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Abstract
This paper focuses on understanding how the general-

ization error scales with the amount of the training data for

deep neural networks (DNNs). Existing techniques in sta-

tistical learning theory require a computation of capacity

measures, such as VC dimension, to provably bound this

error. It is however unclear how to extend these measures

to DNNs and therefore the existing analyses are applicable

to simple neural networks, which are not used in practice,

e.g., linear or shallow (at most two-layer) ones or other-

wise multi-layer perceptrons. Moreover many theoretical

error bounds are not empirically verifiable. In this paper

we derive estimates of the generalization error that hold

for deep networks and do not rely on unattainable capacity

measures. The enabling technique in our approach hinges

on two major assumptions: i) the network achieves zero

training error, ii) the probability of making an error on a

test point is proportional to the distance between this point

and its nearest training point in the feature space and at

certain maximal distance (that we call radius) it saturates.

Based on these assumptions we estimate the generalization

error of DNNs. The obtained estimate scales as O
�

1
δN1/d

�
,

where N is the size of the training data, and is param-

eterized by two quantities, the effective dimensionality of

the data as perceived by the network (d) and the afore-

mentioned radius (δ), both of which we find empirically.

We show that our estimates match with the experimentally-

obtained behavior of the error on multiple learning tasks

using benchmark data-sets and realistic models. Estimat-

ing training data requirements is essential for deployment

of safety critical applications such as autonomous driving,

medical diagnostics etc. Furthermore, collecting and an-

notating training data requires a huge amount of financial,

computational and human resources. Our empirical esti-

mates will help to efficiently allocate resources.

1. Introduction

Deep learning (DL) establishes state-of-the-art perfor-

mances in a number of learning tasks such as image recog-
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nition [49, 37], speech recognition [26, 13], and natural lan-

guage processing [7, 20]. In recent years DL approaches

were also shown to outperform humans in classic games

such as Go [52]. The performance of DL models depends

on three factors: the model’s architecture, data set, and

training infrastructure, which together constitute the artifi-

cial intelligence (AI) trinity framework [3]). It has been ob-

served empirically [56] that increasing size of the training

data is an extremely effective way for improving the perfor-

mance of DL models, more so than modifying the network’s

architecture or training infrastructure. Generalization abil-

ity of a network is defined as difference between the training

and test performance of the network. The relationship be-

tween the generalization ability of DL model and the size of

the training data set constitutes a fundamental characteristic

of the AI trinity framework, yet it is poorly described in the

literature. Addressing this problem is crucial for safety crit-

ical applications where it is desired to understand the sam-

ple complexity of the model, or in other words, estimate the

amount of data needed to achieve a certain acceptable level

of performance. This paper aims at describing this relation-

ship, in the context of a supervised learning setting, through

a set of mixed mathematical-empirical tools.

Classic approaches in statistical learning theory for ana-

lyzing sample complexity rely on the measures of capacity

of a classification model, such Vapnik-Chervonenkis (VC)

dimension [59] or Rademacher complexity [9], which are

potentially prohibitive to extend to practical DL models and

may lead to loose estimates (for example, in the case where

these measures approach infinity). The aim of this work is

to develop a framework to model the sample complexity of

DNNs that is free from such measures and straightforward

to use by practitioners. We propose to model the probability

of making an error by a DNN on a test sample as a function

of the distance in the feature space between that sample (we

denote the feature vector of the test sample as x̂) and its

nearest training sample (we denote the feature vector of this

training sample as x(x̂)). This probability takes the follow-

ing form:

