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Abstract

Sketch recognition algorithms are engineered and eval-

uated using publicly available datasets contributed by the

sketch recognition community over the years. While existing

datasets contain sketches of a limited set of generic objects,

each new domain inevitably requires collecting new data for

training domain specific recognizers. This gives rise to two

fundamental concerns: First, will the data collection proto-

col yield ecologically valid data? Second, will the amount

of collected data suffice to train sufficiently accurate classi-

fiers? In this paper, we draw attention to these two con-

cerns. We show that the ecological validity of the data

collection protocol and the ability to accommodate small

datasets are significant factors impacting recognizer accu-

racy in realistic scenarios. More specifically, using sketch-

based gaming as a use case, we show that deep learning

methods, as well as more traditional methods, suffer sig-

nificantly from dataset shift. Furthermore, we demonstrate

that in realistic scenarios where data is scarce and expen-

sive, standard measures taken for adapting deep learners

to small datasets fall short of comparing favorably with al-

ternatives. Although transfer learning, and extensive data

augmentation help deep learners, they still perform sig-

nificantly worse compared to standard setups (e.g., SVMs

and GBMs with standard feature representations). We pose

learning from small datasets as a key problem for the deep

sketch recognition field, one which has been ignored in the

bulk of the existing literature.

1. Introduction

Sketching is a natural mode of communication. It is a

powerful means of expressing ideas, and conveying con-

cepts [3]. The fast growing body of work on sketch recog-

nition aims to build accurate recognition systems that will

eventually enable fluid sketch-based interaction.

Thanks to the advances in feature representation, ma-

chine learning, and deep learning in particular, the field

has enjoyed substantial growth. There has been significant

progress in the development of accurate recognition algo-

rithms. We now have large datasets containing millions

of drawings from hundreds of classes. Yet, the final link

that brings sketch recognition to real-life applications is still

missing due to practical limitations. One such limitation is

the requirement to create custom recognizers for each new

domain. Each domain comes with a specific set of visual

vocabulary, which is unlikely to be covered by the set of

categories available from the existing datasets. Hence, one

needs to compile a dataset of domain-specific sketches, and

train models with this dataset.

This brings about two fundamental concerns: First, will

the data collection protocol yield ecologically valid data?

Second, will the amount of collected data suffice to train

sufficiently accurate classifiers?

The first concern, ecological validity, questions how well

the result of an experiment translates to the real life sce-

nario. In the context of sketch recognition, ecological va-

lidity requires data collection setup to be as close to the real

use case as possible. If, for example, the use case involves

sketch-based design, the data should be collected using a

protocol that mimics the actual design task. Training on

data that is detached from the context and the use case vio-

lates ecological validity and is likely to lead to dataset shift

followed by inferior recognition performance. The first goal

of this paper is to draw attention to this specific issue within

a sketch-based gaming use case scenario.

The second concern, sufficiency of data, has the potential

to turn into a roadblock in deep-learning-based approaches,

which are particularly data-hungry. The use of enormous

datasets such as the QuickDraw dataset [14] has become

the de facto standard when it comes to evaluating and re-

porting performance of new methods. As a consequence

the characteristics of new methods for small datasets have

remained a mystery. Their relative performance compared

to other deep learning algorithms, and against more tradi-

tional setups not been reported over smaller and more prac-

tical datasets. Hence, the second goal of this paper is to ad-

vocate reporting performance metrics on small datasets, and

more importantly emphasize the need to build deep learning
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methods that can learn from small datasets.

In order to explore the difficulties posed by these two

concerns, we walk through the steps of building a sketch-

based application using a gaming use case. More specif-

ically, we scrutinize the decisions that one would have to

take over the course of training recognizers for our sketch-

based application. First, we describe the process of select-

ing a set of symbols to be used for sketch-based interac-

tion. Then we describe three alternative data collection pro-

tocols for collecting representative data. The protocols have

been designed to reflect increasing level of ecological valid-

ity ranging from a typical in-lab symbol drawing setup, to

an in-situ setup where the data is collected during real game

play through a Wizard of Oz setup. Next, we report recog-

nition results obtained under these data collection policies

using deep learning methods, and contrast them with a more

standard SVM/GBM setup.

