned on, the

path decoder now operates on the fused latent vector with

sample deformation,
[

pi + δpi ci zt
]

, instead of the

regularly-spaced positions. In Figure 4b, we show the sam-

ple deformation module improves the reconstruction accu-

racy, especially when few segments are used. The benefit

over the uniform sampling distribution diminishes as more

curve segments are added.



6 7 8 9 10 11 12

raster input reconstructions

(a) visual fidelity vs. number of segments

uniform sampling

adaptive sampling

0

0.01

0.02

0.03

0.04

0.05

4 6 8 10 12 14 16 18 20 22 24 26

M
ea

n
 S

q
u
ar

ed
 E

rr
o

r

number of Bézier segments

(b) error vs. number of segments

Figure 4: Uniform vs. adaptive sampling. Our decoder

provides a natural control over the complexity of the vec-

tor graphics it produces. By adjusting the sampling density

on the unit circle, we can increase the number of Bézier

segments and obtain a finer or vector representation of a

target raster image (a). Our adaptive sampling mechanism

(§ 3.1.2) improves reconstruction accuracy, compared to a

uniform distribution of the control points with the same

number of segments (b). This adaptive scheme achieves

good reconstructions with as few as 7–8 segments, while

uniform sampling requires 12–14.

3.1.3 Decoding multi-part shapes using an RNN

So far, we have discussed a decoder architecture for a single

shape, but our model can represent vector graphics made

of multiple parts. This is achieved using a bidirectional

LSTM [30] that acts on the graphic’s latent code z. To syn-

thesize a graphic with multiple component shapes, we run

the recurrent network for T steps, in order to obtain shape

latent codes for each shape: z1, . . . , zT . We set T to a fixed

value, computed before training, equal to the maximum

number of components a graphic in our training dataset can

have. When a graphic requires fewer than T shapes, the ex-

tra paths produced by the RNN are degenerate and collapse

to a single point; we discard them before rendering.

In addition to the shape latent codes zi, the recurrent net-

work outputs an unbounded scalar depth value di for each

path which is used by our differentiable compositing mod-

ule when rasterizing the shapes onto the canvas.

3.2. Predicting the number of path control points

Each path (shape) in our vector output can be made of a

variable number of segments. Figure 4a shows how the re-

construction loss decreases as we increase the number of

curve segments from 6-25, for multiple designs. It also
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Figure 5: Latent space correspondences. Im2Vec en-

codes shapes as deformation of a topological disk. This

naturally gives a point-to-point correspondence between

shapes across graphics design once we encode them in our

latent space. Graphics can be made of a single path (top),

or multiple paths (bottom). In both cases, our model es-

tablish meaningful geometric correspondences between the

designs, indicated by the blue–orange color coding.

shows that, depending on the design’s complexity, not all

paths need many segments to be represented accurately. We

train an auxiliary network conditioned on a path latent vari-

able zt to model the complexity–fidelity trade-off and au-

tomatically determine the optimal number of segments for

a path. This auxiliary network has 3 fully connected lay-

ers. It outputs 3 parameters a, b, and c of a parametric

curve x 7→ ae−bx + c that approximates the loss graph of a

given shape, with respect to the number of segments. Given

this parametric approximation, we allow the user to set the

quality trade-off as a threshold on the derivative of the para-

metric curve. Specifically, we solve for x in the derivative

expression and round up to obtain the number of segments

to sample. This threshold defines what improvement in the

reconstruction error is worth the added complexity of an ad-

ditional Bézier segment. Please refer to our supplementary

for more information on the auxiliary network.

3.3. Multi­resolution raster loss

Given a raster input image I , our model encodes the de-

sign into a global latent code z, which the RNN decomposes

into path latent codes z1, . . . , zT . Our path decoder maps

each path latent code to a closed Bézier path. We rasterize

each path individually, as a solid shape using the differen-

tiable rasterizer of Li et al. [22], and composite them to-

gether into a final raster image O using the differentiable

compositing algorithm of Reddy et al [28]. Since every

step of the pipeline is differentiable, we can compute a

loss between input image I and raseterized generated vector

graphic O, and backpropagate the error to train our model

using gradient descent.