Φ(x̂) := min
⇣

1,
||x̂� x(x̂)||2

δ

⌘

, (1)



where δ is a positive constant that we call the radius1. Thus,

when test and training examples are further than δ in the

feature space, the test example will be misclassified accord-

ing to our model. The choice of the form of Φ(x̂) is also

intuitive since as we increase the amount of training data,

it becomes more reasonable to expect a test point within a

certain distance from the training data point. Our approach

is motivated by the fact that fundamentally DNNs can be in-

terpreted as methods of non-linear dimensionality reduction

which cluster together input data with similar features while

push further apart dis-similar data points [2, 63]. Therefore,

a test point far from the closest training point in the feature

space is more likely to be incorrectly classified. In addi-

tion to assuming the aforementioned error mechanism for

DNNs, we also assume that DNNs under consideration can

learn perfectly and achieve zero error on the training data

set. This assumption is in practice non-restrictive as it was

observed empirically that DNNs of sufficient size can fit ac-

curately labelled training data.2 Finally, in order to estimate

the generalization error in the function of the training data

size (N ), we define the notion of model-dependent effective

dimensionality of the data d. It is a minimum dimensional-

ity to which one can compress the feature vector without

affecting the performance of the model. We find that this

dimensionality is very low in practice. Under the above

framework we estimate that the generalization error of a

DNN follows a power law and scales inversely to δN1/d.

To the best of our knowledge, our work is distinct from ex-

isting work in the literature on the sample complexity of

DNNs in a number of ways: i) it provides generalization er-

ror estimates, rather than mathematically-rigid error bounds

ii) our result is free from complex capacity measures and

relies on quantities (d and δ) which can be easily obtained

empirically, iii) we perform exhaustive experimental evalu-

ation of our theoretical result, and iv) our estimates can be

easily adopted by practitioners to asses the amount of train-

ing data needed to meet the performance requirements of

their applications.

The paper is organized as follows; Section 2 reviews the

related work, Section 3 provides the mathematical deriva-

tions, Section 4 reports the experimental results, and finally

Section 5 concludes the paper. The Supplement contains ad-

ditional mathematical derivations and empirical evidence.

2. Background and Related Works

Statistical learning theory typically bounds the general-

ization error [10, 38, 32] using concentration inequalities,

e.g., Hoeffding’s inequality [31]. The error bounds depend

on the measure of the complexity (capacity) of the hypoth-

1Our empirical results were not sensitive to the choice of distance mea-

sure. We obtained similar results for squared distance.
2We assume that labeling of the training data is consistent and does not

contain any mistakes.

esis class that can be learned by a statistical classification

algorithm. First existing bounds for simple learning algo-

rithms, such as the histogram classifier, computed the com-

plexity as the cardinality of the hypothesis class [12]. The

corresponding bounds were inapplicable to problems in-

volving an infinite class of functions, for which they became

very loose. This led to the development of a new capacity

measure - the VC dimension [58, 61, 59, 51, 17, 22], which

is defined as the cardinality of the largest set of points that

the algorithm can shatter and thus does not scale with the

size of the hypothesis class. Resolving the VC bounds for

neural networks [8, 5] leads to the theoretical guarantees

that depend on the number of network parameters. Such

bounds are not useful for practical networks.

The aforementioned error bounds are distribution-free

and often loose in practice. This motivated work on

distribution-dependent capacity measures such as VC en-

tropy [60], covering numbers [1, 65], and Rademacher com-

plexity [35, 9, 41]. Bounds based on covering numbers

were derived for a limited family of classifiers, such as lin-

ear functional classes or neural networks with identity ac-

tivation functions [65]. Rademacher complexity measures

the ability of functions in the hypothesis space to fit to ran-

dom labels. It has been recently observed that DNNs are

powerful enough to fit any set of random labels [64] thus

rendering the Rademacher complexity based bounds inad-

equate. Other capacity measures for neural networks, not

mentioned before, include unit-wise capacities [45]. They

led to generalization bounds for two layer ReLU networks.

An excellent comparison of existing DNN generalization

measures can be found in [33].

Estimating generalization bounds using PAC-Bayesian

approaches and margin based analysis [43, 42, 39] is still an

active area of research. More recently, several bounds based

on PAC-Bayes approach have been presented for stochastic

and compressed networks [21, 6, 66] that are computational

in nature, by exploring modifications of the standard train-

ing procedure to obtain tighter(non-vacuous) generalization

guarantees. However, these bounds are still loose (>> 0)

to practically study the sample complexity of DNNs.

There also exist works that study the generalization phe-

nomenon in DL from the perspective of the behavior of

the optimization algorithm that minimizes the training loss.

