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Abstract

Being able to detect irrelevant test examples with respect

to deployed deep learning models is paramount to properly

and safely using them. In this paper, we address the problem

of rejecting such out-of-distribution (OOD) samples in a

fully sample-free way, i.e., without requiring any access to in-

distribution or OOD samples. We propose several indicators

which can be computed alongside the prediction with little

additional cost, assuming white-box access to the network.

These indicators prove useful, stable and complementary for

OOD detection on frequently-used architectures. We also

introduce a surprisingly simple, yet effective summary OOD

indicator. This indicator is shown to perform well across

several networks and datasets and can furthermore be easily

tuned as soon as samples become available. Lastly, we

discuss how to exploit this summary in real-world settings.

1. Out-of-distribution sample detection

Imagine you are running some medical tests to determine

whether you have cancer or not, but erroneous data are fed to

the machine learning (ML) model in charge of establishing

the diagnosis. Would you prefer to get a positive or a negative

answer? Or would you rather the model refrained from

making a prediction and instead alerted the operator?

Out-of-distribution (OOD) detection [15] precisely aims

at detecting samples which come from a different distribu-

tion than the one used to train the model. There are many

reasons why a model would be fed such OOD inputs: faulty

equipment, user mistake, malicious intent, etc. Whether

intentional or not, not being able for a ML model to detect

when it receives an OOD sample raises legitimate concerns

about the reliability of systems built from such model, espe-

cially in critical applications.

The OOD sample-free setting. As more and more ML

models are being deployed, addressing this issue becomes

a very pressing matter. Unfortunately, such concerns might

not have been anticipated at training time. This tends to be

the standard at the moment, with models released “as is”. As

a consequence, enforcing trustworthiness must be done at a

further stage, incurring the risk of the original, in-distribution

(ID) data not being available. Reasons for this include pri-

vacy constraints (e.g., with medical or personal data), the

overly large size of the dataset, which prevents easy distri-

bution, the reluctance of companies to share their data with

competitors, or simply data loss, either due to carelessness

or storage constraints.

Although restrictive, the sample-free setting is worth in-

vestigating for several additional reasons: (i) it will provide,

by construction, data-efficient solutions, (ii) it is relevant

for other data-free paradigms, such as zero-shot distillation

(e.g. [4, 5, 6, 25]), and (iii) analyzing its limits will allow to

understand how much information about the ID distribution

is buried within a network trained in a standard way.

Goal. Under such circumstances, the general question we

want to address in this paper is whether it is possible to

extract from a pre-trained model one or several indicators

that allow to distinguish between OOD and ID samples, in

a fully sample-free setting, i.e., with no data. We assume a

white-box access to the networks, i.e., their exact structures

and parameters are fully accessible. We can thus extract in-

formation/statistics as the sample is run through the network.

On the other hand, the sample-free setting prevents from

learning new models, modifying existing ones (as alteration

cannot be assessed and would potentially be harmful), or

fine-tuning hyper-parameters.

Although the question we tackle is generic, we focus on

the problem of image classification using modern, frequently-

used deep neural network architectures. We will naturally

favor indicators which are fast to compute.

Contributions. Our fourth-fold constribution is:

• we introduce the sample-free setting;

• we review which prior works provide indicators falling

into our setting and propose/adapt several new ones

(Section 2);

• we conduct an extensive empirical analysis of these

indicators on classical benchmark datasets (Section 3);



• we introduce a summary indicator to serve as an ulti-

mate criterion for OOD detection, which is shown to

perform well in comparison to the individual indicators

(Section 4);

Outline. We first formalize the problem in Section 1.1 and

discuss some related works in Section 1.2. The proposed

indicators are described in Section 2 and are empirically

studied in Section 3. A summary indicator is proposed and

studied in Section 4. Finally, we discuss how to use the

proposed indicators in several real-word settings in Section

5 before concluding in Section 6.

1.1. Problem definition

We consider a neural network composed of L layers:

z(.,Θ) = fL(·; θL) ◦ . . . ◦ f1(·; θ1) : X → L (1)

mapping from the input space X ⊂ R
p to the logit space

L = R
K (assuming K classes), with Θ = [θ1, . . . , θL] the

set of all trainable network parameters. We will denote below

by z(l)(x; Θl) the feature vector of layer l (1 ≤ l ≤ L) for

an input x:

z(l)(x; Θl) = (fl(·; θl) ◦ . . . ◦ f1(·; θ1)) (x), (2)

with Θl = [θ1, . . . , θl] the parameters of the first l layers. We

further assume that Θ has been optimized on some so-called

“in” distribution I so that:

Θ ≈ min
Θ′

Ex,y∼I (E(x, y; Θ′) + µR(Θ′)) (3)

where µ weighs the two components of the loss, the regular-

ization function R is typically the weight decay and the loss

function E is usually the cross-entropy on the softmax logits

in the case of classification:

E(x, y; Θ) = −
K
∑

j

yj log pj(x; Θ) (4)

pj(x; Θ) =
ezj(x;Θ)

∑K
k=1 e

zk(x;Θ)
(5)

We assume that at test time samples that are sent through

the network comes from a mixture of two distributions: the

in-distribution I and another different distribution A, called

the OOD distribution. Our goal in this paper is to construct

a function h : X → R, called an indicator, that allows

to discriminate as well as possible ID from OOD samples,

with respect to the given neural network. We will design

indicators that take low values for ID samples and large

values for OOD samples. In practice, a test example x can

thus be rejected as soon as h(x) > hth, where hth is a

threshold that can be set to minimize a given error type,

taking into account the needs of the application. Denoting

by DA(x) and DI(x) the density at x for distributions A
and I respectively, an ideal indicator function is therefore

h(x) = DA(x)
DI(x)

, that allows to implement a bayes optimal

discriminator of ID and OOD samples.

In this paper, we adopt a sample-free setting, where A is

a priori unknown and no samples from I (or A) are avail-

able. We however assume a white-box access to the neural

network, which allows us to investigate candidate indicator

functions of the following general form:

h(x) = H
(

x,Θ, z(1)(x; Θ1), . . . , z
(L)(x; ΘL)

)

. (6)

Indicators can thus be defined from features computed any-

where in the network, as well as from network parameters.

Given that A is unknown, our main incentive will be to craft

h functions such that h(x) is low for x ∼ I , mainly by

taking into account the way the neural network was trained.

1.2. Related work

OOD detection methods can be categorized based on

what data they rely on and how they impact the base model.

We restrict the discussion below to methods which do not

require to learn a model for the base task from scratch.

Early methods. [15] coined the term out-of-distribution

while proposing to use the maximum softmax probability as

an indicator of OODness. ODIN [24] is a popular alternative

where samples are adversarially perturbed and the softmax

is taken with a high temperature.

Model alteration. Several methods sacrifice some accu-

racy to better detect OOD samples. They usually lower the

network confidence, known to be unreasonably high [27], by

adding some regularization so that OOD samples are better

captured. They rely either only on ID data [2, 10, 11, 22, 35]

or on both ID and OOD data [16, 31, 32].

Supervised approaches. Among the methods which do

not alter the network, some cast the problem as a super-

vised binary classification problem [3, 29, 34]. This setting

makes sense, for instance, if one want to discard samples

with unusual lighting conditions at inference time (because

the model was not built with such robustness at training

time). In general, however, it is very difficult to predict the

exact nature of the OOD samples as they are expected to

be the result of intrinsically unpredictable phenomena such

as human mistakes or faulty equipment. As a consequence,

despite being efficient (as shown later), these approaches

raise the concern of the adequacy between the OOD training

and testing sets, which is hard to resolve outside of a clear

application domain [34].



Outlier/novelty detection. In the absence of a clear tar-

get OODistribution, the problem is better cast as outlier

detection, i.e. detecting sample of low density. Many

methods fall into this category, relying on the availabil-

ity of ID data, possibly slightly polluted with OOD ones

[1, 7, 12, 15, 17, 23, 30, 33, 36, 37].

Sample-free approaches Only the earliest work, the max-

imum softmax probability of [15] and ODIN [24] (provided

we use the default hyper-parameters), match our setting,

where (i) the model cannot be altered, and (ii) no ID data is

available. These two indicators will be discussed later and

included in our empirical comparison.

2. Sample-free white-box OOD indicators

In this section, we introduce a number of indicators for

OOD detection. An indicator assesses how unlikely it is for

a sample to be ID (Section 1.1). We describe two categories

of such indicators: (i) optimality-based indicators (Section

2.1), and (ii) batch-normalization-based indicators (Section

2.2). Note that we will conform to the notations of Section

1.1, dropping the dependency to x and Θ when there is no

ambiguity.

2.1. Optimality­based indicators

Hopefully, a deployed network should be well trained,

resulting in ID samples having a small loss gradient with high

probability. This happens when pj(x) ≈ yj (1 ≤ j ≤ K),
which allows us to derive several indicators for which we

expect the values on ID samples to be low (see A.1 for a more

detailed discussion of the optimality consequences). Note

that this is also the motivation behind other, non-necessarily

sample-free methods (such as [15, 17, 23, 24]).

Baselines. Two common baseline indicators which derive

directly from the optimality condition are

MP(x) = 1− max
1≤j≤K

pj(x) (7)

H(x) = −

K
∑

j=1

pj(x) log pj(x) (8)

Using the maximum probability was proposed by [15] when

introducing the topic of OOD detection. When the prob-

abilities given by the network for the minority classes are

uniform and close to zero, the entropy H should behave like

MP. The entropy might convey a little more information than

the maximum probability when the uniformity constraint is

not satisfied.