When we differentiate O with respect to the Bézier pa-

rameters, the gradients have a small area of influence, corre-

sponding to the support of the rasterization prefiltering ker-

nel. This adversely affects convergence especially when the

mismatch between I and O is high (e.g., at the early stages



of the training). We alleviate this issue by rasterizing our

graphics at multiple resolutions. That is, we render an im-

age pyramid instead of a single image, and aggregate the

loss at each pyramid level. We obtain the ground truth su-

pervision for each level by decomposing the target image

into a Gaussian pyramid, where each level is downsampled

by a factor 2 along each dimension from the previous level.

The gradients at the coarsest level are more stable and pro-

vide a crucial signal when the images differ significantly,

while the fine-scale gradients are key to obtaining high spa-

tial accuracy. The loss we minimize is given by:

EI∼D

L
∑

l=1

‖pyr
l
(I)−Ol‖

2, (1)

where L is the number of pyramid levels, pyr
l
(I) the l-th

pyramid level, Ol our output rasterized at the corresponding

spatial resolution, and D the training dataset.

3.4. Shape correspondences by segmentation

When specializing a generative models to a single class,

e.g., the same glyph or digit across multiple fonts, it is often

desirable that the model’s latent space capture correspon-

dences between parts of the instance, like the opening in the

capital letter ‘A’, or the eyes and mouth of an emoji face.

To enable this, we segment our raster training dataset us-

ing an automatic off-the-shelf tool [20]. We cluster these

segments across the dataset based on spatial position, and

assign to each cluster a unique RGB colour. This consis-

tent labeling helps learn a more interpretable latent space

for purposes of interpolation, but is not itself critical; we

show in supplementary material that our reconstruction is

robust to inconsistent labeling thanks to the differentiable

compositing step.

3.5. Training details

We train our model end-to-end for 100 – 1000 epochs,

using a batch size between 2 – 256 and the Ranger opti-

mizer [38] with learning rate between 10−3 and 10−4, de-

pending on the dataset. To evaluate path decoder’s general-

ization to variable number of segments, we randomly chose

the number of segments k ∈ {7, . . . , 25} at every iteration.

4. Evaluation

We demonstrate Im2Vec’s quantitative performance in

3 tasks: reconstruction, generation, and interpolation. We

compare it with raster based ImageVAE and vector based

SVG-VAE, DeepSVG on all the tasks.

Reconstruction We measure the reconstruction perfor-

mance of the baselines and Im2Vec using L2 loss in image

space. This quantifies how accurately the latent space of the

Target ImageVAE SVG-VAE DeepSVG Ours

Figure 6: Reconstructions on FONTS. Our model,

Im2Vec, captures complex topologies and produces vector

outputs. ImageVAE has good fidelity but produces raster

outputs with limited resolution (see Table 1). SVG-VAE

and DeepSVG produce vector outputs but often fail to ac-

curately reproduce complex fonts. All the methods were

trained on the same set of fonts. Please use digital zoom to

better appreciate the quality of the vector graphics.

Table 1: Reconstruction quality. Comparison of

pixel-space reconstruction losses for various methods and

datasets. Note that neither SVG-VAE nor DeepSVG oper-

ate on datasets without vector supervision.

FONTS MNIST EMOJIS ICONS

ImageVAE 0.0116 0.0033 0.0016 0.0002

SVG-VAE 0.1322 ✕ - -

DeepSVG 0.0938 ✕ - -

Im2Vec (Ours) 0.0284 0.0036 0.0014 0.0003

different methods captures the training dataset. Since SVG-

VAE and DeepSVG work in vector domain, we rasterize

their vector estimates using CairoSVG [4].

Table 1 shows reconstruction quality of the Im2Vec and

other baselines on FONTS [24], MNIST [21], EMOJIS [26],

and ICONS [6]. While vector based methods have the ad-

vantage of being able reproduce the exact intended vec-

tor parametrization, they are adversely affected by the non-

linear relationship between vector parameters and image ap-

pearance. Therefore what seems like a small error in the

vector parameters estimated by SVG-VAE and DeepSVG

may result in dramatic changes in appearance. Unlike vec-

tor domain methods, Im2Vec is not affected by the ob-

jective mismatch between the vector parameter and pixel

spaces, thereby achieving significant improvement in the re-

construction task.

