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Abstract

Machine learning models have been successfully applied

to a wide range of applications including computer vision,

natural language processing, and speech recognition. A

successful implementation of these models however, usually

relies on deep neural networks (DNNs) which are treated

as opaque black-box systems due to their incomprehensi-

ble complexity and intricate internal mechanism. In this

work, we present a novel algorithm for explaining the pre-

dictions of a DNN using adversarial machine learning. Our

approach identifies the relative importance of input features

in relation to the predictions based on the behavior of an ad-

versarial attack on the DNN. Our algorithm has the advan-

tage of being fast, consistent, and easy to implement and in-

terpret. We present our detailed analysis that demonstrates

how the behavior of an adversarial attack, given a DNN and

a task, stays consistent for any input test data point proving

the generality of our approach. Our analysis enables us

to produce consistent and efficient explanations. We illus-

trate the effectiveness of our approach by conducting exper-

iments using a variety of DNNs, tasks, and datasets. Finally,

we compare our work with other well-known techniques in

the current literature.

1. Introduction

Explaining the outcomes of complex machine learning

models is a prerequisite for establishing trust between the

machines and users. As humans increasingly rely on DNNs

to process large amounts of data and make decisions, it is

crucial to develop solutions that can interpret the predic-

tions of DNNs in a user-friendly manner. Explaining the

outcomes of a model can help reduce bias and contribute

to improvements in model design, performance, and ac-

countability by providing beneficial insights into how mod-

els behave [10]. Consequently, the field of explainable ar-

tificial intelligence systems, XAI, has gained traction in

recent years, where researchers from different disciplines

have come together to define, design and evaluate explain-

able systems [33, 7, 25]. The majority of current explain-

ability algorithms for DNNs produce an explanation for a

single input-output pair: an input data point fed into the

DNN and the respective prediction made by the DNN. The

algorithm usually finds the most important features in the

input contributing the most to the model’s predictions and

selects those as explanations for the model’s behavior [2].

The majority of these algorithms find the important features

using either a perturbation-based approach or a saliency-

based approach [20]. The saliency-based approaches rely

on gradients of the outputs in relation to the inputs to find

the important features [31, 29]. Perturbation-based meth-

ods on the other hand apply small local changes to the in-

put, track the changes in the output, and find and rank the

important input features [27, 1].

One main problem with current state-of-the-art explain-

ability tools is their reliance on a large set of hyper-

parameters. This leads to local instability of explanations

and can negatively affect the user’s experience [2]. An

explainability algorithm should satisfy 3 properties: 1- It

has to produce human-understandable explanations, 2- It

has to be locally consistent and efficient, 3- It should be

user-friendly, easy to apply and quick in providing explana-

tions. In this work, we propose a new algorithm, explana-

tions via adversarial attacks, which satisfies these 3 impor-

tant properties and more. We call our method Adversarial

Explanations for Artificial Intelligence systems or AXAI 1.

AXAI inherits from the nature of adversarial attacks to au-

tomatically find and select important features affecting the

model’s prediction to produce explanations. The idea be-

hind our work comes from the natural behavior of adversar-

ial attacks. The attacks tend to manipulate important fea-

tures in the input to deceive a DNN. The logic is simple,

rather than trying to build a model that learns to explain the

DNN’s behavior, why don’t we utilize the nature of attacks

to learn this behavior? One who knows how to fool a model,

certainly knows what the model may be thinking. Another

1Code will be readily available.



benefit of our approach is that certain attacks, such as the

Projected Gradient Descent (PGD) method [21], are fast,

efficient, and consistent in their adversarial behavior. Our

work further aims to solve at least 2 problems: 1- Provide

fast explanations without a need for model training, 2- Re-

duce the need for selecting a large set of hyper-parameters

to produce consistent results.

Obviously, one needs to first show how adversarial at-

tacks link to explainbility, i.e., how an attack can point to

the important features in the input and how one can filter

out the unimportant ones to produce explanations. Further,

one needs to show how an adversary behaves similarly in

its approach across models, tasks and datasets so that the

explanations are consistent, stable, and applicable to a large

group of models. Here, we present a novel algorithm for ex-

plaining the DNN’s predictions in multiple domains includ-

ing text, audio and image. In particular, this paper makes

the following contributions:

• We show that given an ℓ2 PGD attack and a trained

DNN, the distribution of attack magnitudes vs. fre-

quency across all unseen test inputs follows a beta dis-

tribution, regardless of the task and dataset. We also

show that these distributions are symmetric and the dif-

ferences between their means, medians, and quantiles

are not statistically significant.

