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Abstract

Federated learning has emerged as an important dis-

tributed learning paradigm, where a server aggregates a

global model from many client-trained models, while hav-

ing no access to the client data. Although it is recognized

that statistical heterogeneity of the client local data yields

slower global model convergence, it is less commonly rec-

ognized that it also yields a biased federated global model

with a high variance of accuracy across clients. In this

work, we aim to provide federated learning schemes with

improved fairness. To tackle this challenge, we propose a

novel federated learning system that employs zero-shot data

augmentation on under-represented data to mitigate statis-

tical heterogeneity, and encourage more uniform accuracy

performance across clients in federated networks. We study

two variants of this scheme, Fed-ZDAC (federated learning

with zero-shot data augmentation at the clients) and Fed-

ZDAS (federated learning with zero-shot data augmenta-

tion at the server). Empirical results on a suite of datasets

demonstrate the effectiveness of our methods on simultane-

ously improving the test accuracy and fairness.

1. Introduction

Major advances in deep learning over the last decade

have in large part been possible due to the increasing avail-

ability of data. With the proliferation of personal comput-

ers, smart phones, and edge devices, data are being gen-

erated and collected at unprecedented rates, providing the

large datasets needed to train the machine learning that

power “intelligent” services that are becoming increasingly

common in daily life. However, the rich content in these

data that enables such smart behavior may also be revealing

of personal information. Traditional learning methods pool

the data into a central repository for training, which makes

personal data vulnerable to breaches or interception.

Federated learning [26] has emerged as an alternative

strategy, with an emphasis on user data privacy. In the fed-

erated learning paradigm, learning takes place on the client

Figure 1: (a) Client data statistical heterogeneity. (b) Dif-

ferent model characteristics after local update. (c) Model

aggregation at the server, which may drown out minority

clients. (d) One-size-fits-all global model performs well in

general, but poorly on minority clients.

devices themselves, which means that the user’s personal

data never leaves the local device. In place of the data, the

updated model itself is sent to a coordinating server, which

then aggregates the updates and distributes the new model

to the clients.

While federated learning has demonstrated promise for

user data privacy, a major challenge is statistical hetero-

geneity [19, 20, 5, 12]: data distributions between clients

may exhibit significant differences. These differences may

lead to variance in learned local models after training on

each client’s local data. Additionally, the formulation in (1)

is fundamentally a one-size-fits-all solution, meaning the

learned global model may perform worse for some clients.

As a result of these factors, federated learning methods tend

to perform poorer when the data are not independent and

identically distributed (i.i.d.) among clients [26, 40].

What is more concerning, however, is that the accu-

racy loss due to statistical heterogeneity may be borne un-

equally among clients [21]. In populations with unequally

sized subgroups, clients with less common classes tend to

see worse performance [12]. This may be, in part, due

to catastrophic forgetting [25, 28]: clients from outside a

subpopulation have a tendency to forget features not found



in their own data and, during aggregation, the less repre-

sented clients may have their learned features drowned out

when the model weights are averaged. In the real world,

these client characteristics may represent ethnicity [14],

gender [4, 17], age [3], language [10], dialect, demograph-

ics, animal species, or disease trait. Therefore, the inabil-

ity to cope with statistical heterogeneity my lead to poten-

tially unfair algorithms, that provide in- accurate classifi-

cations based on certain characteristics of their input data.

A popular and effective strategy for preventing forgetting

is replay [23, 27]: storing a small buffer of samples for re-

hearsal. In federated learning, however, clients do not have

access to data from parts of the distribution that are not well-

represented in their own data. This is, in part, by design, as

client data are kept private and local to the device.

