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Abstract

Active learning continues to remain significant in the in-

dustry since it is data efficient. Not only is it cost effective

on a constrained budget, continuous refinement of the model

allows for early detection and resolution of failure scenar-

ios during the model development stage. Identifying and

fixing failures with the model is crucial as industrial appli-

cations demand that the underlying model performs accu-

rately in all foreseeable use cases. One popular state-of-

the-art technique that specializes in continuously refining

the model via failure identification is Learning Loss[24].

Although simple and elegant, this approach is empirically

motivated. Our paper develops a foundation for Learning

Loss which enables us to propose a novel modification we

call LearningLoss++. We show that gradients are crucial in

interpreting how Learning Loss works, with rigorous analy-

sis and comparison of the gradients between Learning Loss

and LearningLoss++. We also propose a convolutional ar-

chitecture that combines features at different scales to pre-

dict the loss. We validate LearningLoss++ for regression

on the task of human pose estimation (using MPII and LSP

datasets), as done in Learning Loss. We show that Learn-

ingLoss++ outperforms in identifying scenarios where the

model is likely to perform poorly, which on model refine-

ment translates into reliable performance in the open world.

1. Introduction

The deep learning era has heralded a paradigm shift in

the approaches we take to model our data. Cheaper hard-

ware, clean data and robust modelling has resulted in a large

number of industrial applications such as driver monitoring

systems and activity recognition. However, like all data-

driven paradigms, deep learning has an insatiable appetite

for data. Industry applications of human pose estimation

often require millions of labelled images for acceptable per-

formance to eliminate risks associated with faulty predic-

tions when the model is deployed on-ground. This intro-

duces a two-fold challenge: finding algorithms to recognize

failure cases for the model, as well as reducing the costs

associated with the large scale collection of annotated data.

One potential solution lies in active learning, a class of

algorithms aimed at reducing annotation costs involved in

training the model. The essence behind all active learn-

ing algorithms is to allow the model to choose a set of

images which would impart maximum information about

the dataset if labelled. Although active learning is well ex-

plored, active learning in human pose estimation remains a

challenge. This is because human pose models [15, 20, 21]

regress two dimensional heatmaps to estimate the location

of joints, making this approach different from those tasks

having a probabilistic interpretation of outputs. The task of

regressing heatmaps is sufficiently different from regressing

the joint coordinates [3]; with DeepPose (2014) [22] being

the last significant technique to do so in human pose esti-

mation.

This paper builds upon Learning Loss For Active Learn-

ing [24], a task agnostic active learning algorithm having

performance comparable with state-of-the-art in classifica-

tion, object detection and human pose estimation. This is

remarkable, as we do not specify domain constraints such as

geometry of the human skeletal structure explicitly. How-

ever, this approach has two drawbacks: 1) The learning loss

objective is intuitively defined and 2) The architecture of

the learning loss module discards spatial information. With

LearningLoss++, our contributions include:

1. We establish equivalency between Learning Loss’ em-

pirically driven objective and the KL divergence ob-

jective proposed by LearningLoss++ which is hyper-

parameter free.

2. We analyze the gradient to provide intuition into the

training process of Learning Loss. We then compare

the expected gradients for Learning Loss and Learn-

ingLoss++, which allows us to prove the advantages

associated with smoothened gradients.

3. A convolutional architecture to combine features at

different scales, replacing the global average pooling -

fully connected architecture defined in Learning Loss.
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Figure 1. Both Learning Loss and LearningLoss++ (ours) use ranking loss to train the loss predictor network. However, the gradient

response for both the approaches significantly differ. For the image pair (a, b), the true loss as well as predicted loss are similar, agreeing

with intuition. While LearningLoss++ concurs with this notion, Learning Loss wrongly penalizes the network. For the image pair (a,c),

the true loss for (c) is significantly larger than (a) whereas the predicted loss is similar. In this scenario, LearningLoss++ enforces a larger

gradient whereas the Learning Loss gradient has the same response as in the previous scenario, in spite of the wrong predictions.

We perform experimental validation using the MPII [1]

and LSP-LSPET [7] datasets and compare our approaches

with other methods, with an emphasis on the ability of

LearningLoss++ to identify failures. Successful identifica-

tion of failure cases translates into continuous refinement of

the model and thus improved reliability in the open world

use cases.