ODIN. ODIN was introduced by [24] and is quite popular

in the OOD context. It relies on two ideas. First, some

adversarial noise [13] is added to the input x. Then, the

softmax probability vector given by the network is computed

using a temperature T of 1000 in the softmax:

x′ = x+ ǫ sign (∇xE(x, p(x))) (9)

pj|T (x) =
ezj(x)/T

∑K
k=1 e

zk(x)/T
(10)

T1000(x) = 1− max
1≤j≤K

pj|T=1000(x) (11)

ODIN(x) = T1000(x′) (12)

The rationale is that the adversarial perturbation will have

different effects on ID/OOD samples. Additionally, if we let

k be the class predicted by the network for a given x, it can

be shown (Appendix A.2), that

pk|T ≈
c

K
+

1

TK
zk (13)

so long as zk ≪ T . As such, using T1000 is a way of

normalizing the logit of the predicted class in the range

0 ≪ T1000(x) ≤ 1− 1/K.

When ǫ = 0, ODIN reduces to T1000 and the expensive

cost of computing the adversarial perturbation is avoided.

Tuning ǫ in a sample-free setting is not trivial. Arguably

though, the magnitude of the perturbation might not vary

much due to the sign function. In any case, we will use the

default value of the noise magnitude proposed in the original

paper (ǫ = 8 × 10−4). Considering it was established on

CIFAR 10(0) as well, it should constitute a strong baseline

anyway.

Latent space indicators. Let u = z(L−1) be the latent

pre-linear vector and z = Wu+ b be the logit vector, with

θL−1 = [W, b].
In order for the loss gradient to be small, wT

k u + bk
(where k is the predicted class at x) must be high. Since

wT
k u + bk = ||wk|| ||u|| cosαu,k + bk, this suggests the

following two necessary conditions:

1. ||u|| is high;

2. cosαu,k is close to 1.

From them, we can derive the following indicators:

NORM(x) = −||u|| (14)

ANG(x) = 1− cosαu,k = 1−
wT

k u

||wk|| ||u||
(15)

PROJ(x) = −||u|| cosαu,k = −
wT

k u

||wk||
(16)

ACT(x) = −wT
k u (17)

The NORM indicator should not be sufficient by itself,

as a high norm possibly benefits all the logits. ANG stands



for angularity and is the cosine distance between u and wk.

Compared to the logit (close to ACT), it will favor more

samples which align well with the hyperplanes and will

favor less samples which just have a high latent norm. The

PROJ indicator combines the information from both ANG and

NORM. Therefore PROJ is expected to be closely related to

the logit.

Positivity. ReLU-based architectures, which include most

modern ones in image classification, end the feature extrac-

tion phase with a ReLU activation, possibly followed by

max or average pooling. As a result, the latent vectors are

non-negative, whereas most components of the hyperplane

weights are negative (see Appendix A.1) and are used to bid

against the other classes, rather than for the predicted one.

This suggests that it might be worth looking at the positive

and negative parts of the previous indicators separately.

We define three new indicators NORM+, ANG++ and

ACT+ that are obtained by reducing the vectors wk and u
to the components with positive weights in wk in the defini-

tions of NORM (Eq. 14), ANG (Eq. 15), and ACT (Eq. 17)

respectively. In other words, we only consider the positive

subspace of wk.

2.2. Batchnorm­based indicators

Beyond optimality conditions, the presence of batch nor-

malization layers [19] offers the opportunity to define addi-

tional indicators. Indeed, those layers are based on statistical

parameters directly estimated on the training data, promising

a direct route to ID statistical information.

Using batch-normalization-derived features for OOD de-

tection has been proposed by [29], however in the context

of one-class and supervised OOD detection. Here we pro-

pose indicators based on them. Such features also tend to

be used more and more in the context of data-free compres-

sion [5, 39], which basically relies on the definition of OOD

losses.

The batch normalization layer operates in two steps. First,

it standardizes the input batch with respect to some estimated

statistics (Eq. 18). Then it applies a linear transformation

(Eq. 19). Let B be the set of layer indices corresponding to

the batchnorm layers. Then for all l ∈ B,

y
(l)
c,w,h =

z
(l−1)
c,w,h − µ

(l)
c

√

(

[

σ
(l)
c

]2

+ ǫ

)

∀c, w, h (18)

z
(l)
c,w,h = y

(l)
c,w,h × γ(l)

c + β(l)
c ∀c, w, h (19)

with Cl (1 ≤ c ≤ Cl), Wl (1 ≤ c ≤ Wl) and Hl (1 ≤ c ≤
Hl), standing respectively for the number of channels, the

width and the height of the input tensors at layer l.