We have two main contributions. First, we demonstrate

that ecological validity in data collection is a real concern,

and one that needs to be directly incorporated into the devel-

opment of sketch recognition algorithms in order to move

beyond upper limits imposed by dataset shift. Second, we

show that there is substantial performance discrepancy be-

tween what deep sketch recognition methods have demon-

strated in large datasets such as QuickDraw, and what they

can accomplish with small realistic datasets. This points to

a gap in the literature, which we believe, deserves attention

of the community.

In the rest of the paper, first we describe the related work

under sketch recognition and database collection. Next, we

describe the three data collection setups, and discuss the

measures we have taken to collect ecologically valid data.

In section 4, we evaluate the performance of deep learners

and traditional learners trained with the three groups of data

with an emphasis on performance loss due to lack of eco-

logical validity. Section 5 explores the data sufficiency con-

cern, and compares the performances of seven deep learners

to SVM and GBM learners. Section 6 provides a discus-

sion of the results, and lays out important challenges for the

deep sketch recognition community. We conclude with a

summary of our contributions and future work.

2. Related Work

Although interest in sketch recognition can be traced

back to Ivan Sutherland’s Sketchpad [28], the field had a re-

vival around the turn of the millennium, thanks to learning-

based approaches. Earlier approaches typically combined

ink features, image features, temporal features, or their

various combinations with conventional classifiers (e.g.,

SVMs, Bayesian Networks, mixture models) [40] [31] [26]

[25] [20]. These approaches were generally developed and

tested using relatively small datasets (10-100 examples per

class) [5] [32] [1] [18]. Availability of significantly larger

set of data enabled superior solutions based on deep learn-

ing that provide end-to-end feature extraction and classifi-

cation.

Today, large sketch datasets consist of millions of exam-

ples from hundreds of classes. Two well-known examples

are TU-Berlin [9] and QuickDraw [14]. QuickDraw was

compiled using a web-based platform that gamifies sketch

collection. This dataset has 50,000,000 sketches from 345

classes. The TU-Berlin sketch dataset consists of 20,000 ex-

amples across 250 classes. This dataset was collected using

Amazon Mechanical Turk, a paid crowd-sourcing service.

The QuickDraw and TU-Berlin datasets enabled re-

searchers to build deep sketch recognition models that

achieve impressive results. Using the TU-Berlin dataset,

Zhang et. al. [42], and Yu et.al [41] developed CNN-based

neural networks for sketch classification. This dataset is

also utilized by Sedatti et.al. [23] to develop a the neural

network for similarity search. Using QuickDraw dataset,

Ha et. al. [10] developed an RNN-based network for

sketch generation, Xu et. al. [36] developed a deep hash-

ing method using the mixture of CNN and RNN layers, and

Song et. al. [27] developed a network that can map images

to sketches using LSTM and CNN layers. Sketch segmenta-

tion is another field where deep models contributed. Kaiyr-

bekov et. al. [13] used RNN and MLP layers, and Yang

et. al. [37] used deep graphical neural network to achieve

stroke-level sketch segmentation. A recent survey of deep

learning methods for sketch data by Xu et. al. [35] offers

an extensive overview to the field.

While these massive datasets empowered researchers to

achieve state-of-art results using deep learning, the set of

object categories they cover is not exhaustive. Hence, in

practice, researchers and practitioners are still required to

collect data for their custom sketch-based applications or

to use existing smaller datasets. For example, Tirkaz et.

al. [32] relied on sketch datasets for crisis management

and military field operations in their work. Today, the only

available datasets for these use-cases are the NICICON [16]

and COAD datasets, which are limited in size. A more re-

cent example is the sketch dataset collected by Yesilbek et.

al. [39] where the least populated class has only 47 exam-

ples. This paper is another example where a sketch dataset

had to be collected to develop a custom sketch-based gam-

ing application.

Although there has been efforts to train accurate sketch

recognizers using few examples, they are just a handful in

number. For example, work by Yesilbek et. al. [39] pro-

poses a self learning framework that can learn from as few

as 1-3 labeled examples, however it also requires a large

dataset of unlabeled data. We advocate learning from few

examples. However our focus is on fully supervised sketch

recognition using limited size datasets where unlabeled data

is not present.
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Figure 1. Screenshot from OpenRA, a real-time strategy video

game where parties compete in an imaginary military conflict by

constructing their bases, producing units, and commanding them.