2. Related Work

The early foundation for active learning is summarized

in [18], with approaches involving uncertainty studied in

[8, 9, 11, 13]. Query Based Committee [19] and other en-

semble approaches [2, 14] explore the performance of a

group of models with different parameter spaces for an im-

age and compute the level of agreement between the models

for the image. Expected Gradient Length based approaches

[25], [26] use gradient as a measure for determining the in-

formativeness of an image. Diversity promoting approaches

such as [23], [4] and [17] use a small sample set to represent

the larger pool of unlabelled data for annotation. Bayesian

active learning approaches [5], [10] provide beautiful the-

oretical results using aleatoric and epistemic uncertainties,

but to the best of our knowledge, there are no available re-

sults for human pose estimation.

Bayesian uncertainty has been used in hand pose esti-

mation (DeepPrior) [3] but a direct application is not possi-

ble for human pose estimation. DeepPrior directly regresses

the joint coordinates, unlike human pose estimation which

regresses entire heatmaps. Estimating the epistemic uncer-

tainty for entire heatmaps is not studied, limiting its applica-

tion to human pose estimation. Since DeepPrior consists of

fully connected layers, applying dropout is a standard tech-

nique. However, the use of dropout is absent in fully con-

volutional architectures such as those used in human pose

estimation. Finally, the extension of DeepPrior when joints

are occluded is not clear. Aleatoric uncertainty has been

used in human pose estimation [6] to estimate the location

of occluded joints, however this approach does not extend

to active learning.

Extending these active learning approaches to human

pose estimation is not trivial. Traditional uncertainty based

approaches find applications in classification due to the

availability of a posterior distribution, which is unavailable

for human pose estimation. Ensemble approaches are mem-

ory intensive for deployment on edge devices. Methods

relying on gradient length are computationally expensive

which limit their use in real-time applications. Diversity

techniques lack the ability to detect use cases where the

model is likely to fail. Bayesian uncertainty approaches not

only restrict the network to a Bayesian Convolutional Net-

work (BCN), they rely on the use of Dropout and multiple

forward propagation runs reducing their use in real-time ap-

plications. The first algorithms dedicated to active learning

for human pose estimation was [12] which involved the use

of multi-peak entropy. It can be shown that multi-peak en-

tropy value is essentially a lower bound for the standard en-

tropy approach. Learning loss for active learning [24] pro-

posed the use of a general purpose auxiliary model trained

to predict an indicative loss for tasks involving classifica-

tion, detection and pose estimation. The underlying philos-

ophy for learning loss is to detect images where the model

performs poorly. Our work builds upon this paper to im-



prove the correlation between predicted and true loss which

enables better detection of failures therefore improving the

model early on during the development phase.

3. Learning Loss (Yoo and Kweon) [24]

The learning loss module is an auxiliary network h(.)
attached to the intermediate layers of the main model (clas-

sifier/pose estimator) f(.). For a given image x, we have:

ŷ = f(x) where ŷ is the prediction of the model f with the

ground truth y. The value of true loss l is l = Lmodel(y, ŷ)
where Lmodel(.) is the loss function such as cross-entropy

/ mean square error. Intermediate representations of the

model fh(x) are inputs for the learning loss network to pre-

dict a ’loss’ l̂, where l̂ = h(fh(x)).

3.1. Method

The notion of predicted loss l̂ is similar to that of the true

loss l, with a high value of l̂ implying that the model has

likely produced a wrong prediction. In the absence of true

loss as is the case with unlabelled images, the predicted loss

steps in to compute the performance of the model on the in-

put image. Therefore, images with a high l̂ are selected for

annotation to refine the use cases where the model is pre-

dicted to perform poorly. To train the learning loss network,

the authors use a ranking loss to compare a pair of images.

Let (xi, li, l̂i), (xj , lj , l̂j) represent a pair of (image, true

loss, predicted loss). The objective to train the learning loss

network is:

Lloss = max
(

0,− sign(li − lj)(l̂i − l̂j) + ξ
)

(1)

The idea behind Eq: 1 is simple, if the true loss li corre-

sponding to xi is greater than lj , then the predicted loss l̂i
has to be greater than l̂j by a margin ξ so as to not incur any

loss. Similarly, if lj > li then l̂j > l̂i. The learning loss net-

work incurs a loss if the predicted loss is not greater than ξ
or if the learning loss network predicts the opposite (li > lj
but l̂i < l̂j). The decision to use a pairwise comparison of

images might seem strange, especially when mean square

error (l − l̂)2 can be used to train the learning loss network

to learn the mapping between an input image x and the true

loss l. The authors on the contrary argue that the network

trained on MSE fails to learn anything meaningful in their

experimental study.