Refer to our supplementary for a chamfer distance based

reconstruction comparison between SVG-VAE, DeepSVG

and our method.

We show qualitative comparisons of input shape re-
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Figure 7: MNIST results. The MNIST dataset only pro-

vides raster data. Since no vector graphics ground truth is

available, neither SVG-VAE nor DeepSVG can be trained

on this dataset. We trained both ImageVAE and Im2Vec on

the full dataset, with no digit class specialization or con-

ditioning. Our model produces vector outputs, while Im-

ageVAE is limited to low-resolution raster images (top).

Both models produce convincing interpolation (bottom).

construction between methods in Figures 6 and 7a. We

also show reconstruction output of Im2Vec on EMOJIS and

ICONS in Fig. 8.

Generation and Interpolation We present a random

sample of font glyphs generated using Im2Vec in Figure 10.

A qualitative comparison of latent space interpolation be-

tween baselines and Im2Vec is presented in Figures 9b

and 7b. We also present latent space interpolation between

4 input images of EMOJIS and ICONS in Fig. 9a.

Table 2: Generation and Interpolation quality. Results

on the FONTS and the MNIST are more accurate than both

previous techniques that require vector supervision, and an

image-based baseline autoencoder.

Generation Interpolation

FONTS MNIST FONTS MNIST

ImageVAE 0.171 0.058 0.184 0.072

SVG VAE 0.206 ✕ 0.206 ✕

DeepSVG 0.210 ✕ 0.202 ✕

Im2Vec (Ours) 0.187 0.069 0.188 0.0872

To quantitatively evaluate our generation results with

others, we quantify how realistic the intermediate shapes in

the latent shape as the average closest distance between the
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Figure 8: Reconstructions. Results on the EMOJIS and

the ICONS datasets. In each case, we show the input image

(128 × 128) and the corresponding vector graphics output,

which can be rasterized at arbitrary resolutions.

intermediate shapes to any sample in the training dataset:

∑

O∈OG

minI∈dataset(‖I,O‖2), (2)

where OG is the set of all generated shapes. We variation-

ally sample 1000 shapes from all the methods and present

the quality of the generated shapes in Table 2.

We perform similar evaluation to quantify the quality

of our interpolations. For comparison we sample 4 evenly

spaced interpolations between 250 random pairs of images

from the training dataset to create interpolation samples.

The results of the quality of interpolation between different

methods is presented in Table 2.

5. Limitations

The raster-based nature of the training imposes the prin-

cipal limitations of our method (see Figure 11). It is pos-

sible for some very fine features to underflow the training

resolution, in which case they may be lost. This could be

addressed by increasing the resolution at the expense of

computational efficiency, or perhaps by developing a more

involved image-space loss. Secondly, in particularly diffi-

cult cases it is possible for the generated shape to go to a

local optimum that contains degenerate features or semanti-



(a) EMOJIS and ICONS interpolations using Im2Vec
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(b) Comparison to baselines on FONTS

Figure 9: Interpolations. Our learned latent space enables plausible interpolation between samples. In (a), we show

interpolations between source–target pairs on the EMOJIS and ICONS datasets. In (b) we show interpolations on the FONTS

dataset. Unlike previous work, Im2Vec enables plausible interpolation even across significant changes in shape. For instance,

the stem of the digit ‘9’ naturally curls along the interpolation path.

Figure 10: Random samples. We show a random selection

of digits generated by Im2Vec. The latent space was trained

on the full Fonts dataset. Our model is capable of gener-

ating samples with significant topological variations across

the different font types. In the supplemental material, we

include 1000 random samples from the latent space. Please

use digital zoom to better evaluate the quality.

Input Reconstruction Input Reconstruction

Figure 11: Limitations. Im2Vec is only supervised by an

image-space loss, so it can sometimes miss small topologi-

cal features (Left), or produce semantically meaningless or

degenerate geometries (Right). While the former can be re-

solved by providing higher resolution supervision, the later

could be mitigated by using local geometric priors.

cally non-meaningful parts which nonetheless still result in

a plausible rasterised image. This is a consequence of lack

of vector supervision, but could possibly be addressed by

imposing geometric constraints on the generated paths.