In this work, we propose a federated learning system

with zero-shot data augmentation (Fed-ZDA) to generate

pseudo-exemplars of unseen classes, without having access

to the private data. Such a strategy preserves the model’s

ability on previously sampled client data when learning

the local client update. This makes the model less likely

to lose representational ability for parts of the distribution

that are rarer. We explore two strategies for using zero-

shot data augmentation for federated learning, one in which

synthetic samples are generated at the client (Fed-ZDAC),

and another where they are generated at the server (Fed-

ZDAS). Both methods are illustrated in Figure 2. Differ-

ential privacy analysis shows that our proposed approach

satisfies (0, �) differential privacy. Finally, experiments on

MNIST [18], FMNIST [35], and CIFAR-10 [15] show that

both Fed-ZDAC and Fed-ZDAS result in more equitable

model performance.

2. Related Work

2.1. Federated Learning

Statistical Heterogeneity Statistical heterogeneity of the

data distributions of client devices has long been recog-

nized as a challenge for federated learning [40]. De-

spite acknowledging statistical heterogeneity, many feder-

ated learning algorithms still focus on learning a single

global model [26]; such an approach often suffers from di-

vergence of the model, as local models may vary signifi-

cantly from each other. To address this challenge, a num-

ber of works break away from the single-global-model for-

mulation. Several [29, 7] have cast federated learning as

a multi-task learning problem, with each client treated as a

separate task. FedProx [20] adds a proximal term to account

for statistical heterogeneity by limiting the impact of local

updates. In [40] performance degradation from skewed data

is recognized, proposing global sharing of a small subset of

data which, while effective, may compromise privacy.

Fairness There has been rising interest in developing fair

methods for machine learning [37]. However, such con-

cerns have been less addressed in federated learning. A

commonly used fairness definition has been proposed in

[38]. However, it forces the accuracy to be identical on

each device across hundreds to millions of clients, given

the significant variability of data in the network. Recent

work [21] has taken a step towards addressing this by in-

troducing uniformity to describe the fairness in federated

learning, in which the goal is instead to ensure that the un-

derfit groups are assigned more weight in the global learn-

ing objective. However, the proposed objective causes a

performance drop in clients who could have better results

under traditional federated average objective, which may

reduce these clients’ incentive to participate the federated

learning process. The work in [12] proposed rank-one fac-

torization on model parameters to ensure consistent model

performance across clients, by leaving factors locally. How-

ever, this Bayesian approach usually costs more training

time, and development of client-specific models is beyond

the single-global-model focus of this paper.

2.2. Zero-Shot Data Augmentation

Deep learning performance is highly dependent on the

quantity of data available [11, 30]. Data augmentation,

which inflates the size of a dataset without necessitating fur-

ther data collection, has proven effective in a wide range

of settings [18, 16, 39, 22], improving machine learning

model generalization. However, most data augmentations

apply transformations to the existing data, thus making the

implicit assumption that at least some data is available.

These techniques are thus difficult to apply when no data

is available. Consequently, DeepInversion [36] proposes

a data-free knowledge transfer based on synthesizing data,

effectively providing more teacher behavior for a student

to learn. Also, [6] proposes a similar method for network

quantization, by updating random input to match stored

batch norm layer statistics. In our work, since the server

has no access to the local data, synthesizing a reasonable

amount of fake data for deficient classes would encourage

a more fair global model. Also, unlike the work [13, 40]

which violates the rule that clients should never share data

to other clients or the server, zero-shot data augmentation

synthesize data based on the model information only. Note

that using synthesized samples for data augmentation dif-

fers from related works like [9], which take an approach

similar to dataset distillation [32] to synthesize data for the

purpose of compressing model updates for communication

efficiency purposes.