Active learning using learning loss is straighforward. We

train the task specific model f(.) and the learning loss net-

work h(.) using all labelled images (x ∈ L). We then select

a subset of unlabelled images (x ∈ U) for annotation which

have a high predicted loss l̂ = h(fh(x)). This process con-

tinuous cyclically for continuous refinement of the model.

Figure 2. We use an example to demonstrate that Learning Loss

forces the weight vector w to align along the most discriminative

component θi − θj to explain away the predicted losses

4. LearningLoss++

We first establish equivalency between the intuition

driven objective (Eq: 1) and the KL divergence based ob-

jective of LearningLoss++ by comparing the gradients. We

then analyse the gradient formulation to provide insights

into the training of the learning loss network. This is fol-

lowed by highlighting some shortcomings associated with

the Learning Loss gradient, and finally we analyse the

LearningLoss++ gradient to show that it implicitly absorbs

the margin ξ hyperparameter.

4.1. Gradient Analysis

Let θ represent the output of the penultimate layer in the

fully connected learning loss network. By definition, the

predicted loss in terms of θ is: l̂ = θTw where w represents

the weights of the final learning loss layer. While we con-

sider the gradients associated with the penultimate layer, we

note that these gradients are backpropagated and hence our

analysis extends to any general fully connected network.

Gradient for Learning Loss: The learning loss

objective Eq: 1 can now be written as: Lloss =
max (0,− sign(li − lj)(θ

T
i w − θTj w) + ξ). The gradient

for learning loss is:

∇wLloss ∈ {0,±(θi − θj)} (2a)

∇θLloss ∈ {0,±w} (2b)

Eq: 2 provides an interesting insight into the behaviour

of the module. The weights Eq: 2(a) are aligned to em-

phasize on the most discriminative component between the

intermediate features. If we treat θ as a vector in n −
dimensional space and θi and θj differ along one com-

ponent only, the weight vector amplifies the response along

that particular component to predict the indicative loss, as

we discuss below.

So How Does Learning Loss work? We highlight

the discriminative property of the gradients with an ex-

ample. For this example, let us assume θi = [1, 2, 1]T ,



θj = [1, 1, 1]T and w = [0, 3, 0] in a three dimensional

vector space as shown in Fig: 2. We use the same value

of margin ξ as recommended in the paper. Depending

upon the true loss (li and lj), the objective leads us to two

cases: 1) li > lj and 2) li < lj . Substituting the val-

ues of θi, θj and w in Lloss (Eq: 1) for case 1, we get:

Lloss(w, θi, θj) = max (0,−1 ∗ (6− 3) + 1) = 0.

Intuitively, this corresponds to taking a projection of

both the penultimate layer outputs θ along the weight

vector w. Since the current weight vector is already aligned

along the discriminative component, the learning loss

model does not incur a penalty. Things get interesting if

we consider the second case, li < lj . In this scenario, the

objective incurs a penalty (Lloss = max (0, 1∗ (6−3)+1)
= 4). Using Eq: 2(a), we get ∇wLloss = [0, 1, 0]T , with

gradient descent acting against this direction (−∇wLloss).

This step enables the weight vector to reverse direction and

ultimately point along the direction that minimizes the loss.

Gradient for LearningLoss++: As we saw in the pre-

vious example, the discriminative property (θi − θj) of the

gradient allows the learning loss network to align weights

in a manner to explain the predicted losses. We show that

the proposed KL divergence based training objective has a

gradient with a similar form.

As before, let l̂i = θTi w and l̂j = θTj w represent

the predicted loss for images i and j. We now consider

two images in the minibatch and compute softmax over l̂:

qi = el̂i/(el̂i +el̂j ) with qj defined similarly. This interpre-

tation can be viewed as the probability of sampling xi over

xj and vice versa for annotation. While we have defined a

probabilistic interpretation for the predicted losses, a similar

one needs to be defined for the true losses. Since true losses

(li, lj > 0), we use simple scaling pi =
li

li + lj
to denote

the probability of xi having a higher true loss than xj . Intu-

itively, an image xi having a true loss n-times greater than

x2 is n-times more likely to get sampled for annotation. The

objective to minimize is:

Lloss(w, θi, θj) = KL(p||q) = pilog
pi
qi

+ pj log
pj
qj

(3)

For brevity, we reproduce the final solution, referring the

reader to the supplementary material for the full derivation.