They are focused on the convergence properties of the opti-

mizers and therefore are outside of the focus of this paper,

with the exception of [46] that argues the existence of the

“inductive bias” imposed by the optimizer, such as SGD,

that restricts neural networks to a simple class of functions.

This idea is linked with the notion of network’s capacity

though it is unclear how to use it to obtain sample complex-

ity guarantees.

Above we discussed works that aim at proving theoret-

ical bounds on the generalization error. Existing bounds



that hold only for simplified DNNs typically scale with the

training data size as O(1/
p
N). An empirical family of

approaches, that we will discuss next, instead studies the

ways of extrapolating the learning curves, i.e. the depen-

dence of the error on the amount of the training data, using

parametric models. Among these works, we have linear,

logarithmic, exponential, and power law parametric mod-

els [24] that were applied to decision trees. A subsequent

paper [27] explored a vapor pressure model, the Morgan

Mercer-Flodin (MMF) model, and the Weibull model to

predict learning curves for classification algorithms such as

decision tree and logistic discrimination. Empirical results

obtained for a 2-layer neural network on MNIST data set

showed that learning curve decays following the power law

with a decay factor in the range [1, 2] [16, 15]. This behav-

ior of the learning curve was also observed in other applica-

tions [30]. These parametric modeling approaches are not

supported by theoretical argument.

Finally, research works that are most closely related

to our approach present asymptotic estimates of learn-

ing curves for Gaussian processes [54, 62], kernel meth-

ods [55], and wide neural networks trained in the regime

of neural tangent kernels [14]. These works do not apply

to a practical deep learning setting, but provide useful in-

sights into the mathematical modeling of complex learning

phenomena.

3. Generalization error estimation

In this section we derive the estimates for the generaliza-

tion error of a DL model. Our analysis is performed under

the assumptions that the model can learn the training data

set with perfect accuracy and the probability of making an

error on the test examples takes the form given in Equa-

tion 1.

3.1. Effective dimensionality

Practical DNNs are over-parameterized, i.e., the num-

ber of parameters far exceeds the number of training data

samples. This over-parameterization induces redundancy in

network weights [19, 44, 28], which particularly manifests

itself on the output of the feature extractor of the network

(the feature extractor typically precedes the fully connected

layers of the model). The data representation there has to be

simple enough so that the last layers of the network, which

constitute shallow classifier, can perform accurate predic-

tion. It has been noted in past works that this feature vector

is low dimensional [47, 50, 48, 4]. We next describe how

we define and find effective dimensionality of the feature

space.

We introduce a bottleneck network consisting of two lin-

ear layers, each followed by the ReLU non-linearity, be-

fore the output layer of the network. The bottleneck takes

D-dimensional feature vector as input, projects it down to

dimensionality d
0

, and then projects it back up to input di-

mension D. We insert the bottleneck into the trained model

and fine-tune the entire network. The effective dimension-

ality d is the smallest value of d
0

, for which the accuracy of

the model with the bottleneck does not differ significantly

from the accuracy of the original model without it. Empir-

ical evaluation of d for different networks and data sets is

presented in the experimental section.

The existence of small effective dimensionality of the

feature space has been observed before in various works.

Specifically, [47] defines effective dimensionality of the

feature maps in terms of singular values of its co-variance

matrix. They observe that as we move from input to the

output layer of the network the effective dimensionality first

increases and then drops. They report an effective dimen-

sionality at the final layer of the network and show that it

is as low as 2 for tiny ImageNet and CIFAR-10 data sets.

Furthermore, they also observe a much sharper decline in

effective dimensionality for large networks compared to the

small ones. Similarly, [50] observed that < 10 singular val-

ues of the matrix of vectorized representations are enough

to explain > 99% of the variance. They noted that enforcing

even stronger low rank structure for the feature co-variance

matrix can lead to better performance and robustness to ad-

versarial examples. [48, 4] utilize an “ID estimator” previ-

ously introduced in [23] that relies on the ratio of distances

to the nearest and second nearest neighbor of a data point

to analyze intrinsic network dimensionality. These authors

also observe that the neural network first increases and then

decreases its intrinsic dimensionality to as low as 10 when

moving towards network’s output. Another work [25] re-

ports similar behavior of the mutual information. The mu-

tual information was found to be as low as < 4 nats closer

to the final layer of the neural network. Finally, numer-

ous network compression approaches implicitly rely on the

existence of small effective dimensionality of the feature

space when pruning network connections. They achieve

⇡ 90% [67] compression rate with negligible loss of the

accuracy of the model.

