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Figure 1: We tackle the problem of learning based engineering sketch generation as a first step towards synthesis and com-

position of solid models with an editable parametric CAD history.

Abstract

Engineering sketches form the 2D basis of paramet-

ric Computer-Aided Design (CAD), the foremost model-

ing paradigm for manufactured objects. In this paper we

tackle the problem of learning based engineering sketch

generation as a first step towards synthesis and compo-

sition of parametric CAD models. We propose two gen-

erative models, CurveGen and TurtleGen, for engineering

sketch generation. Both models generate curve primitives

without the need for a sketch constraint solver and explic-

itly consider topology for downstream use with constraints

and 3D CAD modeling operations. We find in our percep-

tual evaluation using human subjects that both CurveGen

and TurtleGen produce more realistic engineering sketches

when compared with the current state-of-the-art for engi-

neering sketch generation.

1. Introduction

Parametric Computer-Aided Design (CAD) is the fore-

most 3D modeling paradigm used to design manufactured

objects from automobile parts, to electronic devices, to fur-

niture. Engineering sketches form the 2D basis of paramet-

ric CAD, and refer specifically to composite curves made

up of 2D geometric primitives (e.g. lines, arcs, circles),

topological information about how the primitives connect

together, and constraints defined using topology (e.g. co-

incidence, tangency, symmetry). Engineering sketches can

be extruded or revolved to generate simple 3D solid bodies

(Figure 1), and in turn combined using Boolean operations

to build up complex shapes [22]. This workflow is com-

mon to all parametric CAD software and supported by all

the major solid modeling kernels. Consequently, the abil-

ity to generate high quality engineering sketches is a major

enabling technology for the automatic generation of solid

models with an editable parametric CAD history.

Engineering sketch generation can be applied in a num-

ber of CAD workflows. For example, a long sought-after

goal is the ability to automatically reverse engineer a para-

metric CAD model from noisy 3D scan data [1]. One

way to realize this goal is to generate 2D CAD sketches

from sparse scan data, just like human designers would,

and apply suitable modeling operations to reconstruct the

3D CAD model. Engineering sketch generation can also be

applied to auto-completion of user input. The ability to in-

fer repetitive commands based on visual or geometric input

could significantly ease user burden when producing com-

plex engineering sketches. Another sought-after capabil-



ity is the generation of engineering sketches from approxi-

mate geometry like free-hand drawings. Often referred to as

beautification, a generative model for engineering sketches

could potentially improve user workflows over traditional

approaches [9].

Despite recent advances with 2D vector graphic gener-

ation using data-driven approaches [21, 3, 26], there exists

limited research on synthesizing engineering sketches di-

rectly. This is a challenging problem because engineering

sketches contain disparate 2D geometric primitives coupled

with topological information on how these primitives are

connected together. The topology information is critical to

ensure: 1) geometric primitives can be grouped into closed

profile loops and lifted to 3D with modeling operations, and

2) constraints can be correctly defined using the topology,

for example, two lines can be constrained to intersect at 90◦

if their endpoints are known to coincide. With the availabil-

ity of large-scale engineering sketch and parametric CAD

datasets [27, 35], we believe a data-driven approach that

learns a generative model is a promising avenue to explore.

In this paper, we propose two generative models, Curve-

Gen and TurtleGen, for the task of engineering sketch gen-

eration. CurveGen is an adaptation of PolyGen [23], where

Transformer networks are used to predict the sketches au-

toregressively. While PolyGen generates polygonal mesh

vertices and indexed face sets, CurveGen generates ver-

tices lying on individual curves and indexed hyperedge sets

that group the vertices into different curve primitives (line,

arc, circle). This approach generates not only the indi-

vidual curve geometry, but also the topology linking dif-

ferent curves, a vital requirement of engineering sketches.

TurtleGen is an extension of TurtleGraphics [11], where

an autoregressive neural network generates a sequence of

pen_down, pen_draw, pen_up commands, creating a series

of closed loops which forms the engineering sketch. We

find in our perceptual evaluation using human subjects that

both CurveGen and TurtleGen produce more realistic engi-

neering sketches when compared with the current state-of-

the-art for engineering sketch generation. Importantly, both

CurveGen and TurtleGen can generate geometry and topol-

ogy directly without the expense of using a sketch constraint

solver. This paper makes the following contributions:

• We introduce two generative models which tackle the

problem of engineering sketch generation without the

use of a sketch constraint solver.