The solution is simple and delightfully familiar:

∇wLloss(w, θi, θj) = (qi − pi)(θi − θj) (4a)

∇θLloss(w, θi, θj) = (qi − pi)w (4b)

Active Learning with LearningLoss++: Although we

have introduced softmax and KL divergence with Learn-

ingLoss++, the process of active learning sampling remains

the same as in Learning Loss. The images corresponding to

the top-k predicted losses l̂ are chosen for annotation. We
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Figure 3. Statistical results show that the training losses (true loss)

follow a gamma distribution for a sufficiently converged regres-

sion model. This figure shows the true loss histogram for a hu-

man pose estimation model. We can approximate this particular

histogram with γ(k = 4,Θ = 0.066) obtained using maximum

likelihood estimation.

use softmax and KL divergence to train the loss prediction

network only. Therefore, while the gradient computation is

probabilistic, the core active learning sampling process is

deterministic.

4.1.1 LearningLoss++ Advantages

We have succesfully proven that Learning Loss and Learn-

ingLoss++ share the same underlying principles in training.

The most prominent feature of the LearningLoss++ gradi-

ent is the presence of (qi − pi) that smoothens the gradient

in comparison to Learning Loss. This smoothening, as we

will show, allows for better detection of lossy images. We

additionally note that LearningLoss++ implictly absorbs

the margin hyperparameter ξ. Fig: 1 depicts the two

scenarios which highlight the advantages associated

with the LearningLoss++ gradient. We discuss the two

scenarios in detail:

Scenario 1 (Fig: 1, image pair-(a, b)): In the event we

sample a pair of images with similar true losses, Learning

Loss incurs a loss even when the predicted losses are simi-

lar, since the margin ξ forces the predicted losses to have a

prediction loss margin of at least ξ. With LearningLoss++,

the network does not incur a penalty. Since li ≈ lj =⇒

pi ≈ pj ≈ 0.5 and l̂i ≈ l̂j =⇒ qi ≈ qj ≈ 0.5,

we have (qi − pi) ≈ 0. Although one question remains;

how likely are we to sample a pair of images having similar

true losses? Or formally, if P (X = li, Y = lj) represents

the probability of sampling images with losses (li, lj), then

given a true loss margin δ (not to be confused with ξ), what

is P (|X − Y | ≤ δ)?
Fortunately, a closed form solution exists to compute the



δ 0.02 0.04 0.06 0.08 0.1 0.125 0.15

PX,Y,γ 0.094 0.185 0.274 0.358 0.437 0.527 0.607

Table 1. We compute P (|(X = li) − (Y = lj)| ≤ δ) using

the closed form solution (Eq:5-supplementary) for true loss - li, lj
distributed according to γ(k = 4, θ = 0.066). We have verified

the correctness of our solution with a computer simulation.

probability of sampling a pair of images with similar losses.

Statistical regression under the condition of homoscedastic-

ity assumes that the residuals (losses) are distributed as per

the normal distribution ε ∼ N (0, σ2). The distribution of

squared residual ε2 follows N 2(0, σ2) = γ( 1
2
, 2σ2). This

result can be generalized to a summation of n gaussian dis-

tributions: p(ε2) =
∑n

i=1
Ni(0, σ

2) = γ(n
2
, 2σ2). There-

fore, the probability of sampling a loss follows a gamma

distribution. : P (X = li) = γ(k,Θ) as shown in Fig: 3.

The probability of sampling two images with true losses

within δ is:

P (|X − Y | ≤ δ) =

∫ δ

0

γ(x, k,Θ)

∫ x+δ

0

γ(y, k,Θ)dydx

+

∫ ∞

δ

γ(x, k,Θ)

∫ x+δ

x−δ

γ(y, k,Θ)dydx

(5)

To compute a closed form solution for Eq: 5, we restrict

k ∈ Z
+ allowing us to compute the integral of the gamma

distribution analytically. Since the rest of the derivation

involves extensive simplification, we request the reader to

refer to the final result Eq: (5) from the supplementary

material. To provide intuition into Eq:5-supplementary,

we use the loss distribution from Fig: 3 as an example to

compute the P (|X − Y | ≤ δ) for various true loss margin

δ in Table: 1. We observe that there is a high probability

(10% - 43%) of sampling a pair of images having similar

true losses. For a well trained loss prediction module that

correctly predicts similar l̂ for similar l, this results in upto

10% - 43% of the resultant gradient updates being noisy.

Fortunately, LearningLoss++ does not suffer from this

issue.