We next move to our mathematical modeling of the gen-

eralization error. For the purpose of simplifying our analy-

sis, we first consider the case where the effective dimension-

ality of the feature space is one and then extend the analysis

to the general case of arbitrary dimensionality. Let ftrain
and ftest denote probability density functions of the train

and test feature distributions. Then under the proposed er-

ror model defined in Equation 1 the overall probability of

making an error on the test set is given by the expectation

Eftest
[Φ].

3.2. Generalization error estimates for one dimen-
sional case (d = 1)

Let x̂ be a given test point in the feature space whose im-

mediate nearest training points in the feature space are xi



and xj , such that x̂ 2 (xi, xj) and let ρ(x̂) = |xj � xi|. In-

tuitively, as we increase the number of training data points

sampled from ftrain the distance between two training sam-

ples i.e ρ(x) decreases. Assume that ftest is close to a

uniform distribution, denoted as u, in the interval (xi, xj).
Note that this is a realistic assumption, i.e. at the tail of the

distribution we observe training samples rarely but at the

same time the training distribution there is flat whereas in

high-concentration regions, where the training distribution

changes quickly, the training samples are observed close

to each other. Thus in the latter case the dynamics of the

changes of the distribution are compensated by the small

distance between samples. Also the more data we have,

which is the regime we are mostly interested in analyzing,

the more accurate this assumption is. Since the test point x̂
is uniformly distributed in the interval (xi, xj), the distance

from the test point to its closest training point (denoted as

ψ(x̂)) is also uniformly distributed in the range [0, ρ(x̂)
2 ].

We can compute the expectation of ψ(x̂) as (see Derivations

for Equation 2 in the Supplement),

E
hxi,xji
u [ψ(x̂)] =

|xj � xi|

4
=

ρ(x̂)

4
. (2)

In the large data regime, we can approximate the distance

between two training points (ρ(x̂)) as the limit of the ratio

of length of the interval to number of points lying in the

interval as,

ρ(x̂) ⇡ lim
∆!0

∆

R x̂+∆

2

x̂�∆

2

Nftrain(x)dx

= lim
∆!0

∆

N [Ftrain(x̂+ ∆

2 )� Ftrain(x̂� ∆

2 )]
=

1

Nftrain(x̂)

The above approximation does not include the local vari-

ance of ρ(x̂). The effect of local variance results from the

fact that neighboring training intervals should roughly have

the same length but in practice they do not. Including that

effect is crucial in the experiments. Thus we correct ρ(x̂)
by taking into account this local variance. We denote cor-

rected ρ(x̂) as ρ0(x̂). The neighboring intervals should have

same density function usually, so we calculate ρ0(x̂) using

K left and K right neighboring intervals of the training in-

terval hxi, xji. We refer to the lengths of these intervals as

ρ�K(x̂), ρ�K+1(x̂), . . . , ρK(x̂). Note that

E
hρ�K ,ρKi[ρ(x̂)] :=

PK
i=�K ρi(x̂)

2K + 1
= ρ(x̂)

and

Varhρ�K ,ρKi[ρ(x̂)] :=

PK
i=�K ρ2i (x̂)

2K + 1
�

⇣

E
hρ�K ,ρKi[ρ(x̂)]

⌘2

ρ0(x̂) =
KX

i=�K

ρi(x̂)
PK

j=1 ρj(x̂)
| {z }

prob. of falling into the interval

· ρi(x̂)
| {z }

interval length

=
1

PK
j=�K ρj(xt)

KX

i=�K

ρi(x̂)
2dx =

PK
i=�K ρi(x̂)