We have modified this open-source game to be played solely with

sketching. The base design and implementation offers an optimum

environment for intuitive sketch-based interaction.

In recent years, zero-shot sketch-based image retrieval

(SBIR) has grasped the attention of sketch recognition com-

munity. This field, dominated by deep learning methods,

achieved exceptional results by requiring no additional data

to perform on novel classes [33] [6] [30] [8] [38]. Unlike

SBIR, our focus is on recognition instead of retrieval. The

efficacy of zero-shot SBIR methods for recognition tasks

has not been assessed.

3. Data Collection Protocols

In this section, we first introduce our sketch-based gam-

ing use case. Then we define the three data collection pro-

tocols, the adequacy of which we later investigate.

3.1. Sketch­based Gaming: A Test­Bed

We picked sketch-based video gaming to serve as a use

case. After a survey of possible different genres, we con-

cluded that 2D real-time strategy games would serve as

a suitable genre for sketch-based interaction. We picked

OpenRA [19], a popular open-source game, and adapted it

to support sketch-based interaction. An screenshot of the

game is presented in Figure 1.

3.2. Designing the set of symbols

The first step in designing a sketch-based interface is to

decide on the set of symbols to be used. The field of semi-

otics is the formal study of signs, symbols and their seman-

tics. We took a semiotics-driven approach to design two sets

of symbols for game play.

Figure 2. Symbol designs considered for our sketch-based video

game. Visual alike set has symbols that remind of game object vi-

suals with no syntactic structure. Semi-syntactic set has symbols

that are composed of a grammatic composition while still having

a visual reminder of the game objects. In this set, building objects

have symbols encapsulated with a box, and production object sym-

bols are encapsulated with a circle.

The first set of symbols were designed to resemble loose

visual abstractions of the objects used in the game. We re-

fer to this set as the visually alike set. The second set we

designed aimed to achieve weak grammatic composition-

ality in symbol design, where symbols have parts to refer

their abilities. This is the approach that has been taken to

design the course of action symbology that is actually used

in the US armed forces, formally defined in the operational

terms and graphics manual [5]. We refer to this second set

of symbols as the semi-syntactic set. We present these sets

in Figure 2.

3.3. Sketch Data Collection Setups

Research in fields such as face and object recogni-

tion have transitioned to realistic datasets [12][34]. How-

ever, the sketch recognition community, and particularly

the deep sketch recognition community, has primarily been

concerned about the scale and open access availability of

datasets. Data quality and validity have largely been ne-

glected [17]. It is easy to encounter examples of sketch

recognizers trained on datasets collected in setups that mis-

match to their use case. NICICON [16] is an example. Al-

though the NICICON dataset was collected to build recog-

nizers to serve in emergency management, it was collected

in an isolated lab-like setup. The imperative nature of emer-

gency situations are likely to distort sketches which may

result in poor recognition performance. Collecting sketch

data in a lab-like setup ignores this factor, makes it impos-
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Testing Set: Realistic Pseudo-Realistic In-Lab

Training Set: R P-R I-L R P-R I-L R P-R I-L

SVM 98.7% 94.0% 94.6% 89.4% 96.1% 93.6% 95.0% 97.1% 97.2%

GBM 94.6% 89.2% 89.6% 90.0% 93.6% 91.5% 93.5% 96.5% 96.6%

CNN-L 88.1% 79.9% 83.3% 84.6% 86.9% 86.1% 87.6% 88.5% 91.7%

CNN-M 88.4% 79.8% 83.4% 88.4% 86.3% 86.1% 88.4% 90.0% 91.5%

CNN-S 91.5% 83.3% 85.7% 87.1% 87.9% 88.3% 90.5% 92.5% 93.2%

CNN-XS 91.7% 83.0% 86.4% 87.1% 88.4% 87.6% 91.6% 93.2% 93.7%

EM-L 88.7% 82.1% 80.0% 77.0% 85.6% 79.8% 69.0% 73.3% 79.9%

EM-M 90.1% 82.9% 82.1% 77.8% 86.2% 81.5% 68.5% 73.7% 80.3%

EM-S 89.3% 83.6% 79.4% 75.9% 85.0% 79.6% 68.6% 72.8% 78.1%

Table 1. Performance experiment results with different train-test combinations. Experiments are conducted with standard 10 fold cross-