• We use a novel sketch representation with our Curve-

Gen model that implicitly encodes the sketch primitive

type based on hyperedge cardinality.

• We show quantitative and qualitative results for en-

gineering sketch generation, including the results of

a perceptual study comparing our generative models

with a state-of-the-art baseline.

2. Related Work

With the advent of deep learning a vast body of work

has focused on generation of novel raster images. By con-

trast, significantly fewer works have tackled image genera-

tion using parametric curves such as lines, arcs, or Bézier

curves. Parametric curves are widely used in 2D applica-

tions including vector graphics, technical drawings, floor

plans, and engineering sketches—the focus of this paper. In

this section we review work related to engineering sketch

generation and its application to the synthesis and composi-

tion of solid CAD models.

Vector Graphics Vector graphics are used extensively

in commercial software to enable the resolution indepen-

dent design of fonts, logos, animations, and illustrations.

Although a rich body of work has focused on freeform

sketches [36, 37], we narrow our focus to structured vec-

tor graphics that consider shape topology, connectivity, or

hierarchy relevant to engineering sketches.

Fonts are described with curves that form closed loop

profiles and can contain interior holes to represent letters of

different genus (e.g. b or B). SVG-VAE [21] is the first work

to learn a latent representation of fonts using a sequential

generative model for vector graphic output. DeepSVG [3]

considers the structured nature of both fonts and icons with

a hierarchical Transformer architecture. BézierGAN [4]

synthesizes smooth curves using a generative adversarial

network [12] and applies it to 2D airfoil profiles. More re-

cently, Im2Vec [26] leverages differentiable rendering [20]

for vector graphic generation trained only on raster images.

Common in prior research is the use of Bézier curves.

Line, arc, and circle primitives are preferred in engineer-

ing sketches as they are easier to control parametrically,

less prone to numerical issues (e.g. when computing in-

tersections, offsetting, etc.) and can be lifted to 3D pris-

matic shapes like planes and cylinders rather than NURBS

surfaces. In contrast to prior work, we pursue engineering

sketch generation with line, arc, and circle primitives and

explicitly consider topology for downstream application of

constraints and use with 3D CAD modeling operations.

Technical Drawings and Layout Technical drawings

take the form of 2D projections of 3D CAD models, of-

ten with important details marked by dimensions, notes,

or section views. Han et al. [13] present the SPARE3D

dataset, a collection of technical drawings generated from

3D objects with three axis-aligned and one isometric pro-

jection. The dataset is primarily aimed at spatial reasoning

tasks. Pu et al. [25] show how freehand 2D sketches can

be used to assist in the retrieval of 3D models from large

object databases. Their system allows designers to make

freehand sketches approximating the engineering sketches



which would be used in the construction of a 3D model.

Egiazarian et al. [5] address the long standing problem of

image vectorization for technical drawings. They predict

the parameters of lines and Bézier curves with a Trans-

former based network, then refine them using optimization.

In contrast, our system focuses on the generation of new

sketch geometry suitable for use with 3D CAD modeling

operations.

An emerging area of research considers learning based

approaches to generative layout for graphic design [18, 38,

17] and floor plans [24, 15]. Although a different domain

than engineering sketches, these works output high level

primitives (e.g. rooms in a floor plan) that must be correctly

connected to the overall layout and obey relevant constraints

(e.g. number of bedrooms). Layout problems have simi-

larities to engineering sketches where connectivity between

parts of the sketch and relationships, such as parallel, sym-

metric, or perpendicular curves, are critical when designing.

Program Synthesis Another potential approach to engi-

neering sketch generation is program synthesis. Recent

work in this domain leverages neural networks in combi-

nation with techniques from the programming language lit-

erature to generate or infer programs capable of represent-

ing 2D [7, 8, 28] or 3D [28, 32, 6, 16] geometry. One can

view engineering sketch generation as a program synthe-

sis task where the geometry is represented as a sequence

of programmatic commands that draw vertices and curves,

constructing the sketch one piece at a time. Future applica-

tions of program synthesis would allow us to model more

complex operations with programmatic constructs, such as

repetitions (loops), symmetries (constraints), and modifica-

tions (refactoring and debugging).