2

PK
j=�K ρj(x̂)

=
Varhρ�K ,ρKi[ρ(x̂)]

Ehρ�K ,ρKi[ρ(x̂)]
+ E

hρ�K ,ρKi[ρ(x̂)]

For 1-dimension case, we empirically verified

E
hρ�K ,ρKi[ρ(x̂)] ⇡ V arhρ�K,ρKi[ρ(x̂)]

E
hρ�K,ρKi[ρ(x̂)]

, thus:

ρ0(x̂) = 2ρ(x̂) =
2

Nftrain(x̂)
(3)

Using Equations 1, 2, and 3 we can derive the probability

of an error on the test set, Eftest
[Φ], as follows:

Eftest
[Φ] =

Z +1

�1

Φ(x̂)ftest(x̂)dx̂

=

Z +1

�1

min

✓

1,
ψ(x̂)

δ

◆

ftest(x̂)dx̂

⇡
Z +1

�1

min

✓

1,
ρ(x̂)

4δ

◆

ftest(x̂)dx̂

⇡
Z +1

�1

min

✓

1,
1

2Nftrain(x̂)δ

◆

ftest(x̂)dx̂ (4)

The integral in Equation 4 can be computed in the closed

form for many standard distributions, such as Gaussian

or uniform, else it can be computed using Monte Carlo

method [11].

3.3. Generalization error estimates for multi-
dimensional case

Now we consider multi-dimensional feature distribu-

tions. Let x̂ be a test point in the feature space whose im-

mediate 2d nearest training points in the feature space form

a set X̄ and let P be a convex hull spanned by these training

points. Assume P contains x̂. For the ease of further deriva-

tions, we assume training points from X̄ , sampled from

distribution ftrain, lie on the vertices of a d-dimensional

hyper-cube P with side length a(x̂). The side length of

the hyper-cube P depends on the position of the test point

x̂. This is because in places with higher density of training

data points we can construct a tighter convex hull around the

test point x̂, and hence the length of the side of the hyper-

cube P should decrease then. Furthermore, similar to 1-

dimensional case let the test feature distribution be close to

uniform, denoted as u, in P .



Figure 1. Monte Carlo simulation results (blue curve) confronted with theoretical derivations (red curve) for (left) d = 1 (center) d=2 and

(right) d = 4. M = 1K, ftrain = ftest = Nd(µ = 0,Σ = I). The error bars capture 2 standard deviations.

In the large data regime, we approximate the distance

of x̂ to its closest training feature vector (denoted as ψ(x̂))
with the expected value of the distance of x̂ to the closest

training point in P (depending on the position in P , the

closest training point is one of the vertices of the hyper-

cube P). For ease of computation we assume x(x̂) lies at

the origin of the d-dimensional feature space hence, we can

compute E
X̄
u [ψ(x̂)] as,

E
X̄
u [ψ(x̂)] =

Z

P

kx̂� x(x̂)k2u(x̂)dx̂

=

Z a(x̂)
2

0

· · ·

Z a(x̂)
2

0

kx̂k2
1

(a(x̂)2 )d
dx̂1 . . . dx̂d

=
1

(a(x̂)2 )d

Z a(x̂)
2

0

· · ·

Z a(x̂)
2

0

v
u
u
t

dX

i=1

x̂2
i dx̂1 . . . dx̂d (5)

In the large data regime, we can approximate the distance

between two training data points, or in other words the side

of the hyper-cube P , a(x̂), as the limit of the ratio of the

volume of the hyper-cube P to the number of points lying

in P:

a(x̂) ⇡
✓

lim
Volume(P)!0

Volume(P)
R

P
Nftrain(x̂)dx

◆1/d

=

✓

lim
∆!0

1

Nftrain(x̂+∆)

◆1/d

=
1

(Nftrain(x̂))1/d
. (6)

In higher dimensions (> 1), we empirically verified that no

correction to a(x̂) is required.

Similarly to 1-dimensional case, we can use Equa-

tions 1, 5, and 6 to derive the probability of an error on

the test set, Eftest
[Φ], as follows:

Eftest
[Φ] =

+1Z

�1

. . .