2.3. Differentially Private Federated Learning

With the increasing awareness of data security and con-

fidential user information, privacy has become an impor-



tant topic for machine learning systems and algorithms. In

order to solve this issue, differential privacy has been pro-

posed to prevent revealing training data [1]. Even though

federated learning enables local training without sharing the

data to the server, it is still possible for an adversary to in-

fer the private information to some extent, by analyzing the

model parameters after local training [33, 24]. Therefore,

combining differential privacy with federated learning has

been studied in many previous works. To ensure federated

learning approaches satisfy differential privacy, the work

in [8] proposed a client level perspective by adding Gaus-

sian noise to the model update, which can prevent the leak-

age of private information and achieve good privacy perfor-

mance. In [31], a combination of differential privacy and

secure multiparty computation was proposed to block dif-

ferential attacks. However, previous approaches based on

adding noise to model parameters struggle to capture the

appropriate trade-off between the model performance and

privacy budget. Our proposed zero-shot data augmentation

can be interpreted as a new randomization mechanism dif-

ferent from adding Gaussian noise, satisfying differential

privacy without hurting model performance.

3. Federated Learning with Zero-Shot Data

Augmentation

We propose a federated learning method with zero-shot

data augmentation (Fed-ZDA), for the purpose of improv-

ing the robustness and fairness of federated learning. To

improve the fairness of the global model, Fed-ZDA intro-

duces new synthetic data, generated either at the server or

at the client nodes, to supplement training with underrep-

resented samples. Notably, these samples are generated

without access to user data, but rather from shared models

post-local update. We start by reviewing standard federated

learning, which Fed-ZDA builds on. We then describe the

zero-shot data-augmentation method we use for Fed-ZDA.

We describe two deployments of Fed-ZDA, Fed-ZDAC and

Fed-ZDAS, where the zero-shot data-augmentation is done

at the client nodes and at the server node, respectively.

3.1. Federated Learning

In its most basic form, the federated learning objective is

commonly expressed as the following:

min
w

f(w) =
ZX

i=1

piFi(w) (1)

where Fi(w) := Exi∼Di
[fi(w;xi)] is the local objective

function of the ith client, Z is the number of devices or

clients, and pi � 0 is a weight assigned to the ith client.

Standard federated learning aims to aggregate, at the

centralized server, a federated global model from the client

models, typically by averaging them. In this scenario, the

clients only share their trained models with the server, and

do not share the datasets on which their models have been

trained. The server and the client communicate for T rounds

to update the global model M . A single communication

round contains three main steps:

1. The server randomly samples a subset of clients and

distributes the model to the sampled clients.

2. Each sampled client updates the model by training it

with their local training data.

3. Each client sends their updated model back to the

server and the server aggregates the received client

models into a new global model.

Typically, learning aggregates the models by federated

averaging (FedAvg), in which the federated global model

MG,t aggregated at the tth communication round is simply

a weighted average of all the client models received at this

round. Let Mi,t be the model trained by the ith client Ci at

the tth communication round, and St is the set of indices of

the sampled clients at the tth round.

MG,t =
X

i∈St

wiMi,t (2)

Different weights 0  wi  1 can be assigned to the clients

depending on different factors, such as the amount of data

they have been trained on, if such information is known at

the server. Otherwise, a simple arithmetic mean is adopted.

Ideally, after sufficient communication rounds, the

global model should converge to a solution that has learned

using the data from all clients. However, heterogeneous

data distributions across clients may cause inconsistent

model performance. In particular, if the dataset distribu-

tions of the different clients are skewed towards a majority

group of classes, FedAvg may result in a model with a large

variance in accuracy across classes, resulting in a large vari-

ance in the global model accuracy on the data of different

clients. Hence, standard federated learning suffers from the

notion of unfairness towards the under-represented clients,

providing poor accuracy on their data.

3.2. Zero-Shot Data Generation

Data augmentation has proven effective in many ma-

chine learning settings, such as when there is data scarcity

or class imbalance. Commonly used techniques include per-

forming transforms (e.g. rotations, flips, crops, added noise)

based on the original true data, combinations in feature

space, and synthesizing data by generative models. How-

ever, these techniques require access to training data or at

least a few data sample seeds. In federated learning, these

are not available, as data never leaves the individual clients,



Figure 2: Illustration of Fed-ZDAC (left) and Fed-ZDAS (right). In Fed-ZDAC, clients train the model after data augmenta-

tion. In Fed-ZDAS, the server distributes the model after training on augmented fake data.

making conventional augmentation techniques challenging.