6. Conclusion

We presented Im2Vec as a generative network that can be

trained to produce vector graphics output of varying com-

plexity and topology using only image supervision, with-

out requiring vector sequence guidance. Our generative

setup supports projection (i.e., converting images to vec-

tor sequences), sampling (i.e., generating new shape varia-

tions directly in vector form), as well as interpolation (i.e.,

morphing from one vector sequence to another, even with

topological variations). Our evaluations show that Im2Vec

achieves better reconstruction fidelity compared to methods

requiring vector supervision.

We hope that this method can become the fundamental

building block for neural processing of vector graphics and

similar parametric shapes.
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Differentiable vector graphics rasterization for editing and

learning. ACM Trans. Graph. (Proc. SIGGRAPH Asia),

39(6):193:1–193:15, 2020. 2, 3, 4, 5

[23] C. Liu, J. Wu, P. Kohli, and Y. Furukawa. Raster-to-vector:

Revisiting floorplan transformation. In Proceedings of the

IEEE International Conference on Computer Vision, pages

2195–2203, 2017. 2

[24] R. G. Lopes, D. Ha, D. Eck, and J. Shlens. A learned repre-

sentation for scalable vector graphics. In Proceedings of the

IEEE International Conference on Computer Vision, pages

7930–7939, 2019. 1, 3, 6

[25] R. Nakano. Neural painters: A learned differentiable con-

straint for generating brushstroke paintings. arXiv preprint

arXiv:1904.08410, 2019. 3

[26] notoEmoji. https://github.com/googlefonts/noto-emoji. 6

[27] D. Paschalidou, A. O. Ulusoy, and A. Geiger. Superquadrics

revisited: Learning 3d shape parsing beyond cuboids. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 10344–10353, 2019. 2

[28] P. Reddy, P. Guerrero, M. Fisher, W. Li, and N. J. Mitra.

Discovering pattern structure using differentiable composit-

ing. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia

2020), 39(6):262:1–262:15, 2020. 2, 3, 5

[29] L. S. F. Ribeiro, T. Bui, J. Collomosse, and M. Ponti. Sketch-

former: Transformer-based representation for sketched

structure. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 14153–

14162, 2020. 3

[30] M. Schuster and K. K. Paliwal. Bidirectional recurrent

neural networks. IEEE transactions on Signal Processing,

45(11):2673–2681, 1997. 5

[31] P. Selinger. Potrace: a polygon-based tracing algorithm. Po-

trace (online), http://potrace. sourceforge. net/potrace. pdf

(2009-07-01), 2003. 2

[32] G. Sharma, R. Goyal, D. Liu, E. Kalogerakis, and

S. Maji. Csgnet: Neural shape parser for constructive

solid geometry. corr abs/1712.08290 (2017). arXiv preprint

arXiv:1712.08290, 2017. 3

[33] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, 2015. 2

[34] A. Sinha, A. Unmesh, Q. Huang, and K. Ramani. Surfnet:

Generating 3d shape surfaces using deep residual networks.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 6040–6049, 2017. 2

[35] D. Smirnov, M. Bessmeltsev, and J. Solomon. Deep

sketch-based modeling of man-made shapes. arXiv preprint

arXiv:1906.12337, 2019. 2

[36] D. Smirnov, M. Fisher, V. G. Kim, R. Zhang, and J. Solomon.

Deep parametric shape predictions using distance fields. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 561–570, 2020. 2

[37] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Man-

sour. Policy gradient methods for reinforcement learning

with function approximation. In Advances in neural infor-

mation processing systems, pages 1057–1063, 2000. 3

[38] Q. Tong, G. Liang, and J. Bi. Calibrating the adaptive learn-

ing rate to improve convergence of adam. arXiv, pages

arXiv–1908, 2019. 6



[39] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik.

Learning shape abstractions by assembling volumetric prim-

itives. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2635–2643, 2017. 2

[40] N. Zheng, Y. Jiang, and D. Huang. Strokenet: A neural paint-

ing environment. In International Conference on Learning

Representations, 2018. 2, 3

[41] C. Zou, E. Yumer, J. Yang, D. Ceylan, and D. Hoiem. 3d-

prnn: Generating shape primitives with recurrent neural net-

works. In Proceedings of the IEEE International Conference

on Computer Vision, pages 900–909, 2017. 2