+1Z

�1

min

✓

1,
ψ(x̂)

δ

◆

ftest(x̂)dx̂ (7)

where,

ψ(x̂) =
1

(a(x̂)2 )d

a(x̂)
2Z

0

. . .

a(x̂)
2Z

0

||x̂||2dx̂1 . . . dx̂d

and
a(x̂) =

1

(Nftrain(x̂))
1
d

.

The obtained integral cannot be computed in the closed

form, however it can be computed using Monte Carlo meth-

ods (note that d in our experiments is very small, i.e. it does

not exceed 4, which enables accurate Monte Carlo approxi-

mations).

4. Experiments

We conduct two types of experiments. First, we verify

our derivations for the generalization error estimator using

Monte Carlo simulations. We use toy data sets generated

from the Gaussian distribution. We then move to the main

experiments, which are performed on the real data. These

experiments involve classification and regression problems.

The classification task is performed on the following data

sets: MNIST [40], CIFAR [36] and ImageNet [18]). Our

experiments utilize popular DNN architectures: LeNet [40],

VGG16 [53], ResNet18, and ResNet50 [29]. We used cross

entropy loss functions and stochastic gradient descent at

training. The regression task is performed on the Udac-

ity [57] data set, which is typically used in the autonomous

driving applications. It contains images from left, center

and right cameras that are mounted on the vehicle and ad-

ditional vehicle logs such as speed, steering command etc.

The data set is imbalanced and contains mostly samples cor-

responding to driving straight. We sub-sampled those to

balance the data. The final balanced data set contains 38936
training examples, 6552 validation examples, and 8190 test

examples. For the Udacity experiments we utilize a network

described in Table 7 in the Supplement that takes single im-

age as input and predicts the appropriate steering command.

The network was trained using mean squared error loss and

Adam optimizer [34].
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Figure 2. Test accuracy for different classification data sets with bottleneck network inserted before the output layer of the model. Top

Row: CIFAR-10 trained on (Left) VGG16, (Center) ResNet-18 and (Right) MNIST trained on LeNet. Bottom Row: CIFAR-100 trained

on (Left) VGG16 , (Center) ResNet-18 and (Right) ImageNet trained on ResNet-50.

4.1. Monte Carlo simulations

Here we assume that both train and test data points are

d-dimensional vectors (we explored d = 1, 2, 4) that are

drawn from a known Gaussian distribution Nd(µ,Σ). We

set δ = 1. We generate the train and test sets containing re-

spectively N and M data points. Since we are interested

in this paper in examining how the error scales with N ,

our experiments are performed on training data sets with

a growing size (N ). In the simulation, for each test point

we find the closest point in the training data set. We count

the test point as a failure with the probability obtained us-

ing Equation 1. The error rate is computed as a number of

failures divided by the size of the test data set (blue curve

in Figure 1). We run the simulation for each value of N
twenty time with different seeds. We confront the error rate

obtained from simulation with the theoretical one obtained

using Equations 4 and 7 (red curve in Figure 1). We use

Monte Carlo method to compute the integrals in these equa-

tions. The results are captured in Figure 1. The experiment

shows that simulated and theoretical curves match, which

confirms the correctness of our theoretical derivations.

4.2. Real data experiments

4.2.1 Finding effective dimensionality

In Figure 2 and Table 4 in the Supplement we show the ex-

periment capturing the selection of the effective dimension-

ality involving the injection of the bottleneck to the network

# filters in

Conv1

# filters in Conv2

4 8 16

2 3 3 3
4 2 2 2
6 2 2 2

Table 1. d values for networks of varying capacity (i.e. varying

number of filters in the first (Conv1) and second (Conv2) convolu-

tional layer of the LeNet model.

Width 10 20 50 100 200 300

d 5 4 2 2 2 2
Table 2. d values for networks of varying capacity (MLP with sin-

gle hidden layer and varying width).

