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Abstract

Machine Learning as a Service (MLaaS) is a pop-
ular and convenient way to access a trained machine
learning (ML) model trough an API. However, if the
user’s input is sensitive, sending it to the server is not
an option. Equally, the service provider does not want
to share the model by sending it to the client for pro-
tecting its intellectual property and pay-per-query busi-
ness model. As a solution, we propose MLCapsule, a
guarded offline deployment of MLaaS. MLCapsule exe-
cutes the machine learning model locally on the user’s
client and therefore the data never leaves the client.
Meanwhile, we show that MLCapsule is able to offer the
service provider the same level of control and security
of its model as the commonly used server-side execu-
tion. Beyond protecting against direct model access, we
demonstrate that MLCapsule allows for implementing
defenses against advanced attacks on machine learning
models such as model stealing, reverse engineering and
membership inference.

1. Introduction

Machine learning as a service (MLaaS) has become
increasingly popular during the past five years. Lead-
ing Internet companies, such as Google,1 Amazon,2

and Microsoft3 deploy their own MLaaS. It offers a
convenient way for a service provider to deploy a ma-
chine learning (ML) model and equally an instant way

1https://cloud.google.com/
2https://cloud.google.com/vision/
3https://azure.microsoft.com/en-us/services/machine-

learning-studio/

for a user/client to make use of the model in various
applications.

While MLaaS is convenient for the user, it also
comes with several limitations. First, the user has
to trust the service provider with the input data.
Typically, there are no means of ensuring data pri-
vacy and recently proposed encryption mechanisms [6]
come at substantial computational overhead especially
for state-of-the-art deep learning models. Moreover,
MLaaS requires data transfer over the network which
constitutes high volume communication and provides a
new attack surface [20, 24]. This motivates us to come
up with a client-side solution such that perfect data
privacy and offline computation can be achieved.

Yet, this (seemingly) comes with a loss of control of
the service provider. Running the ML model on the
client’s machine raises concerns about revealing details
of the model, damaging the intellectual property of the
service provider. Further, granting unrestricted/unre-
vocable access to the user breaks the commonly en-
forced pay-per-query business model. Moreover, there
is a plethora of attacks on machine learning mod-
els that raise severe concerns about security and pri-
vacy [26]. A series of recent papers have shown different
attacks on MLaaS that can lead to reverse engineering
[35, 22] and training data leakage [12, 11, 29, 38, 28].
Many of these threats are facilitated by repeated prob-
ing of the ML model. Therefore, we need a mechanism
to enforce that the service provider remains in control
of the model access as well as provide ways to deploy
detection and defense mechanisms in order to protect
the model.
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1.1. Our Contributions

We propose MLCapsule, a guarded offline deploy-
ment of machine learning as a service. MLCapsule

follows the popular MLaaS paradigm, but allows for
client-side execution where model and computation re-
main secret. MLCapsule protects intellectual property
and maintains the business model for the provider.
Meanwhile, the user gains offline execution and thereby
perfect privacy, as the data never leaves the client’s ma-
chine.

MLCapsule uses an Isolated Execution Environment
(IEE) to provide a secure enclave to run an ML model.
IEE provides means to prove execution of code, and
only the enclave can decrypt the received data. This
keeps the intellectual property of the service provider
secure from other processes running on the client’s plat-
form.

We also contribute by a proof-of-concept of our so-
lution. Due to its simplicity and availability, we imple-
mented our prototype on a platform with Intel SGX
(yet, the current generation should not be used due to
devastating attacks for example [8]). Our solution can
be used on any IEE platform. In more details, in our
solution we design so called MLCapsule layers, which
encapsulate standard ML layers and are executed in-
side the IEE. Those layers are able to decrypt (unseal)
the secret weight provisioned by the service provider
and perform the computation in isolation. This modu-
lar approach makes it easy to combine layers and form
large networks. We further evaluate the overhead of
entire networks (VGG-16 [31] and MobileNet [14]) and
individual (dense and convolutional) layers.