Scenario 2 (Fig: 1, image pair-(a, c)): We also consider

the case where the true losses (li, lj) for a pair of images

are significantly different and their predicted losses (l̂i, l̂j)
are similar. In this scenario, Learning Loss correctly in-

curs a gradient, however the gradient formulation is the

same as when the true and predicted losses were similar.

LearningLoss++ gives greater weightage to the gradient

when the predicted losses for a pair of images do not re-

flect the fact that one of the images sampled in the pair

has a high true loss than the other. To prove this state-

ment, we compute the expected gradient (Eq: 4) for Learn-

ingLoss++ for a fixed true loss margin δ. For a true loss pair

(X = li, Y = lj) sampled from γ(k,Θ) where Y = X + δ

δ → 0.0 0.1 0.2 0.3 0.4 0.5

LL++ qi-0.5 qi-0.39 qi-0.3 qi-0.25 qi-0.21 qi-0.18
LL ← constant c1 →

Table 2. We show the expected gradient response K(θi − θj)
where K is tabulated above for different values of the true loss

margin δ using Eq:12-supplementary. These values are computed

assuming that the true loss values l are distributed according to

γ(k = 4,Θ = 0.066) (Fig: 3). LL++: LearningLoss++, LL:

Learning Loss

(results hold true when Y = X − δ by symmetry) and

pi = li/(li + lj), the expected gradient with respect to γk,θ
is:

Ex,y|δ2

[

∇wL(w, θi, θj)
]

= lim
δ1→δ2

∫ x=∞

x=0

∫ y=x+δ2

y=x+δ1

(qi −
x

2x+ δ2
)(θi − θj)

γ(x, k,Θ)γ(y, k,Θ)

p(y − x = δ2)
dydx (6)

The continuous nature of the gamma distribution leads us to

use δ1 → δ2 to faithfully infer area under the curve as prob-

ability. The simplification of Eq: 6 is along similar lines as

deriving P (|X−Y | ≤ δ), hence we refer the curious reader

to the supplementary material for a complete derivation. We

note that the final solution (Eq: 12-supplementary) can be

written as a function of true loss margin δ: Ex,y|δ[∇wL] =
(qi − φ(δ))(θi − θj). Since Eq: 12-supplementary is ver-

bose and not very intuitive, we turn to Table: 2 for a more

intuitive outlook. When δ = 0, the loss prediction network

incurs no loss if it predicts l̂i ≈ l̂j =⇒ qi ≈ qj ≈ 0.5.

However, a response of qi ≈ qj ≈ 0.5 when the true loss

margin δ = 0.5 incurs a large larger gradient response:

(0.5−0.18)(θi−θj). Only when the loss predictor network

predicts l̂i < l̂j =⇒ qi < qj , the network incurs a lower

gradient response. Therefore, for a pair of images where

one image has a higher true loss, the loss predictor net-

work is forced to predict a high value of predicted loss l̂ for

that particular image, in the absence of which the gradient

penalty is steep. This translates into the network better iden-

tifying images with a high true loss (or faulty inferences).

We also note that the softmax (q = softmax(l̂i, l̂j)) associ-

ated with LearningLoss++ removes the need for a predicted

loss margin ξ hyperparameter.

So far, we have rigorously analyzed learning loss for re-

gression. We have successfully shown that the objectives

of Learning Loss and LearningLoss++ are equivalent. We

have highlighted the role played by the gradient in aligning

the weights in a manner that explains the predicted loss. We

have shown that a non-trivial number of Learning Loss gra-

dient updates are noisy. We later derived the expected gradi-

ent formulation for LearningLoss++, which ensures that the

images with a high true loss are identified correctly. Our
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Figure 4. Learning Loss uses global average pooling to collapse the spatial dimensions of the intermediate feature maps into a vector. We

argue that such an approach helps only in trivial cases: when the losses can be inferred from cues such as image backgrounds. Human pose

estimation relies on spatial interaction between various features, which is lost with pooling. A convolutional feature extractor for learning

loss hence captures features at multiple scales without spatial loss, allowing the learning loss network to perform well even when analyzing

complex poses.

discussion till now on Learning Loss and LearningLoss++

was valid for all regression tasks. In the next section, we

propose a convolutional architecture for the loss prediction

module and discuss its associated advantages specific to hu-

man pose estimation.

4.2. Convolutional Architecture:
Human Pose Estimation

Instead of using global average pooling (GAP) (Fig: 4),

we suggest the use of a convolutional feature extractor for

LearningLoss++, since GAP removes any spatial depen-

dency between the features which the learning loss model

can use to predict the indicative loss. The convolutional

network takes as input intermediate features at multiple

scales from the human pose estimation model. These multi-

resolution intermediate representations are a vital feature of

state-of-the-art models such as HRNet and Stacked Hour-

glass that allow the network to have a microscopic as well

as a macroscopic view of the images.