Reverse engineering Another important field is reverse

engineering 3D models from scan data or triangle meshes

[2]. Typically 2D poly-linear profiles are generated by in-

tersecting the mesh data with a plane, and then line and arc

primitives can be least squares fitted in a way which respects

a series of constraints [1]. Generative models which can be

conditioned on approximate data provide an approach to-

wards automating this part of the reverse engineering pro-

cedure. Recent learning-based approaches have tackled the

challenge of reverse engineering parametric curves [10, 34],

paving the way for reconstruction of trimmed surface mod-

els [19, 30, 31, 29]. In contrast to these works, we focus

on 2D sketch generation as a building block towards the

synthesis and composition of solid models, with parametric

CAD history, using common modeling operations.

Engineering Sketches Most closely related to our work

is SketchGraphs [27], a recently released dataset and base-

line generative model for the task of engineering sketch gen-
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Figure 2: A hypergraph representation of a sketch consist-

ing of three lines (2 vertices), an arc (3 vertices), and a circle

(4 vertices).

eration. The SketchGraphs dataset consists of engineering

sketches made by users of the Onshape CAD software. The

SketchGraphs generative model works by predicting the un-

derlying geometric constraint graph, and relies on a sketch

constraint solver to determine the final configuration of the

sketch. Unlike SketchGraphs we directly predict geome-

try and are not reliant on a sketch constraint solver. We

observe qualitatively that our methods naturally generate

geometry which conforms to the regular patterns seen in

engineering sketches, such as horizontal and vertical lines

and symmetries. The network can be considered to encode

the constraint information implicitly in the geometric coor-

dinates, allowing constrained sketches to be recovered in a

post-processing step if required. We compare our work di-

rectly to SketchGraphs and present results that show we are

able to produce more realistic engineering sketch output.

3. Method

3.1. Engineering Sketch Representation

To create an engineering sketch representation we con-

sider a number of factors. 1) Engineering sketches are com-

posed primarily from lines, arcs, and circles, while ellipses

and splines are used less frequently [27, 35]. 2) Engineer-

ing sketches must obey constraints such as forming closed

profiles, coinciding the end points, and forming 90 degree

angles. 3) As the constraints remove many degrees of free-

dom, engineering sketches are both structured and sparse

when compared to free-form sketches or vector graphics.

We present two representations of engineering sketches that

account for these design considerations: Sketch Hypergraph

representation (used by CurveGen) and Turtle Graphics rep-

resentation (used by TurtleGen).

Sketch Hypergraph Representation Under this repre-

sentation, a sketch is represented as a hypergraph G =
(V,E) where V = {v1, v2, . . . , vn} denotes the set of n

vertices, each vertex vi = (xi, yi) consists of a vertex id i

and its corresponding location xi, yi. E denotes a set of hy-



peredges that connects 2 or more vertices to form geometric

primitives. The primitive curve type is implicitly defined

by the cardinality of the hyperedge: line (2), arc (3), circle

(4). Arcs are recovered by finding the circle that uniquely

passes through the 3 vertices. Circles are recovered by a

least squares fitting due to the over-parameterization by 4

points. Figure 2 shows the sketch hypergraph representa-

tion, consisting of 9 vertices and 5 hyperedges. In addition,

the vertices are quantized to a 256×256 grid to bias the gen-

erative model into generating few distinct coordinates by

learning to produce repeated (x, y) values.

Turtle Graphics Representation The Turtle Graphics

representation uses a sequence of drawing commands,

which can be executed to form an engineering sketch in the

hypergraph representation. Intuitively, the turtle represen-

tation can be thought of as a sequence of pen-up, pen-move

actions, which iteratively draws the engineering sketch one

loop at a time. It is used by Ellis et al. [8] to generate com-

positional and symmetric sketches. Specifically, the draw-

ing commands of turtle graphics are specified by the follow-

ing grammar:

Turtle ⊢ [ Loop ]
Loop ⊢ LoopStart [Draw]
Draw ⊢ Line | Arc | Circle

LoopStart ⊢ loopstart(∆)
Line ⊢ line(∆)
Arc ⊢ arc(∆,∆)

Circle ⊢ circle(∆,∆,∆,∆)
∆ ⊢ (int, int)

Here, a Turtle program consists of a sequence of Loops,

each loop consists of a start command LoopStart, followed

by a sequence of [Draw] commands. The pen initially

starts at (0, 0). The LoopStart command starts a new loop

by lifting the current pen, displacing/teleporting it by ∆ and

putting it back down. The Draw command can be one of

three primitives Line, Arc, and Circle, each parameterized

by a different number of ∆ displacements, which extend the

current loop without lifting the pen, displacing it relative

to the current pen location. After a loop is completed, the

pen returns/teleports back to (0, 0). As with the hypergraph

representation, ∆ values are quantized to a 256×256 grid.