• We show that the most important input features, i.e.,

features with the largest effect on the model’s predic-

tions, can be found using a consistent rule across dif-

ferent DNN architectures, datasets, and tasks. This

rule leverages the properties of the distributions ex-

plained above.

• We propose a novel algorithm for explaining the out-

comes of DNNs and provide a detailed analysis of our

algorithm’s performance for different DNN architec-

tures, datasets and tasks.

• We benchmark our algorithm against methods such as

LIME and SHAP [20, 27] and show that our algorithm

performs faster while producing similar or better ex-

plainability results.

2. Related Work

One of the popular explainability solutions called LIME

[27] assumes that DNNs are linear locally. LIME trains

weighted linear models on the top of the DNN for per-

turbed samples around a target input to produce explana-

tions. The computational bottleneck in LIME is caused by

the training part where a selected number of perturbed sam-

ples are sent through the DNN for learning the explanation.

Certain combination of LIME’s hyper-parameters can pro-

duce unstable results [2]. DeepLIFT produces explanations

by modeling the slope of gradient changes of output with

respect to the input [30]. Grad-CAM is a saliency-based

method that uses the gradients of the input at the final con-

volutional layer to produce coarse localization maps point-

ing to important regions in the input [29]. The majority of

approaches based on sensitivity maps fail to produce expla-

nations that only rely on important features. Creators of

DeepLIFT associate this lack of stability to the behavior of

activation functions such as ReLU. [32] proposed Smooth

Grad which uses gradients and Gaussian based de-noising

methods to produce stable explanations. The authors of the

paper mention that large outlier values in the gradient maps

produced by gradient differentiation may cause instability.

In our algorithm, we overcome the problem of instability by

utilizing the density of attacks, which are created iteratively

on segments. Some other important works in this area are

given in [34, 14, 39, 4, 5, 9, 18].

DNNs are vulnerable to subtle adversarial perturbations

applied to their input. The basic idea behind most adversar-

ial attacks revolves around solving a maximization problem

with a constraint that keeps the distance between the origi-

nal input and adversarial input small, so that the adversarial

input, while capable of fooling the DNN, is not perceptually

recognizable by humans. The connection between model

interpretation and attacks has recently gravitated the inter-

est of researchers. [13] and [35] showed that one benefit of

adversarial examples is that they reveal useful insights into

the salient features of input data and their effects on DNNs’

predictions. Our solution relies on the nature of adversar-

ial attacks to select and produce important and explainable

features given a specific input and DNN. Our work puts

more emphasis on model interpretability, where we make

use of the information obtained from an adversarial attack

on a DNN to de-noise the sensitivity maps and produce sta-

ble explanations. We de-noise the gradient map by utilizing

the iterative nature of the PGD attack and by considering

only a minimum number of highly influential gradients that

contribute the most to the predictions. We use the density

of gradients in a number of segments to remove the noise

that was not filtered out in the previous steps and produce

human-interpretable explanations.

3. Main Results

The core idea behind our approach, AXAI, is to uti-

lize the knowledge gained from an adversarial attack on a

DNN and an input, to find the important features in the in-

put in order to produce good explanations. This is done

by mapping “carefully filtered attacked inputs” onto prede-

fined segments and filtering out the unimportant features.

This will be discussed in more detail in later sections. First

let’s look at an example in Fig. 1 to see how our approach

works. Given an image classification DNN, the ℓ2 adversar-

ial attack changes the pixels in the entire image, as seen in



Fig. 1c. The reason for this is simple: each pixel value is

changed by the adversary so that the accumulated loss value

can increase enough to fool the DNN. Fig. 1b shows the dis-

tribution of the attack on this image. The x-axis represents

the magnitude of the pixel changes and the y-axis represents

the number of pixels given each value on x-axis. AXAI

maps the strongly attacked pixels to the image segments of

the original image and filters out the segments with highest

density of attacked pixels which meet certain criteria to pro-

duce explanations. Fig. 1c shows the value changes for the

important attacked pixels. As we will show, the important

features used for explanations are located at specific sec-

tions in the tails of the distribution given in Fig. 1b. These

are the pixels that directly affect the classification decision

made by the model. We use QuickShift [37] for segmenting

the input image (Fig. 1d). Fig. 1e shows the explanation

produced by our algorithm.
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Figure 1: A simple example depicting the steps taken in

AXAI to produce explanations.