We represent the multiscale representations of spa-

tial dimensions n × n as Hn×n. The stacked hour-

glass has features at five such scales in an hourglass:

H4×4,H8×8 . . .H64×64. To combine features at multiple

scales, we suggest the use of strided convolutions. Let

Hn1×n1,Hn2×n2 represent features at consecutive scales

where n1 > n2. Then, the combination of the two fea-

tures is Hn2×n2 += Conv(stride = n1
n2

, kernel size =
n1
n2

)(Hn1×n1). If n1 is not perfectly divisible by n2, the

convolution takes place with stride, kernel =⌊n1
n2
⌋ followed

by another convolution with stride=1 and an appropriate

kernel size chosen so that the output of this convolution

matchesHn2×n2. We perform a superimpositionHn2×n2+

(Hn1×n1
Conv
−−−→ Hn2×n2) as concatenation would drasti-

cally increase the size of the network. The reduction process

fromHn1×n1 → Hn2×n2 . . . is carried out till we reach the

final representation (smallest spatial dimension) after which

we use a global average pooling to reduce the features to a

one dimensional vector. This is followed by a standard fully

connected network to infer the predicted losses.

5. Experimentation and Result

Our code (written in PyTorch [16]) will be made

available on https://github.com/meghshukla/

math-analysis-learningloss and we use open

sourced code wherever possible. We report results on

the LSP-LSPET datasets and MPII datasets (as done in

[12, 24]) with the following experiments: 1) Correlation be-

tween predicted loss and true loss [24] 2) Simulating 5-7 ac-

tive learning cycles [17]. We take a moment to remind the

reader that active learning is well suited for large datasets

(> 100, 000 images) and we use these experiments to draw

intuition to support the transferability of active learning for

human pose estimation to practical applications.

Dataset: The MPII [1] dataset contains images cap-

turing every day human activity. In contrast, the LSP-

LSPET [7] dataset represents sports poses, such as those

encountered in athletics and parkour. We use standard test-

ing splits: Newell validation split [15], [24] for the MPII
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Figure 5. LearningLoss++ yields a higher degree of correlation with the true loss. Not only is the mean loss for the sampled images (black)

higher, the true loss variance within the sampled points is lower. (Best viewed when zoomed)

dataset, and the latter thousand images of the LSP dataset

[7] for the combined LSP-LSPET dataset. While the MPII

dataset serves to measure the general performance of our

algorithms, the LSP-LSPET dataset truly represents active

learning as a process in industrial applications. Real world

applications imply non-stationarity of data, hence the train-

ing as well as validation set at any time instant do not repre-

sent the entire dataset (which is not the case with the Newell

validation split). The LSP-LSPET experiment allows us

to study this characteristic, where our initial training and

testing pool consists of samples drawn only from the LSP

dataset, with subsequent stages allowing the model to sam-

ple from the similar yet different LSPET data distribution.

This represents a challenge to active learning algorithms to

generalize to changes in the data distribution based on the

data which is already annotated.

Experiment Design: We simulate active learning cycles

using the stacked hourglass model by training an initial base

model on 1000 images, with each active learning stage se-

lecting a new set of 1000 images from the remaining un-

labelled pool of training data. The initial 1000 images for

MPII are randomly sampled from the training data. whereas

the initial 1000 images for LSP-LSPET are the first 1000

images from the LSP dataset (LSP consists of 2000 images,

split 1000 for train and remaining form the testing set). We

follow standard evaluation metrics by using PCKh@0.5 to

evaluate model performance on MPII and PCK@0.2 for the

LSP-LSPET images. We repeat each experiment five times

and report the mean and standard deviation for the same.

We limit our experiments to single person pose estimation,

hence extract multiple persons in an image into separate im-

ages using the ground truth / location information from the

datasets.

Failure identification: A key question remains: How

do we quantify model failures? To eliminate subjective bias

when qualitatively defining poor performance, we use the

PCK/PCKh accuracy metric to identify poor performance

over a set of images. A low PCK/PCKh score corresponds

to the model consistently drawing wrong inferences for

that particular set of images. Our justification for using

PCK/PCKh is that since these are universally accepted met-

rics to quantify the performance of the model, they can also

be used to identify the degree to which the models perform

poorly on the learning loss sampled images.