(it was described in the Section 3) for MNIST, CIFAR10,

CIFAR100, and ImageNet data sets. Effective dimension-

ality d is chosen as the size of the bottleneck for which we

start observing saturation. We empirically found (see Fig-

ure 11) that this choice of d allows to accurately estimate

the learning curve, even when the accuracies of bottleneck

models do not reach the accuracies of the original models

as is the case for CIFAR100 and ImageNet data sets. Note

that the accuracy of the model with the bottleneck saturates

at d = 2 for MNIST and CIFAR10, d = 2/d = 3 for CI-

FAR100 data set, and d = 3/d = 4 for ImageNet data set.

Furthermore, we also extracted feature vectors of differ-

ent dimensions from the bottleneck model and performed

nearest neighbor classification on the low-dimensional fea-

tures. We found that the performance of the nearest neigh-
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Figure 3. Theoretical and empirical learning curves for classification experiments Top Row: CIFAR-10 trained on (left) VGG16, (center)

ResNet-18 and (right) MNIST trained on LeNet. Bottom Row: CIFAR-100 trained on (left)VGG16 and (center) ResNet-18, and (right)

ImageNet trained on ResNet-50 .

bor saturates for the same values of d as described above.

These results are highlighted in Figure 5 and Table 5 in the

Supplement. This ensures us that the dimensionality found

using the bottleneck indeed captures enough variety in the

data to perform accurate prediction. Finally, for the Udac-

ity, the effective dimensionality we found was equal to 1.

Apart from training data set, the effective dimensionality of

the feature space indirectly depends on the capacity of the

neural network which in turn depends on network design.

We verify this claim by training multiple LeNet and MLP

models with varying capacity on MNIST data set and com-

puting the effective dimensionality for each of the model.

The LeNet model consists of two convolution layers with 6
and 16 filters respectively. We control the capacity of the

network by decreasing the number of filters in each con-

volutional layer. For MLP, we use single hidden layer and

vary its width. As the capacity of the network decreases

we observe an increase in the effective dimensionality. The

results are highlighted in Table 1 and 2.

4.2.2 Learning curves

The empirical learning curves were obtained by testing

DNNs trained on increasingly larger data sets. Thus we

sampled MNIST, CIFAR and Udacity data set to obtain

training data sets of size equal to 3.125%, 6.25%, 12.5%,

25%, 50%, 75% and 100% of the entire data set. For

ImageNet we obtained training data sets of size equal to
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Figure 4. Theoretical and empirical learning curves for Udacity

data set.

3.90%, 5.85%, 7.80%, 11.70%, 15.61%, 19.51%, 31.22%,

39.02%, 58.54%, 62.44%, 78.05% and 100% of the entire

data set. In the obtained training data sets, all classes are

equally well-represented (they are balanced). For classifi-

cation problems, we plot the experimental learning curve

by computing the test error rate, i.e number of samples in-

correctly classified by the model (see Figure 3 and Table 3;

theoretical curves for various settings of effective dimen-

sionality are reported in Figure 11 in the Supplement). For

regression task, we count the test sample as misclassified if

the predicted steering command deviates from the label by

more than 0.1 (in the Udacity the steering command is typ-

ically in the range (-0.5, 0.5); see Figure 4 for the results).

The theoretical learning curves were obtained according



ftrain ftest
Data set Model µ diag(Σ) µ diag(Σ) d δ

MNIST LeNet


0.020
0.012

� 
377.855
264.029

� 
�0.061
�0.036

� 
384.357
270.399

�

2 17.375

CIFAR-10

VGG-16


�0.004
0.024

� 
98.192
80.676

� 
0.009
�0.060

� 
87.691
76.163

�

2 0.890

ResNet-18


�0.003
�0.001

� 
3.717
2.789

� 
0.007
0.003

� 
3.726
2.662

�

2 0.262

CIFAR-100

VGG-16


0.023
0.0464

� 
123.572
121.108

� 
�0.0584
�0.116

� 
102.838
97.932

�

2 0.265

ResNet-18


�0.001
�0.010

� 
3.648
3.449

� 
0.003
0.0260

� 
2.914
2.811

�

2 0.056

ImageNet ResNet-50

2

4

�0.002
�0.007
�0.020

3

5

2

4

19.940
14.308
12.331

3

5

2

4

�0.002
�0.007
�0.020

3

5

2

4

19.940
14.308
12.331

3

5 3 0.340

Udacity CovNet �0.0111 4.3415 0.0265 6.1000 1 0.003
Table 3. The effective dimensionality d and δ parameter for different data sets and model architectures. The train and test feature distribu-

tions are denoted as ftrain and ftest. µ denotes the mean of the distribution and diag(Σ) denotes the diagonal elements of the co-variance

matrix (off-diagonal elements are equal to 0).