MLCapsule is also able to integrate advanced defense
mechanisms for attacks against machine learning mod-
els. For demonstration, we propose two defense mecha-
nisms against reverse engineering [22] and membership
inference [29, 27] respectively, and utilize a recent pro-
posed defense [17] for model stealing attacks [35]. We
show that these mechanisms can be seamlessly incor-
porated into MLCapsule, with a negligible computation
overhead.

2. Requirements and Threat Model

In this section, we introduce the requirements we
want to achieve in MLCapsule.

User Side. MLCapsule deploys MLaaS locally, provid-
ing a strong privacy guarantee to the user, as her data
never leaves her devices. Local execution also avoids
the Internet communication between the user and the
MLaaS provider and eliminates possible attack surfaces
due to network communication [20, 24].

Server Side. Deploying a machine learning model on

the client side naively, i.e., providing the trained model
to the user as a white box, harms the service provider
in the following two perspectives.

• Intellectual Property: Training an effective ma-
chine learning model is challenging, the MLaaS
provider needs to get suitable training data and
spend many resources on training and tuning
hyper-parameters [36]. All these certainly belong
to the intellectual property of the service provider.

• Pay-per-query: Most MLaaS providers implement
a pay-per-query business model. For example,
Google’s vision API charges 1.5 USD per 1,000
queries.4

To mitigate all these potential damages to the ser-
vice provider, MLCapsule needs to provide guarantees
that it (1) protects intellectual property and (2) en-
ables the pay-per-query business model. In general, we
aim for a client-side deployment being indistinguish-
able from the current server-side deployment.
Protection against Advanced Attacks. Orthogo-
nal to the previous properties, an adversary can per-
form multiple attacks against MLaaS by solely query-
ing its API (black-box access). Attacks of such kind in-
clude model stealing [35, 36], reverse engineering [22],
and membership inference [29, 28]. In particular,
MLaaS is vulnerable to these attacks, too [35, 29, 22,
36]. We consider mitigating the above threats as re-
quirements of MLCapsule as well.

3. Background

In this section, we recall the properties of Intel’s
Software Guard Extensions (SGX). Although our pro-
totype is implemented using SGX, any IEE with simi-
lar properties implementing the formal model proposed
by Fish et al. [10] can be used as a building block
of MLCapsule.

3.1. SGX

SGX is a set of commands included in Intel’s x86
processor design that allows to create isolated execu-
tion environments called enclaves. According to Intel’s
threat model, enclaves are designed to trustworthily
execute programs and handle secrets even under a mal-
icous host system and an untrusted system’s memory.
Properties. There are three main properties of Intel
SGX:

• Isolation: Code and data inside the enclave’s pro-
tected memory cannot be read or modified by any

4https://cloud.google.com/vision/pricing
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external process. Enclaves are stored in a hard-
ware guarded memory called Enclave Page Cache
(EPC). Untrusted applications can use enclaves as
external libraries that are defined by call functions.

• Sealing: Data in the unstrusted host system is en-
crypted and authenticated by a hardware-resident
key. From the processors Root Seal key, the en-
clave’s Seal key is derived (or recovered). Other
enclaves can not obtain this key.

• Attestation: Attestation provides an unforgeable
report attesting to code, static/meta data of an
enclave, as well as the output of the computation.

Side-channel Attacks. Intel SGX is prone to side-
channel attacks. Intel does not claim that SGX defends
against physical attacks (e.g., power analysis), but suc-
cessful attacks have not yet been demonstrated. How-
ever, several software attacks have been demonstrated
in numerous papers [18, 37, 7]. The attacks usually
target flawed implementations. A knowledgeable pro-
grammer can write the code in a data-oblivious way,
i.e., the software does not have memory access pat-
terns or control flow branches that depend on secret
data. In particular, those attacks are not inherent to
SGX-like systems, as shown by Costan et al. [9].
Rollback. The formal model described in the next
subsection assumes that the state of the hardware is
hidden from the users platform. SGX enclaves store en-
cryptions of the enclave’s state in the untrusted part of
the platform. Those encryptions are protected with a
hardware-generated secret key, yet this data is provided
to the enclave by an untrusted application. There-
fore, SGX does not provide any guarantees about fresh-
ness of the state and is vulnerable to rollback attacks.
Fortunately, there exist hardware solutions relying on
counters [33] and distributed software-based strategies
[19] to prevent rollback attacks.