In this work, we propose zero-shot data generation (ZSDG),

to generate labeled synthetic data for data-augmentation at

the clients, without having any access to any training data.

This approach utilizes trained models (either the global

model pre-update, or the local models post-update) to gen-

erate synthetic data of the desired classes without access to

any non-local data.

One way to generate synthetic data whose statistics

match those of the original training data is to find the data

that results in similar statistics as those stored in the batch

normalization (BN) layers of the pretrained model. How-

ever, without assigning class labels to this data, one cannot

use this data in a data-augmentation regime for supervised

training. For data augmentation with N possible classes,

we generate data for each class 1  n  N , represented

by its corresponding one-hot vector ȳ(n), which has 1 at

the nth index and zero otherwise. Let model M be a neural

network with L layers. For simplicity of notation, assume

the model has L batch normalization (BN) layers and de-

note the activation before the `th BN layer to be z`. The

`th BN layer is parameterized by a mean µ` and variance

�` calculated from the input feature maps when the model

was being trained. During the forward propagation, z` is

normalized with the parameters of the BN layer. Note that

given a pretrained model M , batch norm statistics of all BN

layers are stored and accessible. Given a target class ȳ(n)
the ZSDG reduces to the optimization problem that finds the

input data x̄ that result in the batch norm statistics matching

those stored in the BN layers of the pretrained model, and

are classified by the pretrained model as having label ȳ(n).
Given the pretrained model M , with BN statistics µ` and

�` stored in its layers 1  `  L, the ZSDG optimization

problem to generate synthetic labeled data (x̄(n), ȳ(n)) for

n 2 {1, 2, · · · , N} can be expressed as:

x̄(n) = argminx̄

LX

`=1

kµ̄` � µ`k
2

2
+ k�̄` � �`k

2

2

+H(M(x̄), ȳ(n)), (3)

where µ̄`, and �̄` are, respectively, the mean and standard

deviation evaluated at layer ` with the generated input data,

M(x̄) denotes the model classification output when the in-

put is x̄, and H is the cross entropy loss function to learn

the class labels. To solve Eq. 3 for a selected class ȳ(n),
an input is initialized randomly from a normal distribution

and, then, updated using gradient descent, while fixing the

model parameters during back-propagation. The ZSDG is

described in Algorithm 1.

Algorithm 1 Zero-Shot Data Generation (ZSDG)

1: Input: Model M with L batch normalization layers

2: Output: A batch of labeled fake data: (x̄, ȳ)
3: Get µ`, �` from Batch Normalization layers of M , ` 2

{1, 2, · · · , L}
4: for n = 1, 2, · · · , N do

5: Generate x̄(n) randomly from a Gaussian distribu-

tion, assign it a label ȳ(n)
6: end for

7: for j = 1, 2, · · · do

8: Forward propagate M(x̄(n)) for all n

9: Gather intermediate activations z̄`, ` 2 {1, 2, ..., L}
10: Gather BN statistics: µ̄` and �̄` induced by inter-

mediate activations z̄`, ` 2 {1, 2, ..., L}
11: Compute the loss based on Eq. 3

12: Backward propagate and update the input x̄(n) only

13: end for

14: Return (x̄, ȳ) = [n∈{1,2,··· ,N}(x̄(n), ȳ(n))

3.3. Zero-Shot Data Augmentation at Clients

It is common to have statistical heterogeneity in the train-

ing data across clients. To address the deficiency of their

training data in some classes, and promote the global model

fairness, clients are instructed to augment their training data

with fake data using ZSDG, before updating the received

global model. Let the ith client at the tth communication

round have the real local training data (xi, yi)t with in-

put and label pairs. Let (x̄i, ȳi)t be the synthetic (fake)