The loops are ordered so that ones closest to (0, 0), where

distance is measured between the loop’s closest vertex to

(0, 0), are drawn first. We provide an example program in

Section A.1 of the Supplementary Material.

3.2. Generative Models

We design and compare two different neural architec-

tures on the task of engineering sketch generation: Curve-

Gen and TurtleGen.

3.2.1 CurveGen

CurveGen is our adaptation of the PolyGen [23] architec-

ture applied to engineering sketch generation. CurveGen

generates the sketch hypergraph representation directly. As

with the original PolyGen implementation, we break the

generation of G into two steps based on the chain rule: 1)

generate the sketch vertices V , 2) generate the sketch hy-

peredges E conditioned on the vertices:

p(G) = p(E|V )
︸ ︷︷ ︸

Curve
model

p(V )
︸ ︷︷ ︸

Vertex
model

,

where p(·) are probability distributions. Figure 3 illus-

trates the two step generation process starting with the ver-

tex model (left) and then the curve model (right). The fi-

nal stage of recovering the curve primitives from the hyper-

edges is done as a post-process. We use the vertex model di-

rectly from PolyGen with 2D vertex coordinates and adapt

our curve model from the PolyGen face model to work with

2D curves. We use 3 Transformer blocks in the vertex de-

coder, curve encoder, and curve decoder Transformer mod-

els [33]. Each block includes a multihead attention with

8 heads, layer normalization and a 2-layer multilayer per-

ceptron (MLP) with 512D hidden, and 128D output dimen-

sions. Dropout with rates 0.2 and 0.5 are applied in each

block of the vertex and curve models, respectively, right af-

ter the MLP. The vertex and curve models are both trained

by negative log likelihood loss against the ground truth data.

Once the neural network is trained, we perform nucleus

sampling [14] to directly generate samples in the hyper-

graph sketch representation. We refer the reader to Nash

et al. [23] for further details.

3.2.2 TurtleGen

The neural network for generating a program in the Turtle

representation is a sequence generator. The sequence of tur-

tle commands are encoded as a sequence of discrete valued

tokens, where each of the commands loopstart, line, arc,

circle, along with two tokens for sequence start and end,

are represented as 1-hot vectors. The quantized integer co-

ordinates are encoded as two 1-hot vectors for x and y each.

For any given sketch in the hypergraph representation, we

randomize the turtle sequence generation by randomly se-

lecting the loop order, loop’s starting vertex, and the direc-

tion of drawing the loop. We discard long sequences over

100 turtle commands.

The neural network is a simple 9-layer Transformer with

512D hidden and 128D output dimensions. The network

has seven linear branches of input and output, where the

first branch corresponds to the type of command, and the

remaining six branches correspond to three x and y coor-

dinates. Commands with less than three points are padded
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Figure 3: CurveGen, our variant of the PolyGen [23] architecture, first generates sketch vertices (left), and then generates

sketch curves conditioned on the vertices (right).

with zeros. The input branches are concatenated and added

with the conventional positional embedding after a linear

layer, before they are fed into the Transformer network. The

output branches are connected to the Transformer encod-

ing at the previous sequence step. We store the first three

ground-truth turtle steps from the training set as a fixed dic-

tionary, which we randomly sample from to precondition

the auto-regressive model at sampling time. Each sampled

sequence is then executed to recover the sketch hypergraph

representation, and define the geometry and topology.

4. Results

We now present quantitative and qualitative results

on the task of engineering sketch generation, comparing

the CurveGen and TurtleGen generative models with the

SketchGraphs [27] generative model.

4.1. Data Preparation

We use the pre-filtered version of the SketchGraphs [27]

dataset that contains 9.8 million engineering sketches with

16 or fewer curves. We remove duplicates from the dataset

to promote data diversity during training, and ensure evalua-

tion on unseen data at test time. We consider two sketches to

be duplicates if they have identical topology and similar ge-

ometry. To detect similar geometry, sketches are uniformly

scaled and the coordinates are quantized into a 9×9 grid.