4. Related Work

In this section, we review related works. We first
discuss cryptography and ML, focusing on SGX and
homomorphic encryption. We then turn to watermark-
ing.

SGX for ML.Ohrimenko et al. [23] investigated obliv-
ious data access patterns for a range of ML algorithms
applied in SGX. Tramèr et al. [34], Hynes et al. [16],
and Hunt et al. [15] used SGX for ML – however in
the context of training convolutional neural network
models. Our work instead focuses on the test-time de-
ployment of ML models. To the best of our knowledge,
only Gu et al. [13] consider convolutional neural net-
works and SGX at test time. The core of their work is

to split the network as to prevent the user’s input to
be reconstructed. In contrast, we focus on protecting
the model.

Homomorphic Encryption and ML Models. Ho-
momorphic encryption keeps both input and result pri-
vate from an executing server [3, 6]. In contrast to our
approach, homomorphic encryption lacks efficiency, es-
pecially for large deep learning models. Moreover, it
does not allow for implementing transparent mecha-
nisms to defend attacks on the ML model: detecting
an attack contradicts with the guaranteed privacy in
this encryption scheme.

Watermarking serves to claim ownership of an ML
model. Watermarking as a passive defense mechanism,
where A model is trained to yield a particular output
on a set of points [1], or to produce a specified out-
put when meaningful content is added to samples [39].
Instead, MLCapsule deployed on the client-side is indis-
tinguishable from the server-side deployment. Further,
MLCapsule allows us to deploy defense mechanisms to
actively mitigate advanced attacks against ML mod-
els.

5. MLCapsule

In this section we introduce MLCapsule. We start
with an overview of the participants and then intro-
duce the different execution phases. We then argue
that and how MLCapsule fulfills our requirements. We
focus for the rest of the paper on deep networks, as
they have recently drawn attention due to their good
performance. Additionally, their size makes both im-
plementation and design a challenge. Yet, MLCapsule
generalizes to other linear models, as well as decision
tress and boosting, as these can be expressed as neural
networks, too.

Participants. In MLCapsule, we distinguish two par-
ticipants of the system. On the one hand, we have the
service provider (SP) that possesses private training
data (e.g. images, genomic data, etc.) that it uses to
train an ML model. The service provider’s objective is
to protect the trained weights and biases, as we assume
the design of the network to be public. On the other
hand, we have users that want to use the pre-trained
model as discussed in Section 2.

Approach. We assume that all users have a plat-
form with an isolated execution environment. This is
a viable assumption: Intel introduced SGX with the
Skylake processor line. The latest Kaby Lake genera-
tion of processors also supports SGX. It is reasonable
to assume that Intel provides SGX support with ev-
ery new processor generation and over time every Intel
processor will have SGX.

3



The core idea of MLCapsule is to leverage the prop-
erties of the IEE to ensure that the user has to attest
that the code is running in isolation before it is pro-
vided the secrets by the SP. This step is called the setup
phase. Afterwards, the client can use the enclave for
the classification task. This step is called the inference
phase. The isolation of the enclave ensures that the
user is not able to infer more information about the
model than given API access to a server-side model.
Figure 1 shows both phases which we now describe in
more detail.

Setup phase: The user downloads the code of the en-
clave provided by the SP and a service application to
setup the enclave. This service app can be provided by
the SP but also by the user or a trusted third party.
After the user’s platform attests that an enclave in-
stance is running, the SP provides the enclave with
secret data. The enclave’s attestation can be part of
a larger authentication structure including additional
login or SP specific account information allowing only
users that paid or are authorized to use the model.
Finally, the enclave seals all secrets and the service ap-
plication stores it for further use. The sealing hides
this data form other processes on the user’s platform.

Inference phase: To perform classification, the user ex-
ecutes the service app and provides the test data as
input. The service app restores the enclave. Since the
enclave requires the model parameters, the service app
loads the sealed data stored during the setup phase.
Before classification, the enclave can also perform an
access control procedure based on the sealed data. Due
to some limitations (e.g. limited memory of the IEE),
the enclave must implement classification layer wise,
i.e. the service app provides sealed data for each layer
of the network separately. Finally, the enclave outputs
the result to the service app.