Algorithm 2 Fed-ZDAC: Federated Learning with Zero-

Shot Data Augmentation at Clients

1: Input: Communication rounds T , global model M

2: for t = 1, · · · , T do

3: Server randomly selects subset St of clients

4: Server sends MG,t−1 to St

5: for Clients Ci, i 2 St in parallel do

6: Generate labeled fake data (x̄i, ȳi)t by ZSDG

from the global model MG,t−1

7: Client Ci produces the model Mi,t by updat-

ing the model MG,t−1 with the mix of real local

data available at round t, and the fake ZSDG data:

{(xi, yi)t, (x̄i, ȳi)t}
8: Send the updated client model Mi,t to the

server.

9: end for

10: Server aggregates all client models Mi,t, i 2 St,

e.g. by Eq 2, to obtain the updated MG,t

11: end for

data generated using ZSDG over all classes from the re-

ceived global model MG,t−1. Then the procedure for feder-

ated learning with zero-shot data augmentation at the clients

(Fed-ZDAC) is described by Algorithm 2.

3.4. Zero-Shot Data Augmentation at Server

In Section 3.3, we discussed federated learning with data

augmentation at the client nodes. In practice, clients may be

mobile computing devices that are limited in their comput-

ing resources and storage capacity, which may restrict their

capacity for data augmentation. Clients may also not care

about fairness of the global model towards other clients, and

would like to train the best model for their classes of interest

only. It is also in the best interest of the server to produce

a fair and accurate model, that does not ignore data classes

of the under-represented clients. In addition, if the global

model is fair, and each client updates the global model from

the same fair initialization, federated learning can conver-

gence faster to a fair solution. Consequently, we propose

federated learning with zero-shot data augmentation at the

server (Fed-ZDAS). We use the same notation as described

in Section 3.3. In more detail, the server distributes its

global model to a subset of clients, Each of these clients up-

date this global model with their local training data (x, y)
and send it back to the server. In strive for fairness, the

server will generate equal amount of fake data from each

received client model, and combines all fake client data into

a balanced synthetic dataset. The server aggregates all re-

ceived client models into a single model, and then trains

the single model by the combined synthetic dataset. To

our knowledge, this is the first federated learning protocol

which involves training at the server, since in general the

Algorithm 3 Fed-ZDAS: Federated Learning with Zero-

Shot Data Augmentation at the Server

1: Input: Communication rounds T , global model M

2: for t = 1, · · · , T do

3: Server randomly selects subset St of clients

4: Server sends MG,t−1 to St

5: for Clients Ci, i 2 St in parallel do

6: Client Ci produces the model Mi,t by updat-

ing the model MG,t−1 with its real local data available

at round t (xi, yi)t and sends the updated client model

Mi,t to the server.

7: end for

8: Server generates a class-balanced fake labeled data

(x̄i, ȳi)t by ZSDG with each received client model

Mi,t, i 2 St.

9: Server combines the fake data generated with

the different client models into a combined balanced

dataset (x̄, ȳ)t = [i∈St
(x̄i, ȳi)t.

10: Server aggregates all client models Mi,t, i 2 St,

e.g. by Eq 2, to obtain an interim global model M̃G,t

11: Server trains M̃G,t using the combined fake dataset

(x̄, ȳ)t to produce the updated global model MG,t

12: end for

server is assumed not to have any data. Fed-ZDAS is de-

scribed in Algorithm 3.