Algorithm 1 details the steps taken by AXAI to pro-

duce an explanation E for the output of a selected model

f . Suppose that input X is segmented into p groups us-

ing a segmentation method and that the attack magnitudes

for the input X and DNN f are obtained. Let Xdiff be

the difference between the original X and adversarial X ′.

We filter out the low intensity attack magnitudes Xdiff and

create a Boolean array Xdifft, where values larger than a

threshold, are only set to True. Let Su be the set of unique

segments, Su = {Su1, . . . , Sup}. Next, we map the fil-

tered attack Xdifft to the segments Su, and create a new

list of filtered attack groups, Sux = {Sux1
, . . . , Suxp

}.
The mapping function, Map in Algorithm 1, simply stacks

the filtered attacks on the segments and groups the fil-

tered attack Xdifft based on the segments. Finally, the

attack density of each unique segment can be written as

Sud = {
card(Sux1

)

card(Su1)
, . . . ,

card(Suxp
)

card(Sup)
} (Calculate density in

Algorithm 1). We then extract the indices j’s of the top

K maximum values in Sud (TopK indices in Algorithm 1),

and produce Su(j) as explanation E for the input X . In

next sections, we explain each step in details.

Algorithm 1 AXAI

Require: Model f , input X

1: X ′ ← Attack(f,X) ⊲ i.e. PGD attack

2: Xdiff = x′ − x ⊲ The attack magnitudes

3: Xdifft ← Threshold(Xdiff ) ⊲ Filtered attack

magnitudes

4: Su← Segment(X))
5: Sux ←Map(Xdifft, Su) ⊲ Group attack magnitudes

based on segmentation

6: Sud ← Calculate density(Sux) ⊲ Calculate attacks

per segment

7: return Su(TopK indices(Sud))

3.1. White­box adversarial attacks

Adversary can attack a DNN by adding engineered noise

to the input to increase the associated loss value, if it has

some prior knowledge of the DNN including the weights

and biases. AXAI utilizes Projected Gradient Descend

(PGD) attack [21], although any ℓ2 adversarial attack can

replace PGD in our algorithm (Appendix B). However,

PGD provides specific benefits such as stability and gra-

dient smoothness that other attacks do not. PGD can be

thought of as an iterative version of ℓ2 Fast Gradient Method

(FGM) attack [12], where in each iteration, the adversarial

changes are clipped into an ℓ2 ball of some ǫ value. PGD

is generally considered a strong stable attack and is defined

as,

xt+1 = ⊓x+S(x
t + ǫ∇xL(Θ, x, y)), (1)

where for t iterations, x and y are the inputs and outputs,

and Θ are the weights and biases.

3.2. Statistical analysis of attack magnitudes vs. fre­
quency distributions

Here, we briefly report our statistical analysis of attack

magnitudes vs. frequency distributions for a fixed DNN,

dataset and an adversarial attack. We can show that the

distributions are similar in their “shapes,” “means,” “mean

ranks,” “medians,” and “quantiles,” and follow a Beta dis-

tribution with specific parameters. Given that there is no

significant difference in the distributions, we can provide a

universal threshold using quantiles which separates the im-

portant features from the rest to produce explanations.

We can measure the symmetricity of distributions us-

ing the Fisher-Pearson coefficient of skewness. We present



1.0 0.5 0.0 0.5 1.0
Skewness

0.0

0.5

1.0

1.5

2.0

2.5

Fr
eq

ue
nc

y

(a) PGD, AlexNet, CI-

FAR10

1.0 0.5 0.0 0.5 1.0
Skewness

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fr
eq

ue
nc
y

(b) PGD, VGG16, CI-

FAR100
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(c) PGD, ResNet34, Ima-

geNet

Figure 2: The Fisher-Pearson coefficient of attack magni-

tudes vs. frequency distributions.

the results for AlexNet on CIFAR10 [15], VGG16 on CI-

FAR100 [17] and ResNet34 on ImageNet [8]. The Fisher-

Pearson coefficients of the attack magnitudes vs. frequency

distributions for all cases are shown in Fig. 2. It is seen that

the skewness of all distributions falls within the [−0.5, 0.5]
range showing strong evidence that they are approximately

symmetric [6]. Only 0.9% of CIFAR10, 3.3% of CIFAR100

and 1.9% of ImageNet test datasets lie outside of [−0.5, 0.5]
range.