validation. Results are reported in mean accuracy. Yellow shaded cells highlights the best method, and blue shaded cells highlights the

best deep learning method for the column. The results clearly shows that models trained using protocols that lacks in ecological validity

performs poorly in real-life use. Another insight is that deep learning models cannot reach to the performance level of more traditional

learning methods in small datasets. R: Realistic, I-L: In-Lab, P-R: Pseudo-Realistic

sible to evaluate real-life performance of the recognizer.

We collected three different datasets to study the effects

of the mismatch between the collection and real use envi-

ronment for sketch data. Datasets are collected via proto-

cols designed to reflect increasing level of ecological valid-

ity.

Our first dataset serves as a baseline. This dataset was

collected in an isolated, lab-like setup. Participants of this

data collection activity were simply asked to sketch dis-

played symbols on a tablet using a stylus. This dataset rep-

resents the status-quo way of collecting sketch data. We

will refer to this dataset as in-lab in the rest of this paper.

The second dataset is an intermediary between an in-lab

and a realistic setup. While this dataset was also collected

in an isolated environment, participants are put under time-

pressure to mimic the sense of urgency players have when

competing in a real-time strategy game. To create the time-

pressure, we modified our data collection software to award

scores to each drawn symbol inversely proportional to its

sketching duration. We instructed the participants to beat

previous participants by aiming to achieve maximum score.

Our main goal with this intermediary setup was to assess the

plausibility of mimicking a realistic setup while keeping the

low-cost structure of an in-lab setup. We refer to this dataset

as pseudo-realistic in the rest of this paper.

The third dataset is collected in an in-situ setup that has

complete ecological validity. This fully realistic dataset was

collected while participants played our sketch-based game.

Collecting this dataset had two major challenges. The first

challenge was to have the sketch-based game fully func-

tional. This required us to replace the standard mouse-

keyboard setting with sketch-based interaction. The second

challenge was the absence of a custom sketch recognizer.

Since a custom high performant recognizer was not present,

we had to establish a mechanism to substitute it. We over-

came this challenge by assembling a Wizard of Oz [4] setup.

In this setup, the sketches drawn by participants are rec-

ognized by an Oracle. Sketches and labels are exchanged

between the participant and the Oracle’s computer in real-

time, providing the illusion of a perfect recognizer in opera-

tion. Participants of this data collection activity were asked

to compete against an AI-controlled player after a short tu-

torial. Choosing a popular game was helpful in this setting

as all of the participants were familiar with the game me-

chanics. Participants freely competed against the AI player

while we collected sketches. The participants were not in-

formed about the Wizard until after the end of the study.

4. Performance Evaluations Comparing Data

Collection Setups

We ran experiments to measure how models trained with

datasets collected under different protocols perform in a

real-life scenario. We considered both statistical and deep

learning methods for our experiments. We selected GBM

and RBF-Kernel SVM as a representative subset of statis-

tical learning methods. For deep learning, we considered

state-of-art CNN-based and embedding-based architectures

of various sizes.

We used IDM [21] as the feature extraction method for

statistical learning. For many years, IDM served as the state

of art feature extraction method for sketch data before the

wide adoption of deep learning by the sketch recognition

community. The hyper-parameter search for SVM was car-
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ried out using the intervals suggested by Yesilbek et. al.

[40]. Our GBM models were trained with the CatBoost im-

plementation [7]. We kept the default hyper-parameter val-

ues set by the library across our experiments. This flavour

of GBM has reported the highest performances with default

hyper-parameters compared to its alternatives.