to Equations 4 and 7, where the integral were computed

using Monte Carlo method. Note that our generalization

error estimate is dependent on the feature train and test dis-

tributions. In order to obtain the features for the distribution

estimation, we train the DNN on a subset of the training

data, i.e. 50%. Next, we process this subset as well as the

subset of the test data with this DNN. The obtained features

are then projected via PCA to the effective dimensionality

d. We assume single d-dimensional Gaussian distribution

for both the train and test data, whose parameters (mean

and covariance) we estimate via maximum likelihood ap-

proach (it has been previously observed that features space

learned by DNNs exhibit a simple clustering structure [25]).

Finally, we treat δ as a hyperparameter of the error estimate.

It was obtained under small data regime ( 50% of training

data) by minimizing the distance between theoretical and

empirical curve. Therefore, after training network on small

amount of data, which is computationally much faster than

training on the entire corpus, we estimate δ and predict the

behavior of the learning curve in large data regime. Table 3

and 6 in the Supplement summarizes the choice of hyperpa-

rameters for different data sets and architectures. As can be

seen in Table 3, δ heavily depends on the considered com-

bination of data set and architecture (difference is often in

order of magnitudes).

Figure 3, Figure 4 and Table 3 report the results con-

fronting the theoretical and empirical learning curves. Note

that among all our data sets, only ImageNet does not satisfy

the assumption of zero training error (see Figures 9, 6, 7, 8;

for Udacity data set the training error is close to zero as can

be seen in Figure 10), nevertheless even for this data set we

could well-model the behavior of the learning curve using

our theoretical framework. According to [30] the learning

curve can be broken down into three regions: low data re-

gion, power law region, and the saturation region. In our ex-

periments we observe first two regions. In low data regime

we observe over-fitting. In this case we observe a mismatch

between the theoretical and empirical curves (recall that our

estimates of the generalization error become more accurate

with increasing N ). In the power law region, as we increase

the amount of training data the performance of the network

consistently improves. Our theoretical framework estimates

the empirical learning curve in this region very well.

5. Conclusion

In this paper we address the problem of describing the

behavior of the generalization error of DL models with the

growing size of the training data. We attempt to recon-

cile the dichotomy between existing theoretical approaches,

which rely on capacity measures that are potentially impos-

sible to obtain for practical DNNs, and existing empirical

approaches that model the behavior of the error by fitting it

to a parameterized curve and lack any theoretical descrip-

tion. Our error estimates stem from a simple model of a DL

machine that we propose and analyze. Our approach relies

on modeling assumptions, which are however not unrealis-

tic and gives rise to the estimates of the generalization error

curves that closely resemble the ones empirically observed.

We verify our approach on several learning tasks involving

various realistic architectures and data sets.



References

[1] Noga Alon, Shai Ben-David, Nicolo Cesa-Bianchi, and

David Haussler. Scale-sensitive dimensions, uniform con-

vergence, and learnability. Journal of the ACM (JACM),

44(4):615–631, 1997. 2

[2] Rana Ali Amjad and Bernhard Claus Geiger. Learning rep-

resentations for neural network-based classification using the

information bottleneck principle. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 2019. 2

[3] Anima Anandkumar. The AI Trinity: Data + Algorithms +

Infrastructure. https://www.youtube.com/watch?

v=Mzior-Jmp8A, 2018. 1

[4] Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Da-

vide Zoccolan. Intrinsic dimension of data representations

in deep neural networks. In H. Wallach, H. Larochelle, A.
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