Quantile-Quantile (Q-Q) plot allows us to understand

how the quantiles of a distribution deviate from a specified

theoretical distribution. The theoretical distribution selected

is the normal distribution. The x-axis and y-axis represent

the quantile values of the theoretical and sample distribu-

tions, respectively. While it is unlikely to have identical

distributions that perfectly match, one can look at different

parts of the Q-Q plot to distinguish between the similar and

dissimilar locations in the distributions. Fig. 3 shows the Q-

Q plots for random subsets of ImageNet and CIFAR10 test

datasets each containing 1000 images. It is seen that the dis-

tributions follow a fairly straight line in the middle portion

of the curve, while deviating at the upper and lower parts.

This provides some evidence supporting the hypothesis that

distributions follow a ‘near-normal’ distribution with heav-

ier tails.

We perform the two-sample location t-test and Mann-

Whitney U test to determine if there is a significant differ-

ence between two groups where the null hypothesis is the

equality of the means. Carrying out pair t-tests on all sam-
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Figure 3: The Q-Q plot of sample distributions vs. theoret-

ical normal distribution (mean=0, std=1).

t-test (CIFAR10) Mann-Whitney (CIFAR10) t-test (ImageNet) Mann-Whitney (ImageNet)

p-value 0.70 0.58 0.64 0.55

Table 1: p-values for the mean similarity statistical tests at

significance level 0.05.

AlexNet, CIFAR10, PGD VGG16, CIFAR100, PGD ResNet34, ImageNet, PGD

15th Quantile (−1.807e− 02,−1.805e− 02) (−1.419e− 02,−1.414e− 02) (−1.785e− 03,−1.777e− 03)
25th Quantile (−1.145e− 02,−1.071e− 02) (−8.153e− 03,−8.110e− 03) (−1.015e− 03,−1.101e− 03)
Mean (1.775e− 05, 2.295e− 05) (−6.850e− 06,−3.624e− 06) (−1.090e− 07,−6.000e− 08)
Median (2.115e− 06, 1.127e− 05) (−2.842e− 06, 4.467e− 06) (−2.155e− 07,−9.381e− 08)
75th Quantile (1.071e− 02, 1.073e− 02) (8.102e− 03, 8.146e− 03) (1.011e− 03, 1.016e− 03)
85th Quantile (1.809e− 02, 1.812e− 02) (1.413e− 02, 1.418e− 02) (1.777e− 03, 1.785e− 03)

Table 2: Estimations for mean, median, 15th , 25th, 75th

and 85th quantiles at 95% confidence level.

AlexNet, CIFAR10, PGD VGG16, CIFAR100, PGD ResNet34, ImageNet, PGD

p (1.124e+ 01, 1.132e+ 01) (2.129e+ 01, 2.171e+ 01) (1.306e+ 02, 1.329e+ 02)
q (1.136e+ 01, 1.145e+ 01) (2.124e+ 01, 2.164e+ 01) (1.303e+ 02, 1.326e+ 02)

Table 3: Statistical estimations for parameters of beta dis-

tribution at 95% confidence level.

ples allows us to be conservative in confirming the mean

similarity of the distributions. A sample here is defined as

the attack magnitudes vs. frequency distribution for a data

point in the test adversarial dataset created by the PGD at-

tack on a DNN trained on the training dataset. The results

reported in Table 1 indicate no significant difference be-

tween the means. Further, the Mann-Whitney U test results

indicate that all pairs are similar to each other on the mean

ranks. Under the assumption of two distributions having

similar shapes, one could further state that Mann-Whitney

test can be considered as a test of medians [22]. Since, we

have shown that the shapes are similar, we can conclude that

there are no significant difference between the medians of

the distributions. Further details in addition to the results

for the ANOVA test are given in Appendix C.