Comparison Algorithms: We compare our work with

Learning Loss and Coreset. As noted in the related work

section, DeepPrior by Caramau et al. [3] uses dropouts as

well as directly regress the joint coordinates, both of which

prevent its application in human pose estimation. Entropy

based approaches [12] have been compared with Learning

Loss [24] where the latter performs better than the former

in identifying images with high true losses.

Results: We first compare the correlation between the

predicted losses and the true losses for Learning Loss and

LearningLoss++, which is shown in Fig: 5. The graph is

computed for all the images from the LSPET dataset, with

the model trained on the initial pool of images from the

LSP dataset. Since the model is trained on LSP dataset

and not LSPET, both the approaches are tested on their

ability to identify failures and generalize to datasets from

a different distribution. We observe that the true loss mean

of the images sampled with LearningLoss++ is higher as



(a) Failure Detection: PCK scores for the images sampled at Stage n. (Lower PCK values indicate better identification of faulty inferences.)

LSP-LSPET (PCK@0.2) MPII (PCKh@0.5)

# images 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000

Random 0.430 ±0.017 0.527 ±0.012 0.593 ±0.007 0.624 ±0.009 0.645 ±0.007 0.663 ±0.012 0.739 ±0.013 0.766 ±0.003 0.792 ±0.007 0.797 ±0.006

Coreset 0.288 ±0.017 0.438 ±0.020 0.447 ±0.017 0.493 ±0.013 0.556 ±0.010 0.384 ±0.014 0.522 ±0.009 0.608 ±0.012 0.697 ±0.009 0.755 ±0.029

LL 0.305 ±0.013 0.253 ±0.021 0.358 ±0.025 0.520 ±0.011 0.617 ±0.017 0.311 ±0.036 0.465 ±0.024 0.621 ±0.017 0.735 ±0.012 0.777 ±0.010

LL++ 0.250 ±0.011 0.186 ±0.022 0.385 ±0.011 0.533 ±0.020 0.627 ±0.012 0.291 ±0.022 0.439 ±0.018 0.610 ±0.020 0.705 ±0.023 0.762 ±0.014

LL++conv 0.209 ±0.018 0.214 ±0.028 0.400 ±0.010 0.545 ±0.011 0.635 ±0.012 0.309 ±0.029 0.439 ±0.011 0.603 ±0.016 0.704 ±0.022 0.777 ±0.008

(b) Testing performance: PCK scores for the testing dataset after each sampling iteration. (Higher values are better)

LSP-LSPET (PCK@0.2) MPII (PCKh@0.5)

# images Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Random 0.803 ±0.003 0.818 ±0.002 0.827 ±0.003 0.834 ±0.003 0.841 ±0.002 0.76 ±0.006 0.783 ±0.006 0.803 ±0.009 0.813 ±0.004 0.822 ±0.007

Coreset 0.797 ±0.008 0.814 ±0.004 0.822 ±0.004 0.831 ±0.004 0.837 ±0.003 0.766 ±0.006 0.792 ±0.007 0.812 ±0.007 0.822 ±0.011 0.83 ±0.011

LL 0.796 ±0.004 0.814 ±0.003 0.823 ±0.004 0.833 ±0.003 0.842 ±0.005 0.763 ±0.007 0.793 ±0.005 0.814 ±0.004 0.829 ±0.004 0.838 ±0.005

LL++ 0.798 ±0.005 0.810 ±0.003 0.824 ±0.006 0.831 ±0.004 0.841 ±0.002 0.763 ±0.007 0.791 ±0.008 0.811 ±0.005 0.822 ±0.005 0.827 ±0.009

LL++conv 0.798 ±0.005 0.813 ±0.002 0.825 ±0.003 0.832 ±0.005 0.840 ±0.005 0.760 ±0.009 0.790 ±0.008 0.808 ±0.005 0.828 ±0.003 0.836 ±0.006

Table 3. LearningLoss++ outperforms others methods in failure identification Tab:(a), with similar testing accuracy as others Tab:(b).

Identifying and fixing faulty inferences (high predicted loss) improves reliability of the model in open world use cases. Detecting poor

inferences also allows for specific use case based collection of data, removing the need for large scale data collection in an attempt to

identify model failure cases.

well as exhibits a lower variance among the true loss val-

ues in comparison to Learning Loss, implying that Learn-

ingLoss++ consistently identifies images where the model

performs poorly. While Learning Loss performs better than

entropy based approaches (shown in [24]), our method im-

proves upon Learning Loss to better identify images with

a high value of true loss. Similar behaviour, albeit with a

smaller performance gap is obtained over the MPII dataset.