Since the µ
(l)
c and σ

(l)
c parameters are estimated during

training and are specific to ID samples, we can hope to use

them for OOD rejection. More precisely, defining,

M (l)
c =

1

Hl ×Wl

Hl
∑

h=1

Wl
∑

w=1

y
(l)
c,w,h (20)

S(l)
c =

√

√

√

√

1

(Hl ×Wl)− 1

Hl
∑

h=1

Wl
∑

w=1

[

y
(l)
c,w,h −M

(l)
c

]2

(21)

V (l)
c = (Hl ×Wl − 1)

[

S(l)
c

]2

(22)

we can expect that

EI{y
(l)
c } = 0 (23)

EI{M
(l)
c } = 0 (24)

EI{S
(l)
c } = 1 (25)

EI{V
(l)
c } ∼ χ2

(Hl×Wl−1) (26)

Given these conditions, we propose to derive the fol-

lowing indicators (where S ⊆ B is a subset of batchnorm

layers):

DMSS =
1

CS

∑

l∈S

Cl
∑

c=1

(

M (l)
c

)2

(27)

DMS-AOSS =
1

CS

∑

l∈S

Cl
∑

c=1

1

Hl ×Wl

Hl
∑

h=1

Wl
∑

w=1

(

y(l)c

)2

(28)

DSSS =
1

CS

∑

l∈S

Cl
∑

c=1

(

S(l)
c − 1

)2

(29)

DSS-EXTS =
1

CS

∑

l∈S

Cl
∑

c=1

I

[

ext
(α)

χ2

(Hl×Wl−1)

(

V (l)
c

)

]

(30)

where CS =
∑

l∈S Cl is the total number of channels in

the considered set, and ext
(α)
A is true only when its argu-

ment has a (bilateral) p-value according to law A below the

significance level α.

DMS/DSS stands for departure from the mean/standard

deviation standardization, and AOS stands for average of

sum. In the remainder of the paper, we take α = 0.1 for

DSS-EXT.

The intuition behind DMS, DMS-AOS and DSS is that they

should produce small values on I. Note however that if

S contains many layers, the value might rise quickly since

inter-channel correlations are expected. The intuition behind

DSS-EXT is that the variance of y
(l)
c,w,h should not produce

extreme values too often on I.

Relevant subsets. Since the input vectors of the network

must also be standardized, we treat the preprocessing as a



Table 1. Summary of sample-free indicators and their bounds, when

available.

0 ≤ MP ≤ 1− 1/K 0 ≤ ANG++ ≤ 1
0 ≤ H ≤ logK 0 ≤ IN-DMS

0 ≪ T1000 ≤ 1− 1/K 0 ≤ IN-DMS-AOS

0 ≪ ODIN ≤ 1− 1/K 0 ≤ IN-DSS

NORM 0 ≤ IN-DSS-EXT ≤ 1
0 ≤ ANG ≤ 1 0 ≤ DMS

PROJ 0 ≤ DMS-AOS

ACT 0 ≤ DSS

ACT+ 0 ≤ DSS-EXT ≤ 1

Table 2. Percentiles of the indicator distributions. The indicators

were extracted from a DenseNet 121 learned on CIFAR 10.

CIFAR 10 (test set) Tiny ImageNet

p25 p50 p75 p25 p50 p75

MP 0.000 0.000 0.003 0.014 0.112 0.339

H 0.000 0.004 0.036 0.123 0.628 1.233

T1000 0.898 0.898 0.899 0.899 0.899 0.899

ODIN 0.898 0.898 0.898 0.899 0.899 0.899

NORM −6.97 −6.34 −5.78 −6.63 −6.02 −5.46

ANG 0.267 0.314 0.391 0.479 0.577 0.657

PROJ −4.87 −4.28 −3.61 −3.28 −2.55 −1.96

ACT+ −12.9 −11.5 −10.1 −10.2 −8.78 −7.54

ANG+ 0.231 0.266 0.319 0.361 0.424 0.477

IN-DMS 0.405 0.677 1.065 0.430 0.735 1.154

DMS 9.377 10.36 11.49 8.722 9.634 10.78

IN-DSS 0.236 0.423 0.669 0.267 0.450 0.670

DSS 7.690 8.116 8.661 7.850 8.385 9.112

1C-Sum -153.4 -138.5 -123.0 -120.6 -96.9 -79.2

pseudo-batchnorm layer. Some subsets of batchnorm layers

might work better than other. However, in the absence of

data, we cannot hope to learn which one is the best. In

consequence, we propose to focus on two sets: (i) the input

pseudo-batchnorm layer, and (ii) all the layers. We denote

by the prefix IN- all indicators relating solely on the input

normalization so that IN-DMS = DMS{1}. We will refer to

those as the IN- indicators. We also drop S from the notation

when S = B.