Next, to show consistency across distributions for a given

model, dataset and attack, we estimate the values of quan-

tiles, means and medians. We do this by estimating the

statistics of the distributions and constructing confidences

intervals. For each experiment, we estimate the mean, me-

dian, 15th, 25th, 75th and 85th quantiles of each attack mag-



CIFAR10, AlexNet ImageNet, ResNet34 CIFAR10, AlexNet ImageNet, ResNet34

Attack Percentile Attack Percentile

15%− 85% 0.78 0.88 0%− 15%&85%− 100% 0.16 0.07

10%− 90% 0.26 0.79 0%− 10%&90%− 100% 0.26 0.13

5%− 95% 0.50 0.63 0%− 5%&95%− 100% 0.45 0.25

1%− 99% 0.07 0.12 0%− 1%&99%− 100% 0.92 0.80

Table 4: Adversarial test accuracy where only features

within a certain percentile of the attack magnitudes vs. fre-

quency distributions are attacked (PGD with 20 Iterations).

nitude vs. frequency distribution for the entire test dataset.

The statistical confidence interval estimations at confidence

level of 95% are reported in Table 2. Our results show that

the confidence intervals have narrow ranges and the estima-

tions are consistent. The estimates for the 15th, 25th, 75th

and 85th quantiles indicate a strong symmetricity with re-

spect to the origin in all cases. This matches the results of

the skewness test in Fig. 2. Another observation is that the

confidence interval of the mean and medians are pretty nar-

row, supporting the results of the t-tests and Mann-Whitney

U test. Finally, we can show with high confidence that the

distributions consistently follow a beta distribution. The

beta distribution is a family of distributions defined by two

positive shape parameters, denoted by p and q. The esti-

mated p and q of the beta distribution are reported in Table

3. Further technical details on our analyses presented in

this section, in addition to further experiments with audio

and text input types, are provided in Appendix C.

3.3. Quantile selection for the explanations

Our algorithm produces explanations that rely only on

the features in the input that have the largest effect on the

predictions. While the majority of the input is attacked, our

belief is that only important features are strongly attacked.

We show how one can select the boundary threshold be-

tween “explainable features” and the rest based on attack

magnitudes. We demonstrate this with 2 experiments: 1)

AlexNet trained on CIFAR10, 2) ResNet34 trained on Im-

ageNet, both attacked by PGD with 20 iterations. In each

case, we select the successfully attacked inputs from the ad-

versarial test dataset, i.e., the inputs that fool the DNN. We

then only re-attack specific features of the original clean in-

puts within the [0%, α%] and [(100−α)%, 100%] percentile

of the distributions, where α is the percentage threshold.

The re-attacking process starts from α = 0, where none of

the input features are attacked, and then we gradually in-

crease the value of α until the attack successfully changes

the prediction, and then we save the value of α (Fig. 4a).

We repeat this for every input. The probability density dis-

tribution of α’s are given in Fig. 4b and Fig. 4c with an

estimated mean of α = 15.

Further, we report the test accuracies of the DNNs on

the adversarial test datasets that are created based on dif-

ferent attack percentiles. Given an attack percentile range,

the adversarial test dataset consists of adversarial test in-

0.10 0.05 0.00 0.05 0.10
Attack Magnitude

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

(a)

0 5 10 15 20 25 30
Quantile Threshold

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ilit

y 
De

ns
ity

CIFAR10

(b)

0 5 10 15 20 25 30
Quantile Threshold

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y 
De

ns
ity

ImageNet

(c)

Figure 4: Visualization of the re-attacking process where

only portions of inputs lying outside the red lines are at-

tacked ([0%, α%], [(100 − α)%, 100%] ) (b) AlexNet, CI-

FAR10 (c) ResNet34, ImageNet

puts which are created by attacking only portions of the in-

put features that lie withing a specific percentile range of

the attack magnitudes vs. frequency distributions similar to

above. This allows us to understand how the features ly-

ing in the middle area, tails and outliers of the distributions

affect the DNN’s predictions. Our findings are reported in

Table 4. Our results show that the majority of the input

features including those within the first two standard de-

viations and the outliers of the distributions do not have a

strong effect on the predictions. A smaller portion of the in-

put features which are also those attacked with the highest

intensity, i.e., within the [0%, 15%] and [85%, 100%] per-

centiles of the distributions have the largest effect on the

DNN’s predictions, confirming our hypothesis. We see the

same trend across different DNNs and datasets (Appendix

C).