There are numerous approaches to deep learning for

sketch recognition. In this paper, we focused on CNN

and embedding based methods. We evaluated four archi-

tectures based on CNNs, and three architectures based on

embedding extraction. For each method, we employed ar-

chitectures varying in the number of parameters. CNN-

based architectures were derived from the architecture pro-

posed in sketch-a-net paper by Yu et. al. [41]. We label

these architectures as CNN-L, CNN-M, CNN-S, and CNN-

XS referring to their size. The CNN-L architecture is im-

plemented by following the sketch-a-net paper, which has

8,502,473 parameters. Following a similar setup, remain-

ing architectures have reduced number of layers and filters.

The CNN-M architecture has 537,481, CNN-S architecture

has 79,401, and CNN-XS architecture has 23,577 parame-

ters. Embedding-based architectures evaluated in this pa-

per implement the embedding extraction segment proposed

in Sketch Former by Riberio et. al. [22]. The embed-

ding extraction segment is trained with the full size Quick-

Draw dataset. This segment maps a given sketch into a 128

length vector ready to be used for various purposes. In order

to achieve classification from the embedding vectors, we

adopted three different fully connected feed-forward neu-

ral networks with varying in size. We label these architec-

tures as EM-L, EM-M, and EM-S referring to their sizes.

Excluding the embedding segments, the EM-L architecture

has 260 units, followed by EM-M with 140 units, and EM-S

with 112 units.

We conducted 81 experiments in total using nine meth-

ods to get a complete picture. In each experiment, a model

is trained and tested with different datasets collected us-

ing different protocols in varying ecological validity. We

present our results in Table 1. Statistical significance analy-

sis using multi-factor ANOVA shows significant difference

interaction for p < 0.05 for factors of architecture, train-

ing set, and test set. The data used in these analyses have

satisfy ANOVA’s assumptions (normality, homoscedastic-

ity, and no multicollinearity).

Our first conclusion from the results is that the level of

ecological validity has a significant impact on the recog-

nizer performance. In all choices of classifier, we observed

that the models trained with the in-lab data have failed to

learn the sketching patterns that emerged in the realistic

setup. This indicates that a low level of ecological validity

causes substantial dataset shift which deteriorates the recog-

nizer performance in a real life scenario. As an example, the

practitioner who neglect ecological validity in their data col-

lection setup would report 91.7% accuracy for their model

with CNN-L architecture. However this model would only

have performed with 83.3% accuracy in the real-life use-

case. In the light of this conclusion, we invite sketch recog-

nition practitioners and researchers to collect their datasets

in an in-situ setup to avoid the dataset shift. We advocate

reporting performance results using a dataset collected with

an in-situ setup since it gives a more accurate estimation of

how the models will perform in real life scenarios.

We also conclude from the results that using protocols at-

tempting to mimic the in-situ setup is not sufficient. Exper-

iments show that training models with pseudo-realistic data

fails to improve the recognizer performance when tested

with realistic data compared to models trained with in-lab

dataset. Furthermore, the small gap between the models

trained with in-lab and pseudo-realistic data indicates that

our pseudo-realistic setup failed to generate sketches with

patterns similar to a realistic setup. Based on this result, we

conclude that mimicking the in-situ setup requires rigorous

study of the effects and constraint by the real life scenarios.

5. The Effect of Small Data over Performance

As illustrated in our sketch-based gaming use case, mov-

ing to a new domain inevitably requires collecting realis-

tic examples of domain specific symbols. In our case, this

meant an exhausting effort to build the infrastructure col-

lecting in-situ data, recruiting and compensating partici-

pants willing to play the game, running the experiment in

presence of an experimenter and a wizard, and a follow up

effort for data labeling. This amounted to 2 person-months

of labor for building the data collection infrastructure, and 2

days for data collection with 10 participants. Even then, we

were only able to collect a modest amount of data as seen

in Table 2.

Our dataset is orders of magnitude smaller than the large

datasets which have become standard in the field for devel-

oping and evaluating recognition algorithms. In contrast to

the vast number of work demonstrating the superiority of

deep learners, Table 1 shows that statistical learning meth-

ods have a clear edge on small datasets. This, in itself, is not

surprising as deep learners claim superiority on big data, but

make the remark that strategies involving data augmentation

and the use of pretrained models can be deployed for small

datasets.