2.3. Summary

Table 1 summarizes the sample-free indicators and their

bounds, when available. All indicators are such that ID

samples should portray small values. Although interpretable,

probability-based indicators (MP, H, T1000, ODIN) are not

necessarily easier to bound (See Table 2 for some statistics

about the indicator distributions). Unbounded indicators are

de facto harder to use in a sample-free setting.

3. Empirical analysis

In this section, we evaluate how the proposed indicators

perform individually. After detailing our methodology, we

discuss the main results (Section 3.1) and briefly go over

some additional findings (Section 3.2).

Table 3. OOD dataset characteristics.

Gaussian 32× 32× 3 µ = 0.5, σ = 0.25
clipped on [0, 1]

SVHN 32× 32× 3 [26]

MNIST 28× 28 [21]

fashion MNIST 28× 28 [38]

Tiny ImageNet 64× 64× 3 [9]

LSUN 256× 256× 3 [40]1

CIFAR 10/100 32× 32× 3 [20]

ID tasks. In order to evaluate the indicator performances,

we have trained three networks on three image classification

tasks to serve as ID datasets, namely we used CIFAR 10,

CIFAR 100 [20] and ImageNet [9].

The networks are a ResNet 50 [14], a WideResNet-40

[41] and a DenseNet 121 [18]. All three architectures are

ReLU-based and output non-negative latent vectors. On

ImageNet, we used pre-trained networks available in Py-

Torch [28]. As such, we display only the score on one run.

Experiments were all carried out with PyTorch. Overall av-

erage accuracy on CIFAR 10 is 94.2, accuracy on CIFAR

100 ranges from 74.2 to 77.9 and worse top-1 and top-5

errors on ImageNet are 25.3 and 7.8, respectively. Details

on networks and learning procedure, useful to reproduce our

results, can be found in Appendix B.

OOD datasets. For each ID dataset, we will consider mul-

tiple OOD datasets, mostly with disjoint label spaces and

whose proximity with the ID data will vary, offering a broad

spectrum of cases to assess on which tasks each indicator is

effective. Table 3 describes the datasets we used as OOD. All

are standard image classification benchmarks, except Gaus-

sian (generated noise). Tiny ImageNet is not used against

ImageNet; we used CIFAR 10/100 as OOD instead. All

images were resized and cast to RGB when needed, then

rescaled in the range [0, 1] and normalized channel-wise

according to the ID dataset input statistics.

Metric. We tackle the problem from the OOD rejection

perspective. This means we consider OOD samples as pos-

itive. We use the test sets of CIFAR 10, CIFAR 100 or

ImageNet as negative (ID) samples. Those have never been

seen during training.

We report the area under the ROC curve (auroc) for each

indicator used to discriminate between positive (OOD) and

negative (ID) samples. Most papers in the domain also

report the OOD rejection rate for a fixed ID acceptance rate.

In our setting, ID samples are not available, and setting

the threshold at a given acceptance rate is a challenge in

itself. Contrary to precision-recall curves, ROC curves are

fully independent of the—typically unknown—proportion

of ID/OOD samples. We therefore feel auroc is the most

relevant metric.



Table 4. Area under the ROC curve for OOD detection with CIFAR 10 as ID on ResNet 50. Shading highlights the 50% best scores per

column (darker is better). The scores are averaged over three runs (i.e. network initializations). Note that IN- indicators are independent of

the network, hence the single value.

Gaussian SVHN MNIST fashion MNIST Tiny ImageNet LSUN (test set)