4. Experiment Results

Earlier, we provided a sample explanation created by

AXAI for an image classifier. Appendix E contains more

experiments for image classification and object detection

DNNs. Further, Appendix E contains an ablation study and

an interesting comparison between explanations produced

by a non-robust model and an adversarially robust model.

Here, we provide sample explanations produced by our al-

gorithm for speech recognition and language-based tasks.

4.1. Explaining a speech recognition model

The Speech Commands Dataset [38] is an audio dataset

of short spoken words. Here, we have converted the au-

dio files to spectrograms and used them to train a LeNet

model to identify “speech commands.” We have created

time-frequency segments by dividing the spectrogram into

time-frequency grids similar to [23]. The x-axis and y-axis

indicate the time-scale and log-scale frequency of the spec-

tograms respectively, and the color bar indicates the magni-

tude. The spectrogram of the first word ”Right” and its ex-

planation are shown in Fig. 5a and Fig. 5b. The explanation

shows that the first and last character in the spoken word

“Right” stand out as important features ([0.4s, 0.6s] and



[1.0s, 1.2s] intervals). This is reasonable because “Five”

is the neighboring class of “Right” in the dataset (Appendix

D) and “Right” and “Five” differ in the pronunciation of

“r” and “f” and “t” and “v.” The second example is for the

word “Three” (Fig. 5c and Fig. 5d). The produced expla-

nation indicates the importance of “Thr” ([1.4s, 1.7s] inter-

val). This is reasonable because “Three” and its neighbor

“Tree” differ in the letter “h” in “Thr,” and this difference

is learned by the model during training to identify the two

words correctly. More examples are shown in 8. Details on

this experiment are given in Appendix E.
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(b) Explanation
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(c) ”Three”
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Figure 5: The AXAI explanations for the LeNet speech

recognition model.

4.2. Explaining a text classification model

The Sentence Polarity Dataset [26] is a collection of

movie-review documents labeled with respect to their over-

all sentiment polarity. Here, we will look at a negative and

positive example (Fig. 6a and Fig. 6b) where the rows are

the word tokens in the sentence, and the columns are the

embedding dimensions. The NLP model used in our exper-

iment is taken from [16] and trained on the dataset. As part

of the pre-processing, the words in the dataset are tokenized

and mapped to an embedding matrix. [19] mentions that the

saliency map of an NLP model can be visualized using the

embedding layer similar to saliency maps used for image-

based models. Consequently, one can apply our algorithm

to NLP models in a similar manner, i.e., we can utilize the

first order derivative of the loss with respect to the word em-

bedding. This technique is similar to what was used in [24].

The first example, “it’s a glorified sitcom, and a long, un-

funny one at that.” is classified as a negative review by the

0 10 20 30 40
Embedding Dimension

it 'saglorifiedsitcom,andalong,unfunnyoneatthat

0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175

(a) Text example 1

0 10 20 30 40
Embedding Dimension

aworkofastonishingdelicacyandforce

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

(b) Text example 2

Figure 6: The AXAI explanations for the sentence classifi-

cation model.

model. Fig. 6a shows that the word “unfunny” is strongly

highlighted as the main explanation for this prediction. For

the positive example “a work of astonishing delicacy and

force,” it is seen that the word “astonishing” has the most

significant influence on model’s prediction. More examples

are shown in Fig. 9.

4.3. Benchmark tests

We test our algorithm against LIME and SHAP (Gradi-

ent Explainer). It is important to note that SHAP subsumes

a number of prior approaches and provides a fair baseline.

To show the consistency of our approach, we present vi-

sualizations for 3 cases: 1) AlexNet, CIFAR10, 2) VGG16,

CIFAR100, 3) ResNet34, ImageNet using the 3 explainabil-

ity tools and provide more experiments in Appendix F. The

algorithms produce similar explanations where AXAI has

fewer tune-able parameters and performs faster. LIME fails

to produce good explanations for low-resolution CIFAR10

images. In Appendix F, we provide examples showing that

AXAI outperforms LIME for low-resolution inputs. We

benchmark the running-time performance of AXAI, LIME

and SHAP for ResNet34 trained on ImageNet on a single

CPU (Intel Core i5-7360U) and single GPU (Tesla V100-

SXM2) on the entire test dataset. The results are given in

Table. 5. LIME is the slowest to produce explanations. This

is because LIME needs to forward propagate the perturbed

inputs through the DNN several times. SHAP is also slower

to generate the results in comparison to AXAI. LIME works

better on a GPU. AXAI maintains its relative performance

on the CPU and GPU. This is because the segmentation step

which mainly uses the CPU is the main computational bot-

tleneck for the algorithms (Appendix A). A few compar-

isons between AXAI, LIME, and SHAP are shown in Fig.