Requirements. We now briefly discuss how
MLCapsule fulfills the requirements.

User Input Privacy. MLCapsule is executed locally, en-
suring her privacy and preventing communication with
the SP. The user can further inspect the code, in par-
ticular checking for any communication with the SP.

Pay-per-query. To enforce the pay-per-query
paradigm, the enclave is set up with a threshold. If the
threshold is exceeded, and the user exceeds their paid
budget, an error is returned. This corresponds to the
current, rough grained pay-per query model (batches of
1,000 queries in case of Google’s vision API). The key
point here is that a given user will only be provisioned
once by the SP. Note that during the setup phase the
SP will check if the user’s platform is running the cor-
rect enclave (via attestation) and it also can check the

user’s account information. A malicious user can cre-
ate a fresh enclave to reset this counter. However, in
such a case the SP will not provision this new enclave
with the model’s weights and the adversary will not
gain any advantage.

Intellectual Property. MLCapsule protects the service
provider’s intellectual property as the user gains no ad-
ditional advantage in stealing the intellectual property
in comparison to an access to the model through an
server-side API.

6. SGX Implementation and Evaluation

In the setup phase, MLCapsule attests the execution
of the enclave and decrypts the data sent by the service
provider. Both tasks are standard and supported by
Intel’s crypto library [2]. Thus, in the evaluation we
mainly focused on the inference phase and the overhead
the IEE introduces.

We used an Intel SGX enabled PC with Intel(R)
Core(TM) i7-6700 CPU @ 3.40GHz and Ubuntu 18.04.
The implementation uses C++ and is based on Slalom
[34], which uses a custom lightweight C++ library for
feed-forward networks based on Eigen. Porting well-
known ML frameworks, such as TensorFlow, to SGX
is not feasible because enclave code cannot access OS-
provided features. If not stated otherwise, we used the
-O3 compiler optimization and C++11 standard.

In MLCapsule, we wrap standard layers to create
MLCapsule layers. Those layers take the standard in-
put of the model layer but the weights are given in
sealed form. Inside the enclave, the secret data is un-
sealed and forwarded to the standard layer function.
MLCapsule layers are designed to be executed inside
the enclave by providing ECALL’s. See Figure 2 for
more details. This approach provides means to build
MLCapsule secure neural networks in a modular way.

Evaluation.

Since the sealed data is provided from outside the
enclave, it has to be first copied to the enclave be-
fore unsealing. We measured the execution time of
MLCapsule layers as the time it takes to (1) allocate
all required local memory, (2) copy the sealed data to
the inside of the enclave, (3) unseal the data, (4) per-
form the actual computation and finally (5) free the
allocated memory.

Applications are limited to 90 MB of memory, be-
cause there is currently no SGX support for memory
swapping. This is visible in our results for a dense layer
with weight matrix of size 4096 × 4096. In this case,
we allocate 4 × 4096 × 4096 = 64 MB for the matrix
and a temporary array of the same size for the sealed
data. Thus, we exceed the 90 MB limit, which leads
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Figure 2: Difference between MLCapsule and standard
layer.

to a decrease in performance. In particular, the execu-
tion of such a layer took 1s and after optimization, the
execution time decreased to 0.097ms.

We overcome this problem by encrypting the data
in chunks of 2 MB. This way the only large data ar-
ray allocated inside the MLCapsule layer is the mem-
ory for the weight matrix. Using 2 MB chunks the
MLCapsule layers require only around 2 × 2 MB more
memory than implementations of standard ML layers.
We implemented this optimization only for data that
requires more than 48 MB, e.g. in case of a VGG-16
network we used it for the first and second dense layer.
Comparisons between MLCapsule and standard layers
are given in Table 1 and Table 2. From the former, we
see that the overhead for convolutional layers averages
around 1.2, with a peak to 2.3 in case of inputs of size
512 × 14 × 14. In case of depthwise separable convo-

lution layers, the execution time of MLCapsule layers
is comparable with a standard layer. In fact, in this
case, the difference is almost not noticeable for smaller
input sizes. Applying additional activation functions
or/and pooling after the convolution layer did not sig-
nificantly influence the execution time. Dense layers,
however, show a larger overhead. For all the kernel
dimension the overhead is not larger than 25 times.
We also evaluated dense layers without -O3 optimiza-
tion. The results show that in such a case the overhead
of MLCapsule is around the factor of 3. We suspect
that the compiler is able to more efficiently optimize
the source code not using SGX specific library calls.
Hence, the increase in performance is due to the opti-
mized compilation.