ODIN 91.36 ± 5.42 90.22 ± 4.03 96.88 ± 0.70 95.89 ± 0.75 87.22 ± 2.12 92.38 ± 1.56

T1000 83.17 ± 9.00 93.14 ± 3.05 94.81 ± 0.78 95.43 ± 0.62 88.70 ± 1.23 92.66 ± 1.04

MP 89.27 ± 4.90 91.89 ± 1.30 90.76 ± 0.65 91.97 ± 0.47 87.05 ± 0.61 90.08 ± 0.60

H 89.05 ± 5.03 92.51 ± 1.46 91.40 ± 0.62 92.71 ± 0.58 87.52 ± 0.67 90.62 ± 0.59

NORM 53.96 ± 33.02 85.46 ± 10.89 92.28 ± 4.92 89.52 ± 4.00 80.19 ± 4.27 82.50 ± 4.93

NORM+ 54.99 ± 28.60 87.17 ± 9.12 94.61 ± 2.09 92.92 ± 1.85 85.00 ± 2.61 88.87 ± 2.82

ACT 83.34 ± 9.02 93.32 ± 2.95 94.90 ± 0.70 95.47 ± 0.59 88.77 ± 1.18 92.50 ± 1.08

ACT+ 87.68 ± 9.18 94.23 ± 3.50 96.03 ± 1.44 95.93 ± 0.72 88.05 ± 1.53 91.68 ± 1.38

PROJ 85.53 ± 8.09 94.01 ± 2.42 95.61 ± 0.40 95.47 ± 0.58 88.61 ± 1.26 92.05 ± 1.21

ANG 91.78 ± 2.79 93.41 ± 0.09 94.15 ± 0.60 94.76 ± 1.02 88.35 ± 0.51 91.98 ± 0.58

ANG++ 99.89 ± 0.12 97.26 ± 0.17 94.25 ± 1.22 93.41 ± 1.70 86.05 ± 0.88 88.43 ± 0.75

IN-DMS 7.85 60.46 98.59 71.94 52.89 49.26

IN-DMS-AOS 52.79 30.41 99.68 96.02 52.55 54.91

IN-DSS 5.13 85.99 36.16 58.53 52.03 42.94

DMS 100.00 ± 0.00 80.29 ± 8.30 93.97 ± 2.47 69.39 ± 6.49 34.21 ± 5.54 22.67 ± 5.33

DMS-AOS 99.25 ± 0.48 4.72 ± 2.26 81.12 ± 9.04 59.42 ± 9.53 25.25 ± 2.65 23.78 ± 2.66

DSS 99.86 ± 0.14 96.51 ± 0.60 70.33 ± 15.30 62.22 ± 3.53 55.01 ± 1.90 47.40 ± 4.40

DSS-EXT 98.24 ± 0.61 97.70 ± 0.34 66.93 ± 1.88 67.64 ± 1.67 66.84 ± 0.88 62.94 ± 1.38

supervised 100.00 ± 0.00 99.75 ± 0.05 100.00 ± 0.00 99.70 ± 0.03 90.82 ± 0.45 96.14 ± 0.19

1C-Sum 97.84 ± 2.70 97.83 ± 0.95 96.47 ± 1.58 95.86 ± 0.63 88.86 ± 0.79 91.61 ± 0.90

Supervised results. We also include supervised results. In

that case, half of the ID testing set and half of the OOD data

are used to build a linear SVM [8]. The remaining half are

used to evaluate the indicators. This means that the training

and testing OOD samples are from the same distribution.

This is clearly an ideal situation, totally outside of our setting.

These results are only reported for comparison purpose. It is

worth noting that the supervised approach performs almost

perfectly on the easy tasks and is almost always best on the

hard ones.

3.1. Sample­free indicator analysis

Table 4 shows areas under the ROC curves (auroc) for

OOD detection with CIFAR 10 as the ID set on ResNet 50.

Detailed tables for the other ID sets and networks are present

in Appendix C.1. Table 5 summarizes the average rank (over

all the OOD datasets) of each indicator for all settings. Note

that the ranking is sensitive to the choice of OOD datasets,

although major trends seem stable. For the purpose of this

section, the last line can be ignored.

Baseline indicators. ODIN performs well in the case of

ImageNet. On CIFARs, it is less clear whether the cost of the

backward pass is worth it compared to simply using T1000.

As envisioned in the previous section, H is slightly better

than MP, although ODIN and T1000 are better suited as

single indicators.

Batchnorm indicators. They do not work consistently.

For these indicators, the OOD dataset has a high impact

on the ranking and results are better understood by looking

individually at the datasets (e.g. Table 4). They are intuitive,

however. Indicators based on the input normalization work

only on grey-level datasets. When input statistics are close

to the ID’s (Tiny ImageNet, LSUN), those indicators do

not work better than random. They also fail on the noisy

Gaussian dataset, which has individual pixel statistics that

are close to ID’s. It would be easy to reject such samples if

inter-channel information were available, as demonstrates

the indicators based on all batchnorm layers for which such

information is made available thanks to the convolutions.

Overall, it is clear that, in our setting, batchnorm indicators

can only discriminate specific OOD sets.

Latent space indicators. As expected, NORM and NORM+

do not convey the appropriate information. The remaining

indicators rank well, however. On ImageNet, positive-only

indicators seem to work better, while this is not as clear for

the other ID tasks. In particular, ANG++ performs better than

ANG on ImageNet but ANG works better in the other settings

(except for ResNet 50 on CIFAR 100). Once again, the OOD

dataset has an impact on the ranking: ACT/ACT+ tend to

struggle with (fashion) MNIST on CIFAR 100 and ImageNet

(Appendix C.1), while, with ImageNet as ID task, ANG++

comes way ahead of the other indicators against CIFARs as

OOD but underperfoms on LSUN. On the hardest cases with

CIFARs as ID tasks (i.e. rejecting Tiny ImageNet/LSUN

samples) ODIN does not perform better than T1000.

Discussion. Batchnorm indicators can capture gross sta-

tistical differences but fail on more challenging tasks. For

those, optimality-based indicators are more appropriate. In a



Table 5. Average indicator rank (lower is better). These are the average across datasets of the indicator rank per dataset. R50, W and D121

stand for ResNet 50, WideResNet and DenseNet 121, respectively. Shading highlights the 50% best (i.e. top most) scores per column (darker

is better).