7.



Single CPU (Intel Core i5-7360U) Single GPU (Tesla V100-SXM2)

LIME 105s 5.8s

SHAP (Gradient Explainer) 35s 3.8s

AXAI (PGD with 20 iters) 6.6s 1.7s

Table 5: Benchmark running-time experiments.

(a) (b)
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(i)

Figure 7: Comparisons between our adversarial explainabil-

ity approach (Left Column), LIME (Middle Column), and

SHAP (Right Column).

5. Additional Examples

We provide additional explanation results of Alexnet

image classification model, VGG16 image classification

model, ResNet34 image classification model, LeNet speech

recognition model, and the sentence classification model in

the Appendix G. Due to space limit, in the main paper we

only show additional results for explaining the ResNet34

image classification model, Fig. 10.

6. Final Remarks and Conclusion

In this paper, we proposed a new approach for explaining

the predictions of DNNs. Interpretability is directly related

to the readability of an explanation [11]. An explanation

relying on thousands of features is not interpretable. AXAI,

similar to LIME, uses input segmentation to create human-

readable explanations focused on important input features.

Further, AXAI has the following properties,

Property 1 (Robustness): Our approach is more robust

to the changes in segmentation hyper-parameters in compar-

ison to other segmentation based approaches such as LIME.

This is because AXAI does not require a surrogate model
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(d) Explanation

Figure 8: Examples for the LeNet speech recognition

model.
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Figure 9: Examples for the sentence classification model.

trained on “randomly perturbed inputs.” AXAI uses the de-

terministic attack magnitudes as “base explanations” for a

given DNN and dataset, and uses segments as an “aid” to

visualize the results. The segmentation affects the visual-

izations. We further explain this in Appendix A. Robustness

is identical to stability of explanations as defined in [28]. A



(a) An image of an ostrich (b) Explanation

(c) An image of a cock (d) Explanation

(e) An image of a stingray (f) Explanation

(g) An image of a tench (h) Explanation

Figure 10: Additional explanation results for a ResNet34

image classification model trained on ImageNet.

lower number of non-deterministic steps in the algorithm

enhances stability. A carefully filtered explanation based

on our approach simply removes the features that have a

low impact on predictions. One can interpret this process as

a de-noising step to create a sparse representation of expla-

nations.

Property 2 (Local attribution): Our algorithm is lo-

cally stable and uses local attributes to produce explana-

tions. This is because an adversarial attack uses the most

minimal amount of noise within an ℓ2 ball of some small

ǫ to fool the DNN. Given the un-targeted nature of the at-

tack used in AXAI, the distributions can be interpreted as

estimations of the boundaries among neighboring classes.

Thus, one can conclude that the attack magnitudes are a

representation of feature contributions to the predictions on

a local scale. A similar conclusion is made in [3], where it is

argued that gradients can in fact point to important local at-

tributions of a DNN. We explore this in details in Appendix

D.

Property 3 (Completeness): Completeness as a prop-

erty is described as the ability to accurately explain the op-

erations of a DNN [11]. An explanation is more complete

when it can explain the behavior of the DNN for a larger set

of inputs. [34] and [32] mention the problem of sensitiv-

ity and lack of stability in gradient-based algorithms. In the

literature, if a solution can reduce the gradient “sensitivity”

problem, it can be described as having the “completeness”

property [11]. AXAI with PDG attack is complete in the

same sense as SmoothGrad is [32]. SmoothGrad takes the

average of saliency maps with added Gaussian noise to re-

duce sensitivity. The PGD attack behaves in a similar man-

ner by adding adversarial noise at each iteration. Both solu-

tions add perturbations to the input to smooth gradient fluc-

tuations. While further research can be done on the power

of iterative attacks in their gradient smoothing effects, we

argue that AXAI with iterative PGD does have the desirable

characteristic and produces stable sharpen visualizations of

sensitivity maps for robust explanations.
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