7. Advanced Defenses

Recently, researchers have proposed multiple attacks
against MLaaS: reverse engineering [22], model steal-
ing [35, 36], and membership inference [29, 28]. As
mentioned in Section 2, these attacks only require
the black-box access (API) to the target ML model,
therefore, their attack surface is orthogonal to the one
caused by providing the model’s white-box access to
an adversary. As shown in the literature, real-world
MLaaS suffers from these attacks [35, 29, 36, 28].

In this section, we propose two new defense mecha-
nisms against reverse engineering and membership in-
ference. Both mechanisms, together with a proposed
defense for model stealing, can be seamlessly integrated
into MLCapsule.
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Table 1: Average dense layer overhead for 100 executions. This comparison includes two ways of compiling the
code, i.e. with (marked by ∗) and without the g++ optimization parameter -O3.

Dimension MLCapsule ∗ MLCapsule Standard ∗ Standard

256×256 0.401ms 0.234ms 0.164ms 0.020ms
512×512 1.521ms 0.865ms 0.637ms 0.062ms
1024×1024 6.596ms 4.035ms 2.522ms 0.244ms
2048×2048 37.107ms 26.940ms 10.155ms 1.090ms
4096×4096 128.390ms 96.823ms 40.773ms 4.648ms

Table 2: Average convolution and depthwise separable (denoted †) convolution layer overhead for 100 executions
and 3× 3 filters.

Size MLCapsule Standard Factor MLCapsule † Standard † Factor †

64×224×224 80ms 66ms 1.21 41ms 27ms 1.52
128×112×112 70ms 63ms 1.11 18ms 16ms 1.125
256×56×56 55ms 54ms 1.02 9ms 9ms 1.00
512×28×28 61ms 51ms 1.20 7ms 7ms 1.00
512×14×14 30ms 13ms 2.31 2ms 2ms 1.00

7.1. Detecting Reverse Engineering of Neural Net-
work Models

Oh et al. have shown that a wide variety of model
specifics can be inferred using black-box querying [22].
This includes network topology, training procedure as
well as type of non-linearities and filter sizes, endan-
gering the safety of intellectual property and increasing
the attack surface.

Methodology. No defense has been proposed so
far for this type of attack. The most effective method
proposed by Oh et al. [22] relies on crafted input pat-
terns that are distinct from benign input. Therefore,
we propose to train a classifier that detects such mali-
cious inputs. Once a malicious input is recognized, ser-
vice can be immediately denied which stops the model
from leaking further information, without even com-
municating with the server.

We focus on the kennen-io method by Oh et al. [22],
or the strongest attack. We duplicate the test setup
on the MNIST dataset.5 In order to train a classi-
fier to detect such malicious inputs, we generate 4500
crafted input images with the kennen-io method and
train a classifier against 4500 benign MNIST images.
The classifier has two convolutional layers with 5 × 5
filters, 10 in the first, 20 in the second layer. Each
convolutional layer is followed by a 2× 2 max pooling
layer. A fully connected layer with 50 neurons follows
before the final softmax output. In addition, the net-
work uses ReLU non-linearties and drop-out for reg-

5http://yann.lecun.com/exdb/mnist/

ularization. We use a cross-entropy loss to train the
network with the ADAM optimizer.

Evaluation. We compose a test set of additional
500 malicious input samples and 500 benign MNIST
samples that are disjoint from the training set. The ac-
curacy of this classifier is 100%: it detects each attack
on the first malicious example. Meanwhile, no benign
sample leads to a denied service. This is a very effec-
tive protection mechanism that seamlessly integrates
into our deployment model and only adds 0.832 ms to
the overall computation time. While we are able to
show very strong performance on this MNIST setup,
it has to be noted that the kennen-io method is not
designed to be “stealthy” and future improvements of
the attack can be conceived that make detection sub-
stantially more difficult.