CIFAR 10 CIFAR 100 ImageNet

R50 W D121 R50 W D121 R50 W D121

ODIN 7.30 8.20 10.70 7.20 7.30 6.30 3.40 4.60 4.90

T1000 7.80 7.30 9.30 7.50 8.00 6.70 9.30 9.90 10.30

MP 11.80 11.80 8.80 9.80 13.80 10.00 12.60 11.60 13.40

H 11.00 10.20 7.30 12.50 10.30 11.20 8.90 8.60 9.60

NORM 14.50 13.20 18.00 14.70 15.70 14.70 13.70 18.30 14.90

NORM+ 12.30 10.30 15.20 12.80 14.20 13.30 12.30 17.00 13.10

ACT 7.00 6.30 8.50 7.20 8.00 6.70 9.40 10.00 10.10

ACT+ 7.00 7.70 12.80 8.00 8.00 8.20 6.70 9.60 9.00

PROJ 7.20 6.00 7.70 9.30 7.30 8.80 9.70 9.90 9.10

ANG 8.20 9.00 4.50 7.80 8.30 7.00 11.30 8.40 10.90

ANG++ 8.50 13.70 7.30 4.30 10.70 8.80 4.70 3.10 5.10

IN-DMS 14.50 14.80 14.50 14.80 15.00 14.80 17.00 15.60 16.40

IN-DMS-AOS 12.30 12.20 11.70 11.00 12.70 11.30 14.70 14.00 14.10

IN-DSS 18.50 18.50 17.70 18.00 15.50 17.80 17.60 17.00 17.40

DMS 14.50 12.00 11.00 16.30 9.50 16.20 8.30 10.40 12.60

DMS-AOS 16.70 16.80 17.20 13.30 16.70 13.80 18.30 16.00 17.70

DSS 12.80 12.00 11.30 19.50 7.80 19.30 11.40 9.30 6.70

DSS-EXT 12.20 14.30 10.80 9.20 13.30 9.20 14.30 11.40 9.30

supervised 1.00 1.00 1.00 1.30 1.80 1.70 1.00 1.00 1.00

1C-Sum 4.80 4.70 4.70 5.30 6.00 4.20 5.40 4.40 4.30

few instances, ANG/ANG++ perform extremely well. ODIN

is also a strong baseline if the cost of the backward pass

can be paid. Note however that the gap between ODIN and

ANG++ is usually wider when the former underperforms (e.g.

Gaussian and SVHN on Table 4), suggesting that ANG++ is

more robust besides being faster to compute.

Since PROJ and ACT/ACT+ are harder to bound, they are

also harder to use in a sample-free context. On that mat-

ter, Table 2 displays some statistics about a few indicators.

As can be seen, pinpointing where the threshold should be

placed is not easy on challenging tasks, at least without data.

This will be discussed further in Section 5.

3.2. Additional results

Appendices C.2 to C.5 contain additional experiments

related to the complementarity of the indicators (Appendix

C.2), the impact of the quality of the base model (Appendix

C.3), the joint task of rejecting OOD samples as well as

classification errors (Appendix C.4), and the case of semantic

anomalies (Appendix C.5). We briefly summarize the key

findings related to the former and the two latter questions.

Complementarity/redundancy. We ran a PCA on the in-

dicators for several datasets independently in order to ana-

lyze indicator complementarity. The first components ac-

counts for 50% of the total variance, although roughly half

of the components are needed to account for 95% of the

variance. Analysing the loadings of the first three compo-

nents shows that the indicators can be partitioned into three

categories that follows intuition: the optimality-based ones,

the IN- indicators and the remaining batchnorm ones.

Error detection. We wanted to check whether wrongly

rejected ID samples correspond to misclassified ones. All

indicators are not equal in this respect. MP and H are good

at detecting errors, as are ANG, ANG++ and PROJ to a lesser

extent. In comparison, T1000 and ODIN lag behind. As a

consequence, when tackling both OOD and misclassification

detection at the same time, ANG, ANG++ and PROJ tend to

perform better on average than T1000 and ODIN.

Semantic anomalies. [2] recently defined semantic

anomalies as samples from previously unseen classes with

very similar distribution as the ID samples. We carried out an

experiment in Section C.5 following the protocol of [2], that

shows that identifying these anomalies is challenging in a

sample-free setting (batchnorm indicators are, e.g., useless).

4. Summary indicator

The previous section concluded that there is no one-fits-

all indicator. In this section, we attempt to remedy this by

proposing a summary indicator and evaluating its perfor-

mance against the other individual indicators.

Whereas combining indicators when ID and OOD data

are available is as straightforward as learning a model, it

is not an easy task in a sample-free setting. Accordingly,

we propose a simple aggregation scheme that consists in

summing (a subset of) the previously-introduced indicators.