In accordance, we assess the efficacy of these methods

for our use case using extensive data augmentation and

transfer learning. We compare the results to those obtained

using SVMs and GBMs, again using the standard IDM fea-

ture represenation [21].

Transfer learning is widely adopted in deep learning field

[29] [2] [15]. This approach promotes initializing model

parameters from pre-trained models instead of setting them

randomly. It has been shown that sketch recognizers bene-
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Type Class Number of Examples

Object Gunboat 52

Object Turret 61

Object Rocket Soldier 61

Object Pillbox 74

Object Power Plant 83

Object Rifle Infantry 87

Object Light Tank 106

Action Do 122

Action Select 122

Table 2. Number of examples collected for each class in our real-

istic dataset. Low example count and non-uniform distribution is

an artifact of unrestricted data collection setup.

Training Dataset

Method Realistic Pseudo-realistic In-lab

SVM 98.7% 94.0% 94.6%

GBM 94.6% 89.2% 89.6%

EM-M 90.1% 82.9% 82.1%

CNN-S 92.3% 83.5% 85.4%

CNN-S +

Transfer L.
94.0% 87.6% 89.4%

CNN-S +

Transfer L.+

Data Aug.

95.1% 90.1% 90.6%

Table 3. Mean accuracy results with additional techniques applied

to CNN-S model. All models are tested with the Realistic dataset.

Data augmentation generated 50 new examples for each sample.

Results show that even though deep learning models improve with

additional techniques trained with small dataset, their performance

still can’t reach to traditional learning methods.

fit from this technique similar to other fields [24] [11]. We

adopted this technique aiming to achieve better results with

our deep learning model. We initialized the parameters of

the model with values learned by pre-training. The pre-

training was based on 14 randomly selected classes from

the QuickDraw dataset. This allowed the model to have

a head start in training. As our results show, initializing

model parameters with a pre-trained model increases the

performance of our model.

As second remedy, we performed data augmentation.

Applying rotation and shearing transformations to existing

examples, we synthetically increased our dataset size by a

factor of 50. When applied in combination with transfer

learning, this technique further improved the performance

of our deep learning model.

Table 3 shows the results obtained using transfer learn-

ing, extensive data augmentation and their combination.

The results demonstrate that transfer learning in combi-

nation with data augmentation significantly improved the

performance of our deep learning model without requiring

us to obtain additional examples. While still falling short

compared to more traditional methods, we show that deep

learning methods can achieve reasonable results on small

datasets by employing additional techniques.

6. Conclusion and Summary

The effect of ecological validity in sketch datasets was

previously unexplored. In order to investigate how data

collection setups effect sketch recognition, we collected

datasets in setups with varying levels of ecological valid-

ity. Our sketch-based gaming use case paired with Wizard

of Oz setting allowed us to collect a fully realistic dataset.

We conducted experiments using various learning meth-

ods including more traditional ones like SVM, and GBM,

as well as deep learning models varying in approach and

size. Our results show that data collection protocols have

significant impact on model performances. Moreover, we

showed that training models with a dataset collected in an

isolated environment causes dataset shift, which results in

lower recognition performance in real-life use. Our at-

tempts to mimic the in-situ setup has failed to show bet-

ter results when compared to in-lab setting indicating that

users’ sketching behavior change in unobvious when using

the application.

Collecting sketch data in a realistic setup can be very ex-

pensive. This high-cost structure prevents assembling large

realistic datasets. This is a serious limitation for deep meth-

ods. In our experiments, deep learning methods performed

significantly worse than the more traditional ones regard-

less of their size or approach. Even with transfer learning

and substantial data augmentation, their accuracy was sub-

par.

In conclusion, we invite sketch recognition practition-

ers to collect their data using an in-situ setups to avoid the

dataset shift. Further, we urge researchers to report results

with smaller datasets along with larger ones as they try to

push beyond the state of the art.

7. Future Work

Transfer learning, and data augmentation taken individu-

ally and together failed to achieve substantial improvements

in recognition accuracy. We believe this area deserves the

attention of the community. Style transfer in particular

could be a fruitful direction to explore. For example, trans-

ferring drawing style from few in-situ examples to large in-

lab data could serve as a novel means of generating realistic

in-situ-like data.
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