The results of the simulations for the active learning cy-

cles are shown in Table: 3. We identify two phases when

training a deep learning model: development and saturation

phase. The development phase forms the first few cycles

where the model has not converged with respect to the vali-

dation dataset. In comparison, the saturation stage marks

the convergence of the model on the validation dataset,

as the training dataset effectively represents the validation

dataset. In practice, our models are rarely saturated because

of the shift in distribution of the new incoming data as well

as the potentially significant number of failure cases that

arise during open world usage. Therefore, the development

phase dominates model training and is of practical inter-

est to us. Table: 3(a) highlights the performance of vari-

ous methods in failure detection. We see that both Learn-

ingLoss++ variants return lower PCK scores during the first

few stages for both the datasets, indicating successful iden-

tification of images where the inference is faulty. With the

larger MPII dataset, this trend continues into the model sat-

uration phase. However, the smaller LSPET dataset has

a limited number of tough examples which are identified

early on by LearningLoss++ as well as the original Learn-

ing Loss module. The lack of other difficult images cause a

sharp rise in the PCK scores for the subsequent stages. We

quickly note that detecting failures accurately does not nec-

essary improve general model performance; failure cases

are usually sparsely represented in the testing dataset which

is why a quantifiable increase in accuracy is not detected.

We also focus on the results in Stage 1, since stage-1 sam-

pling is performed on the base models shared by all ap-

proaches. The ability of the convolutional network to gener-

alize to LSPET images is highlighted in the Stage 1 results

for LSP-LSPET dataset. With a PCK@0.2 value of 0.209,

the convolutional network (LL++conv) comfortably outper-

forms its non convolutional counterpart (LL++) which has

a PCK@0.2 value of 0.250. We attribute the superior per-

formance of the convolutional architecture in LSP-LSPET

to the complex poses that are usually encountered in sport-

ing events. These complex poses are efficiently modeled

by the convolutional architecture since it maintains spatial

dependencies at multiple scales.

6. Conclusion

This work provides a strong mathematical foundation

for Learning Loss, a popular active learning technique.

We develop insights into the training of the learning

loss module, and propose LearningLoss++ that uses an

equivalent KL divergence based objective with additional

benefits. Not only is the proposed objective free of any

hyperparameters, the resultant gradient is smooth, which

allows for better detection of faulty inferences. We also

propose a convolutional architecture that exploits the

spatial dependency in human pose estimation model. Our

experiments show that LearningLoss++ delivers a strong

performance in continuous model refinement through iden-

tification and early detection of faulty model inferences.
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R. Garnett, editors, Advances in Neural Information Process-

ing Systems 32, pages 8024–8035. Curran Associates, Inc.,

2019.

[17] Ozan Sener and Silvio Savarese. Active learning for convolu-

tional neural networks: A core-set approach. arXiv preprint

arXiv:1708.00489, 2017.

[18] Burr Settles. Active learning literature survey. Technical re-

port, University of Wisconsin-Madison Department of Com-

puter Sciences, 2009.

[19] H Sebastian Seung, Manfred Opper, and Haim Sompolin-

sky. Query by committee. In Proceedings of the fifth annual

workshop on Computational learning theory, pages 287–

294, 1992.

[20] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep

high-resolution representation learning for human pose es-

timation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019.

[21] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph

Bregler. Joint training of a convolutional network and a

graphical model for human pose estimation. In Advances

in neural information processing systems, pages 1799–1807,

2014.

[22] A. Toshev and C. Szegedy. Deeppose: Human pose esti-

mation via deep neural networks. In 2014 IEEE Conference

on Computer Vision and Pattern Recognition, pages 1653–

1660, 2014.

[23] Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and

Alexander G Hauptmann. Multi-class active learning by

uncertainty sampling with diversity maximization. Interna-

tional Journal of Computer Vision, 113(2):113–127, 2015.

[24] D. Yoo and I. S. Kweon. Learning loss for active learning.

In 2019 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 93–102, 2019.

[25] X. You, R. Wang, and D. Tao. Diverse expected gradient

active learning for relative attributes. IEEE Transactions on

Image Processing, 23(7):3203–3217, 2014.

[26] Y. Yuan, S. Chung, and H. Kang. Gradient-based active

learning query strategy for end-to-end speech recognition.

In ICASSP 2019 - 2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages

2832–2836, 2019.