The simple intuition behind this sum is that it will allow to

benefit both from the redundancy and complementarity of

the individual indicators. We called this aggregation scheme

the 1-class sum (1C-Sum).



Since all indicators are such that their values are low (resp.

high) for ID (resp. OOD) samples, this is also the case of

their sum. However, since indicators have very different dis-

tributions (see Table 2), directly summing them would give

them largely uneven weights in the aggregated indicator. We

thus propose to first rescale their distributions to comparable

ranges by standardizing them. In principle, this requires to

estimate the mean and variance of these indicators on ID

samples, which are unavailable. We propose instead to esti-

mate statistics of the indicators on randomly generated data.

Arguably, random data could lead to poor estimates of ID

means and variances but will, hopefully, nevertheless allow

to rescale the indicators to more comparable ranges.

As normalizing data, we chose uniform noise U(0, 1),
matching the network input size. Samples drawn from

this distribution are then standardized according to the ID

statistics, as usual. Let hi, i = 1, . . . , N be the collec-

tion of indicators, µi = Ex∼U{hi(x)} be the expectation

of the ith indicator under the uniform distribution, and

σ2
i = Vx∼U{hi(x)} its variance. The summary indicator H

is the following sum:

H(x) =
N
∑

i=1

hi(x)− µi

σi
. (31)

We introduced in this sum all indicators, except the IN- in-

dicators and ODIN. The former performed poorly on the

Gaussian dataset and are thus expected to result in unsuitable

standardization under uniform noise. ODIN was excluded

to avoid its costly backward pass and keep the complexity

of the 1C-sum as low as possible.

Empirical analysis. To validate 1C-Sum, we tested it in

the same experimental conditions as for the other indicators

(see Section 3 for more details). From Table 5, one can

see that 1C-Sum performs extremely well, being almost

always the second best in terms of average ranking (after

the supervised approach which is not realistic in our setting).

On the few instances where it does not come second, it has a

rank close to its challengers (ANG++, ODIN). The contrary

cannot be said: ANG++ and ODIN can have far worse rank

than 1C-Sum. This is because when 1C-Sum is beaten by an

indicator, it is never by far. Overall, 1C-Sum is quite stable.

5. Real-world setting

The empirical analysis highlighted several indicators as

adequate, in the sense that they provide a thresholdable quan-

tity capable of separating well ID and OOD samples. The

analysis was conducted through the lens of the auroc, a

threshold-agnostic metric. In practice, however, a cut point

for the indicator must be chosen in order to automatically

reject samples. Although some indicators are more inter-

pretable than others, it remains challenging to set a threshold

in a sample-free, and also architecture-independent, fashion

(See Table 2 and box-plots in Appendix D).

The approach we advocate is to collect a few samples

while the model is deployed in real conditions to adapt the

threshold (and fine-tune the weights of 1C-Sum). We sketch

below a few of such solutions.

Test samples can be labeled. If some (human) effort can

be dedicated to labeling observed samples as ID or OOD,

setting a threshold is straightforward. Because of the uni-

variate nature of our indicators, we expect that only few

samples would be needed to converge to a stable threshold,

although it depends on the expected proportion of OOD sam-

ples. Obviously, if many labeled samples become available,

the problem will stop being sample-free and one could con-

sider supervised approaches. Our experiments show that

excellent results can be reached by fitting a simple linear

model on all our indicators.

No labeling is possible. Addressing the problem of setting

a threshold fully automatically and without any labeling is

only possible in our opinion if some assumptions can be

made on the OOD data. Let us consider two examples.

First, if a good guess could be made regarding the expected

proportion of observed OOD samples, one could simply set

the threshold so as to isolate that proportion of samples in the

stream of data. Second, if the OOD distribution is stable and

far away from the base distribution in the indicator space, it is

possible possible to isolate both parts of the mix distribution

by minimizing the intra-variance along the indicator in a

unsupervised way.

6. Conclusion

In this paper, we tackled the challenging task of out-of-

distribution (OOD) detection with no data, assuming a white-

box access to the network. We firstly introduced several

indicators for the task and conducted an empirical analysis

of them. We then proposed a summary indicator, since

having a single quantity to deal with is much easier in an

unsupervised setting.

Provided the indicators can be thresholded appropriately,

we have shown them to perform well. In particular, they

cover three cases. Some batchnorm indicators are efficient

at detecting gross channel-wise statistical differences, while

others are good at filtering out noise. On harder tasks,

optimality-based indicators were found to be more appropri-

ate. The summary indicator is a good default choice and can

be further fine-tuned if data become available.

Finally, we proposed several ways to use these indicators

in practical setting, depending on the information that can

be gathered when the model is deployed and the assump-

tions that can be made about the nature of the OOD data.

Hopefully, the simplicity of the indicators should render that

phase efficient
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