Vertices are considered identical if they lie in the same grid

square. The same quantization is also applied to the radii

of circles and arcs. Lines are considered identical if the end

points are identical. Arcs additionally check for an identical

quantized radius. Circles check the center point and radius.

We do not consider a sketch unique if both the topology and

geometry match, but curve or vertex order is different. Us-

ing this approach we find that duplicates make up 87.01%

of the SketchGraphs data. We remove all duplicates, invalid

data (e.g. sketches with only points) and omit construction

curves. We use the official training split and after filtering

have 1,106,328 / 39,407 / 39,147 sketches for the train, val-

idation, and test sets respectively.

4.2. Experiment Setup

We train the CurveGen model on the SketchGraphs train-

ing set. Unlike the ShapeNet dataset used to train the orig-

inal Polygen model, the SketchGraphs data does not have

any notion of classes and represents a more challenging,

but realistic scenario where human annotated labels are un-

available. We train for 2 million iterations with a batch size

of 8 using 4 Nvidia V100 GPUs. We use the Adam opti-

mizer with learning rate 5e-4, and apply to the curve model

data a jitter augmentation with the amount sampled from a

truncated normal distribution with mean 0, variance 0.1 and

truncated by the bounding box of the sketch vertices. Train-

ing time takes approximately 48 hours. We save the model

with the lowest overall validation loss for evaluation.

We train the TurtleGen model on the same data. To en-

sure fair comparison, we train the model with a batch size

of 128 for a total of 0.5 million iterations, which exposes

the model to the same number of training data samples as

CurveGen. Training is done with a single Nvidia V100

GPU and takes around 48 hours. We use the Adam opti-

mizer with a learning rate of 5e-4, as well as a learning rate

scheduler that decreases the learning rate by a factor of 0.5

when the validation loss plateaus. Validation is conducted

once every 500 training iterations. We save the model with

the lowest overall validation loss for evaluation.

We train the SketchGraphs generative model using the

official implementation with and without duplicates. We

train for 150 epochs, as in the original paper, on a single

Quadro RTX 6000 GPU. Training time takes approximately

27 hours. Following the advice of the SketchGraphs au-

thors, we adjust the learning rate scheduler to reduce the

learning rate at epochs 50 and 100. All other hyperparam-

eters and settings follow the official implementation, in-



Table 1: Quantitative sketch generation results. Bits per Vertex and Bits per Sketch are the negative log-likelihood calculated

over the test set; both are not directly comparable and reported separately for the vertex/curve models used in CurveGen.

Unique, Valid, and Novel are calculated over 1000 generated sketches.

Model Parameters Bits per Vertex Bits per Sketch Unique % Valid % Novel %

CurveGen 2,155,542 1.75 / 0.20 176.69 / 30.64 99.90 81.50 90.90

TurtleGen 2,690,310 2.27 54.54 86.40 42.90 80.60

SketchGraphs 18,621,560 - 99.38 76.20 65.80 69.10

SketchGraphs (w/ Duplicates) 18,621,560 - 94.30 58.70 74.00 49.70

cluding the prediction of numerical node features. These

provide improved geometry initialization before the data is

passed to the OnShape constraint solver.

4.3. Quantitative Results

4.3.1 Metrics

For quantitative evaluation we report the following met-

rics. Bits per Vertex is the negative log-likelihood of test

examples averaged per-vertex and converted from nats to

bits; lower is better. Bits per Sketch is the negative log-

likelihood of test examples averaged per-sketch as a whole

in bits; lower is better. For CurveGen we report the bits for

both the vertex and curve models. Unique is the percentage

of unique sketches generated within the sample set. We use

the duplicate detection method described in Section 4.1 to

find the percentage of unique sketches. A lower value indi-

cates the model outputs more duplicate sketches. Valid is

the percentage of valid sketches generated. Invalid sketches

include curve fitting failures, curves generated with >4 ver-

tices, or identical vertices within a curve. Novel is the per-

centage of novel sketches generated that are not identical

to sketches in the training set. We again use the duplicate

detection method described in Section 4.1. We evaluate

the bits per vertex/sketch metrics on the withheld test set.

All other metrics are evaluated on 1000 generated samples.

We include non-Valid sketches, which often contain valid

curves, when calculating the Unique and Novel metrics.