7.2. Detecting Model Stealing

Model stealing attack aims at obtaining a copy from
an MLaaS model [35, 25]. The attacker aims to train
a substitute on samples rated by the victim model, re-
sulting in a model with similar behavior and/or accu-
racy, violating the service provider’s intellectual prop-
erty. To show how seamlessly a defense can be inte-
grated into MLCapsule, we integrate Juuti el al.’s [17]
defense against model stealing. This defense, Prada,
maintains a growing set of user-submitted queries.
Whether a query is appended to this growing set de-
pends on the minimum distance to previous queries and
a user set threshold. Benign queries lead to a constant
growing set, whereas Juuti et al. show that malicious
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Figure 3: Overhead in seconds to load additional data
for a defense mechanism preventing model stealing,
namely Prada [17].

samples generally do not increase set size. Hence, an
attack can be detected by the difference of the growth
of those sets. As detection is independent of the clas-
sifier, it can be easily implemented in MLCapsule. The
resulting computation overhead depends heavily on the
user submitted queries [17]. We thus measure the gen-
eral overhead of first loading the data in the enclave
and second of further computations.

Juuti et al. state that the data needed per client
is 1-20MB. We plot the overhead with respect to the
data size in Figure 3. The overhead for less than 45MB
is below 0.1s. Afterwards, there is a sharp increase, as
the heap size of the enclave is 90MB: storing more data
requires several additional memory operations. An ad-
ditional time factor is to compute a queries distance
to all previous queries in the set. We assume a set
size of 3, 000, corresponding to roughly 5, 000 benign
queries. Further, a query on the GTSDB dataset6 is
delayed by almost 2s, or a factor of five. For datasets
with smaller samples such as CIFAR7 or MNIST, the
delay is around 35ms, where the inference is delayed
by a factor of 4 (CIFAR) up to 13.5 (MNIST).

7.3. Membership Inference

Breaching training data is a severe intellectual prop-
erty leak. Shokri et al. are among the first to demon-
strate that a trained model is more confident on a train-
ing point. A novel attack by Salem et al. show mem-
bership inference attacks can be performed by only re-
lying on the posterior’s entropy [28]. We use it as the

6http://benchmark.ini.rub.de/
7https://www.cs.toronto.edu/~kriz/cifar.html

Algorithm 1: Noising mechanism to mitigate
membership inference attack.

Input: Posterior of a data point P , Noise posterior T
Output: Noised posterior P ′

1: Calculate η(P ) # the entropy of P

2: α = 1− η(P )
log |P | # the magnitude of the noise

3: P ′ = (1− cα)P + cαT

4: return P ′
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Figure 4: The relation between c, the hyperparameter
controlling noise magnitude, and left [higher is better]
membership prediction performance and right [lower
is better] target model utility. JSD(P, P ′) denotes the
Jensen-Shannon divergence between the original poste-
rior P and the noised P ′, while |Pδ−P ′

δ| is the absolute
difference between the correct class’s posterior (Pδ) and
the noised one (P ′

δ).

membership inference attack in our evaluation. How-
ever, our defense is general and can be applied to other
membership inference attacks as well.

Methodology. We define the posterior of an ML
model predicting a certain data point as a vector
P , and each class i’s posterior is denoted by Pi.
The entropy of the posterior is defined as η(P ) =
−
∑

Pi∈P Pi logPi. This entropy allows, using a thresh-
old, to predict membership of a point [28].

The principle of our defense is adding more (less)
noise to a posterior with low (high) entropy, and pub-
lishing the noised posterior, as formalized in Algo-
rithm 1. We calculate η(P ) (line 1) and derive from
it the magnitude of the noise, i.e., α = 1− ηP

log |P | (line

2). Here, ηP
log |P | is the normalized η(P ) which lies in

the range between 0 and 1. Hence, lower entropy im-
plies higher α (i.e., larger noise) which implements the
intuition of our defense. However, directly using α gen-
erates too much noise to P . Thus, we introduce a hy-
perparameter, c, to control the magnitude α: c is in the
range between 0 and 1, its value is set following cross
validation. We thus add noise T to P with cα as the
weight (line 3). There are multiple ways to initialize
T , in this work, we define it as the class distribution of
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the training data. Larger cα will cause the final noised
P ′ to be more similar to the prior, which reduces the
information provided by the ML model.