Since federated learning stems from the motivation to

protect client’s data privacy, we also proof that our pro-

posed method satisfies the client-level differential privacy

(DP), a local differential privacy adopted as [34]. Intu-

itively, before clients send updated model parameters back

to the server, we seek for a randomized perturbation on

these model parameters such that the server can not dis-

tinguish if certain client has been involved in the current

communication round. A standard way to satisfy differ-

ential privacy is adding Guassian noise to model parame-

ters with tradeoff between model’s performance and privacy

budget. [1, 34]. In contrast, our method can be considered

as a kind of perturbation to model parameters with useful

information as opposed to pure random noise. As a result,

we show that our proposed method satisfies (0, �) differen-

tial privacy. For more details about the proof, please check

appendix A

4. Experiments

4.1. Datasets and Settings

Task and Datasets We conduct experiments on three

standard datasets: MNIST [18], FMNIST [35], and CIFAR-

10 [15]. Following [26] for the federated learning setting,

the server selects a proportion � = 0.1 of 100 clients during

each communication round, with T = 100 total rounds for



all methods. Each selected client trains their own model for

E = 5 local epochs with mini-batch size B = 10. For the

data partition, we focus on the non-i.i.d. setting, which is

typically more challenging and realistic for federated learn-

ing. We divide the 60k images into a training set of 50k

images and external test set of 10k images, then the training

set is distributed to the clients, such that each client only has

a subset Z of the classes, and divide their local data set as

local training set and local testing set.

Following [12], we study two data splits, each represent-

ing different types of statistical heterogeneity. The first is

unimodal non-i.i.d. which is identical to the data partition

introduced by [26]. The second is multimodal non-i.i.d., in

which there exists subpopulations, with some being more

prevalent than others. Each subpopulation group can be

thought of as a mode of the overall distribution. In other

words, the classes are imbalanced in the data set aggregat-

ing from all clients’ data.

Model Architecture Our zero-shot data augmentation re-

quires the model to contain batch normalization layers. For

both MNIST and FMNIST, we use a convolutional network

consisting of two 5 ⇥ 5 convolution layers with 16 and 32

output channels, respectively. Each convolution layer is fol-

lowed by a batch normalization layer and a 2 ⇥ 2 max-

pooling operation with ReLU activations. A fully connected

layer with a softmax is added for the output. For CIFAR-

10, we use a convolutional network consisting of two 3⇥ 3
convolution layers with 16 filters each. Each convolutional

layer is followed by a batch normalization layer and a 2⇥ 2
max-pooling operation with ReLU activations. These two

convolutions are followed by two fully-connected layers

with hidden size 80 and 60, with a softmax applied for the

final output probabilities. We utilize SGD as the optimizer

and set the learning rate as 0.02 for all methods. We com-

pare our methods with three baselines: FedAvg [26], Fed-

Prox [20] and q-FFL [21].

4.2. Local Test and Client-Level Fairness

Local test performance is a metric to evaluate the ag-

gregated model on each client’s local test set, that is usu-

ally class imbalanced. It is an important metric to demon-

strate the personalization ability of the aggregated model.

As with [21], the variance of local test performance across

all clients is taken as the fairness metric. Lower variance

means the learned model does not lean towards subpopula-

tions who share prevalent data distributions, which is a more

fair solution. This metric can be considered as fairness on

clients level. We test all methods under both unimodal non-

i.i.d. and mutlimodal non-i.i.d. The results are listed in Ta-

ble 1. The mean accuracy is the average local test accuracy

over all clients and the variance is the client level fairness

metric. The standard deviation values are calculated based

on the results of different trials by changing random seeds.

For MNIST and FMNIST, the proposed method not only

achieves the best mean accuracy, but also improves the fair-

ness over all baselines. For CIFAR-10, our method achieves

better accuracy than q-FFL and more fairness than FedAvg

and FedProx.

4.3. Global Test and Class-Level Fairness

Global test performance is a metric to evaluate the ag-

gregated model on an external test set, that is usually class

balanced. This is an important criterion to justify the effi-

ciency of the federated learning mechanism and the model’s

performance on newly coming clients. However, it is still a

metric based on average which cannot fully capture whether

the model is biased towards, if exists, any prevalent class

distribution. We report the variance of accuracy across

classes as an extra fairness metric on class level. In Table 2,

the external accuracy is the accuracy of the federated model

on the held out test set, and the variance is class level fair-

ness metric. We observe better performance on MNIST and

FMNIST and comparable results on CIFAR-10. Similarly,

all the standard deviation values are calculated based on the

results of different trials by changing random seeds.