4.3.2 Quantitative Comparison

Table 1 shows the results comparing CurveGen and Turtle-

Gen with the SketchGraphs generative model. The param-

eter count for each model is provided for reference. Due to

differences in sketch representation and terms in the neg-

ative log likelihood loss, the bits per vertex and bits per

sketch results are not directly comparable between mod-

els, and only provided here for reference. For the Sketch-

Graphs model, the prediction of numerical node features

adds an additional term into the loss, giving a higher bits per

sketch value than reported in the SketchGraphs paper. In-

valid sketches occur most frequently with TurtleGen, where

identical vertices within a curve are often predicted. Invalid

sketches from SketchGraphs are commonly due to arcs of

near zero length. For the novel metric, it is reasonable to ex-

pect generative models to produce some identical sketches

to those in the training data, such as simple circles, rect-

angles, and combinations thereof. The low percentage of

novel sketches generated by SketchGraphs when trained on

the dataset with duplicates suggests that the model memo-

rizes sketches which are duplicated in the training data. Re-

moving duplicates from the data helps improve variety in

the output. For the remainder of the paper we report results

from all models trained without duplicates.

4.4. Perceptual Evaluation

To understand how engineering sketches generated by

each model compare to human designed sketches, we per-

form a perceptual evaluation using human subjects. In our

two-alternative forced choice study, each participant is pre-

sented with one human designed and one generated engi-

neering sketch and asked: “Which sketch is more realis-

tic?". Brief instructions are provided, including an illustra-

tion of an engineering sketch used in context, similar to Fig-

ure 1. We evaluate 1000 unique generative sketches from

each model, with a consistent set of 1000 human designed

sketches from the SketchGraphs test set. For each pair of

sketches, we log the responses of three human subjects and
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Figure 4: Results from our perceptual evaluation using

human subjects to identify the most realistic engineering

sketch. Left: The percentage of generated sketches classed

as more realistic than human designed sketches. Right: The

percentage of inter-rater agreement.



Human Designed CurveGen TurtleGen SketchGraphs

Figure 5: Qualitative sketch generation results. From left to right: human designed sketches from the SketchGraphs dataset,

randomly selected sketches generated using the CurveGen, TurtleGen, and SketchGraphs generative models.



Figure 6: Examples of 3D geometry produced by extruding the closed profiles of sketches generated from CurveGen.

use the majority answer. We conduct the study using work-

ers from Amazon Mechanical Turk. Figure 4, left shows

the percentage of generated sketches classed as more real-

istic than human designed sketches; higher values are bet-

ter. A value of 50% indicates the generated sketches are

indistinguishable from human design. Figure 4, right shows

the inter-rater agreement calculated as a percentage between

each of the three human subjects. A lower value indicates

there is more confusion between the generated and human

designed sketches. The study results show that human sub-

jects find CurveGen output to be the most realistic of the

generated engineering sketches.

4.5. Qualitative Results

Figure 5 shows human designed sketches from the

SketchGraphs dataset beside randomly selected valid

sketches generated using the CurveGen, TurtleGen, and
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Figure 7: Comparison of sketches generated by CurveGen

before (top) and after (bottom) applying automatic con-

straints in Autodesk AutoCAD.

SketchGraphs generative models. We observe that Curve-

Gen in particular is able to consistently produce sketches

with closed loops, symmetrical features, perpendicular

lines, and parallel lines. We provide additional qualitative

results in Section A.2 of the supplementary material.

Sketch to Solid CAD Models A key motivation of the

current work is to enable the synthesis and composition of

solid CAD models. In Figure 6 we demonstrate how engi-

neering sketches generated by CurveGen with closed loop

profiles can be lifted into 3D using the extrude modeling

operation in a procedural manner.

Sketch Constraints The geometric output of our gener-

ative models can be post-processed to apply sketch con-

straints and build a constraint graph. Figure 7 shows how

the auto-constrain functionality in Autodesk AutoCAD can

enforce parallel and perpendicular lines within a given tol-

erance. The unconstrained output from CurveGen is shown

on the top row, and has a number of lines that are close to

perpendicular. The auto-constrained output on the bottom

row snaps these lines to perpendicular and establishes con-

straints for further editing.

5. Conclusion

In this paper we presented the CurveGen and TurtleGen

generative models for the task of engineering sketch gener-

ation and demonstrated that they produce more realistic out-

put when compared with the current state-of-the art. We be-

lieve engineering sketches are an important building block

on the path to synthesis and composition of solid models

with an editable parametric CAD history. Promising future

directions include modeling higher-order constructs such as

constraints and repetitions in the underlying design.
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