Our defense is the first one not modifying the orig-
inal ML model’s structures and hyperparameters, i.e.,
it is a test-time defense. Previous works either rely
on increasing the “temperature” of the softmax func-
tion [29], or implementing dropout on the neural net-
work model [28]. These defense mechanisms may affect
the model’s performance and (implicitly) treat all data
points equally, even those that are very unlikely to be
in the training data. In contrary, our defense adds dif-
ferent noise based on the entropy of the posterior.

Evaluation. We train VGG-16 on the CIFAR-100
dataset (divided in equal parts for training and test-
ing) and reproduce the experimental setup of previous
works [28]. We mirror the attack’s performance using
the AUC score calculated on the entropy of the tar-
get model’s posteriors. Figure 4 on the left shows the
result of our defense depending on c. Setting c to 0,
e.g., no noise, results in 0.97, a high AUC score. Thus
an attacker can determine the membership state of a
point with high certainty. The AUC score starts drop-
ping when increasing c, as expected. When the value
of c approaches 0.5 the AUC score drops to almost 0.5,
where the best an attacker can do is randomly guessing
the membership status of a point.

We study the utility of our defense, i.e., how added
noise affects the performance of the target model. Al-
gorithm 1 shows that our defense mechanism only ad-
justs the confidence values in a way that the predicted
labels stay the same. This means the target model’s ac-
curacy, precision, and recall do not change. To perform
an in-depth and fair analysis, we report the amount
of noise added to the posterior. Concretely, we mea-
sure the Jensen-Shannon divergence between the orig-
inal posterior (P ) and the noised one (P ′), denoted by
JSD(P, P ′), following previous works [21, 4]. Formally,
JSD(P, P ′) is defined as:

JSD(P, P ′) =
∑

Pi∈P

Pi log
Pi

Mi

+ P ′
i log

P ′
i

Mi

where Mi =
Pi+P ′

i

2 . Moreover, we measure the abso-
lute difference between the correct class’s original pos-
terior (Pδ) and its noised version (P ′

δ), i.e., |Pδ − P ′
δ|,

this is also referred to as the expected estimation er-
ror [30, 5, 40]. In Figure 4 on the right, we see that
both JSD(P, P ′) and |Pδ − P ′

δ| increase monotonically
with the amount of noise being added (reflected by c).
However, when c is approaching 0.5, i.e., our defense
mechanism can mitigate the membership inference risk
completely, JSD(P, P ′) and |Pδ −P ′

δ| are still both be-

low 0.25, indicating that our defense mechanism pre-
serve the target model’s utility to a large extent.

The overhead of this defense is only 0.026ms to the
whole computation. This indicates our defense can be
very well integrated into MLCapsule.

8. Conclusion

We have presented a novel deployment mechanism
for ML models. It provably provides the same level of
security of the model and control over the model as con-
ventional server-side MLaaS execution, but at the same
time it provides perfect privacy of the user data as it
never leaves the client. In addition, we show the exten-
sibility of our approach and how it facilities a range of
features from pay-per-view monetization to advanced
model protection mechanisms – including the very lat-
est work on model stealing and reverse engineering.

We believe that this is an important step towards
the overall vision of data privacy in machine learning
[26] as well as secure ML and AI [32]. Beyond the pre-
sented work and direct implications on data privacy
and model security – this line of research implements
another line of defenses that in the future can help to
tackle several problems in security related issues of ML
that the community has been struggling to make sus-
tainable progress. For instance, a range of attacks from
membership inference, reverse engineering to adversar-
ial perturbations rely on repeated queries to a model.
Our deployment mechanism provides a scenario that is
compatible with a wide spread of ML models with the
ability of controlling or mediating access to the model
directly (securing the model) or indirectly (advanced
protection against inference attacks).
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