4.4. The Analysis of Augmented Data

The augmented data are generated conditioned on the

given label. To study the quality of the synthesized data,

we separately trained three classifiers of the same architec-

ture using the optimizer and learning rate described in Sec-

tion 4.1, but in a centralized way for MNIST, FMNIST, and

CIFAR-10. After training, each classifier achieves test ac-

curacy 99.06%, 89.79% and 67.32%, respectively. These

classifiers are taken as the standalone oracle to evaluate the

augmented data. To obtain the synthesized data for test, we

run ZSDG based on the model trained in federated learn-

ing under multimodal non-i.i.d. setting. For each class,

we generate 64 images as the test data. The test results for

augmented images are shown in Figure 3. We also list the

trained model’s ability to recognize each class as compari-

son. In general, the accuracy of synthesized data reflects the

ability to ‘fool’ the oracle classifier, i.e. the ability to reduce

the local data distribution divergence among clients. Since

each client owns at most two classes in our experimental

setting, the statistical heterogeneity can be mitigated, as

long as deficient class of images is synthesized by ZSDG.

4.5. The Influence of Client Data Distribution

As mentioned in Section 4.4, the quality of synthetic data

depends on the performance of the model we invert, and

the model performance is highly affected by the client data

distribution. To further study the influence of the client data

distribution on data augmentation quality, we compare the

models fa, fb, and fc learned by three different algorithms:



Unimodal Multimodal

Dataset Method Mean Accuracy " Variance # Mean Accuracy" Variance#

MNIST

FedAvg 97.98±0.01 6.70±1.21 96.67±0.73 47±27

FedProx 97.93±0.01 6.33±1.25 91.98±0.80 72±6

q-FFL 95.84 ±0.45 17.00±9.20 94.81±7.55 78±20

Fed-ZDAC 98.23±0.22 3.54±0.85 97.07±0.56 27±12

Fed-ZDAS 97.34±0.61 6.22±0.33 95.49±0.99 49±22

FMNIST

FedAvg 85.30±2.67 368±222 83.43±2.28 245±41

FedProx 85.64±2.19 360±215 83.37±2.04 237±38

q-FFL 83.09±0.36 283±45 85.97±0.18 175±10

Fed-ZDAC 84.65±2.81 280±112 86.00±0.07 161±40

Fed-ZDAS 86.23±2.09 188±67 85.66±0.85 135±11

CIFAR-10

FedAvg 50.30±0.91 417±190 45.53±1.30 288±98

FedProx 49.92±0.55 416±186 45.88±1.44 266±100

q-FFL 41.72±3.00 285±115 38.25±1.12 243±49

Fed-ZDAC 47.18±1.55 337±155 43.92±1.66 244±70

Fed-ZDAS 47.78±1.02 325±145 42.18±0.81 243±64

Table 1: Local test performance and client level fairness.

Unimodal Multimodal

Dataset Method External Accuracy " Variance # External Accuracy" Variance#

MNIST

FedAvg 98.02±0.14 3.69±0.55 93.54±2.38 78±48

FedProx 98.05±0.15 3.69±0.60 93.62±2.38 75±58

q-FFL 95.76 ±0.56 7.40±2.02 92.56±0.29 63±2

Fed-ZDAC 98.21±0.08 1.71±0.21 95.66±0.72 22±7

Fed-ZDAS 97.66±0.08 2.11±0.39 94.10±0.75 40±16

FMNIST

FedAvg 85.03±1.54 435±296 79.18±2.0 779±46

FedProx 84.94±1.19 426±274 79.13±1.80 794±33

q-FFL 80.99±1.23 558±192 81.24±0.43 673±12

Fed-ZDAC 83.13±2.56 263±101 83.41±0.26 483±84

Fed-ZDAS 83.90±1.56 260±76 83.27±0.25 313±68

CIFAR-10

FedAvg 48.89±1.04 473±195 41.74±4.30 361±154

FedProx 48.83±0.89 258±13 37.06±0.62 480±50

q-FFL 34.01±4.46 370 ±135 32.83 ±0.89 218 ±38

Fed-ZDAC 49.50±0.27 378 ±108 40.18±2.59 288±19

Fed-ZDAS 48.26±1.02 200±69 39.07±1.85 295±98

Table 2: Global Test Performance and class level fairness.

• fa: the model trained by a regular machine learning

process on aggregated dataset

• fb : the model trained by federated learning framework

on distributed dataset following an i.i.d setting

• fc: the model trained by federated learning framework

on distributed dataset following non-i.i.d. setting.Each

client has at most 3 out of 10 classes of the images

We utilize the standard ResNet34 architecture and train it on

CIFAR-10 dataset. The models’ performance on test dataset

for fa,fb, and fc are 95.20%,73.96% and 58.10%, respec-

tively. In other words, the model’s performance decreases

as more constraints put in the learning process, which is

expected. Consequently, we invert the models and observe

the quality of the synthetic images of the same target labels

decreases as shown in Figure 4. This result not only vali-

dates that the quality of the synthetic data depends on the

base model’s performance but also suggests a burn-in stage

before model inversion in the federated learning framework

which is studied in Section 4.6.



(a) MNIST (b) FMNIST (c) CIFAR-10

Figure 3: The evaluation on augmented data of each class. The blue bars are the trained model’s ability. The red bars are the

accuracy of the augmented data that is queried from oracle classifiers.

(a) Synthetic images from fa

(b) Synthetic images from fb

(c) Synthetic images from fc

Figure 4: The images recovered from models learned by

three different learning algorithms.

4.6. When to start data augmentation

It is important to choose the starting point for when

the data augmentation is triggered, as the quality of recon-

structed data highly depends on the model performance,

which increases as the communication rounds between the

server and clients climbs. High-quality augmented data

help shrink the divergence of local data distribution among

clients and improves privacy, therefore increasing the dif-

ficulty for the adversary to tell if certain clients have par-

ticipated in training. Bad augmented data, such as random

noise, can also help maintain privacy, but is likely to erase

the useful information in learned model. We study the in-

fluence of starting epoch when data augmentation happens.

We compare the Fed-ZDAC’s fairness performance under

the multimodal non-i.i.d. setting when the data augmenta-

tion starts from global epoch 80, 90, and 95, with the results

shown in Figure 5. In federated learning, usually longer

Figure 5: The influence of data augmentation starting point.

The horizontal axis is the start global epoch and the vertical

axis is the variance.

training epoch leads to solutions with better performance.

As a result, the augmented data with higher quality make

each client’s local data distribution more similar, and con-

tribute to reduce the variance more.

5. Conclusions and Future Work

To promote fairness and robustness in federated learn-

ing, we propose a federated learning system with zero-shot

data augmentation, with possible deployments at the server

(Fed-ZDAS), or at the clients (Fed-ZDAC). We provide a

differential privacy analysis. We note that such methods

only utilize the statistics of the shared models to gener-

ate fake data. Empirical results demonstrate our method

achieves both better performance and fairness over com-

monly used federated learning baselines. For future re-

search, we would like to investigate the combining of Fed-

ZDAS and Fed-ZDAC in the same communication round,

or at alternate rounds. Similarly, for clarity of the analysis

in this paper, we assumed that Fed-ZDAC and Fed-ZDAS

are deployed on top of the FedAvg with a simple arithmetic

mean aggregation at the server. For future research, we

would like to study the effect of deploying ZSDG on top

of more complex aggregation schemes.
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