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Abstract

Although deep learning-based models have achieved

tremendous success in image-related tasks, they are known

to be vulnerable to adversarial examples—inputs with im-

perceptible, but subtly crafted perturbation which fool the

models to produce incorrect outputs. To distinguish adver-

sarial examples from benign images, in this paper, we pro-

pose a novel watermarking-based framework for protecting

deep image classifiers against adversarial attacks. The pro-

posed framework consists of a watermark encoder, a pos-

sible adversary, and a detector followed by a deep image

classifier to be protected. Specific methods of watermark-

ing and detection are also presented. It is shown by ex-

periment on a subset of ImageNet validation dataset that

the proposed framework along with the presented methods

of watermarking and detection is effective against a wide

range of advanced attacks (static and adaptive), achieving a

near zero (effective) false negative rate for FGSM and PGD

attacks (static and adaptive) with the guaranteed zero false

positive rate. In addition, for all tested deep image classi-

fiers (ResNet50V2, MobileNetV2, InceptionV3), the impact

of watermarking on classification accuracy is insignificant

with, on average, 0.63% and 0.49% degradation in top 1

and top 5 accuracy, respectively.

1. Introduction

In recent years, Deep Neural Networks (DNNs) have

demonstrated tremendous success for many image related

tasks, such as image classification and face recognition. Un-

fortunately, DNNs are also known to be vulnerable to adver-

sarial examples—subtly crafted, but imperceptible modifi-

cations of benign inputs which, once fed into DNNs, can

lead DNNs to produce incorrect outputs. Specifically, given

an original benign image x, a small perturbation can be eas-

ily crafted and added to x to generate a modified image x′.

The output of a DNN in response to x′ will be different

from that of the DNN in response to x. Such x′ is an ad-

versarial example for x. The existence and easy construc-

tion of adversarial examples pose significant security risks

to DNNs, especially in safety-critical applications, includ-

ing face recognition and autonomous driving.

To safeguard DNNs against adversarial attacks, one ap-

proach is to build a classifier that distinguishes adversar-

ial examples from natural images. The rationale is that

although the adversarial perturbations are imperceptible to

human eyes, it may be still possible to design an algorithm

to detect their existence. Along this line, several detection-

based methods have been proposed [18, 17, 22]. Some

detection-based methods focus on finding general intrinsic

properties of adversarial examples. Other detection-based

methods aim to train classification networks to distinguish

adversarial examples from benign images.

Although the detection-based defenses mentioned above

are effective, to some extent, against some specific adver-

sarial attacks, they in general have been proven vulnerable

to more advanced adaptive adversaries, which have the full

knowledge of the DNN to be secured and the given detec-

tion strategy itself. Indeed, in their recent study, Carlini

et al. examined 10 detection-based defenses proposed in re-

cent years, and designed adaptive adversaries to defeat them

all [4]. It seems that there is no general pattern or intrin-

sic property shared by all adversarial perturbations. Many

studies suggest [11] that adversarial examples are widely

distributed in the high-dimensional image space. As such,

it is desirable to explore a different defense strategy.

Inspired by semi-fragile watermark [7, 10], in this pa-

per, we propose a radically different approach for adversar-

ial perturbation detection. Specifically, we propose a novel

watermarking-based framework for protecting deep image

classifiers against adversarial attacks. The proposed frame-

work consists of a watermark encoder, a possible adversary,

and a detector followed by a deep image classifier to be se-

cured. At the watermark encoder, an original benign image

is watermarked with a secret key by embedding confidential

watermark bits into selected DCT coefficients of the origi-



nal image in JPEG format. The watermarked image may

then go through possible adversarial attacks. Upon receiv-

ing a watermarked and possibly attacked image, the detec-

tor accepts it as a benign image and passes it to the sub-

sequent classifier if the embedded watermark bits can be

recovered with high precision, and otherwise rejects it as an

adversarial example. The embedded watermark is further

required to be robust to JPEG re-compression with a pre-

defined quality threshold. Specific methods of watermark-

ing and detection are also presented. They can be applied

to protect any image task related DNN. They are also inde-

pendent of adversarial perturbation distances. For many ap-

plication scenarios, from Quality Control cameras in man-

ufacturing [19, 29] to cameras and sensors in self-driving

cars, it is reasonable to assume that the original benign im-

age can be watermarked before it is attacked. For example,

watermark bits can be embedded at the time of acquisition.

Our contributions in this paper are as follows:

• We propose a novel watermarking-based framework for

safeguarding image task related DNNs against adversarial

attacks.

• Within our proposed framework, specific methods of wa-

termarking and detection are presented.

• Regular adversaries such as Fast-Gradient Sign Method

(FGSM) [12], Projected Gradient Descent (PGD) [16]

and Carlini & Wagner (CW) [5] attacks are modified to

work within our proposed framework, and are further ex-

tended to attack our watermarking-based detection strat-

egy (i.e., adaptive white-box attacks).

• We show by experiment on a subset of ImageNet valida-

tion dataset that our proposed framework along with the

presented methods of watermarking and detection is ef-

fective against a wide range of advanced attacks (static

and adaptive), achieving a near zero (effective) false neg-

ative rate for FGSM and PGD attacks (static and adaptive)

with the guaranteed zero false positive rate.

• It is shown that for all tested deep image classi-

fiers (ResNet50V2 [14], MobileNetV2 [23], Incep-

tionV3 [26]), the impact of watermarking on classifica-

tion accuracy is insignificant with, on average, 0.63% and

0.49% degradation in top 1 and top 5 accuracy, respec-

tively.

2. Background

2.1. JPEG Lossy Compression

JPEG is one of the most commonly-used formats for im-

ages. The key steps of JPEG compression are introduced

below:

Color space conversion: A given image is first converted

from RGB color space to YCbCr color space, where Y is

the luminance (pixel brightness) channel and Cb and Cr are

chrominance (pixel color) channels.

Block-wise DCT: For each channel, the image is firstly

divided into non-overlapping 8 × 8 blocks. Then, the pixel

values of the block are decomposed into 64 frequency com-

ponents with discrete cosine transform (DCT), namely DCT

coefficients. Typically, DCT coefficients are scanned in

zigzag order.In what follows, for each i ∈ {0, 1, ..63}, we

will use d(i) to denote the DCT coefficient at the ith fre-

quency in zigzag order. Note that a lower index represents

a lower frequency.

Quantization: After Block-wise DCT, 64 DCT coeffi-

cient will be further quantized to an integer multiple of their

corresponding quantization step sizes as follows:

DQF (i) = ⌊
d(i)

QQF (i)
⌉, (1)

where DQF (i) is the ith quantized DCT coefficient inte-

ger, ⌊·⌉ denotes the rounding function which returns the

nearest integer, QQF (i) is the quantization step size with

respect to a certain JPEG quality factor (QF, ranges from

1 to 100), and the quantized DCT coefficient is equal to

DQF (i)QQF (i). A smaller QF corresponds to higher quan-

tization step sizes, which means worse image quality. In

theory, any quantization step size other than QQF (i) can

also be used in Eq. (1).

2.2. Adversarial Attack

Since the seminal work of Szegedy et al. [27] and Big-

gio et al. [3] firstly suggested the existence of adversar-

ial examples, various adversarial attack methods have been

proposed. Two main categories of adversarial attacks are

gradient-based attacks and optimization-based attacks. For

gradient-based attacks, adversaries usually construct adver-

sarial perturbations based on the gradients of the target

DNN with respect to the original image x; examples in-

clude FGSM and PGD [12, 16]. PGD takes advantage of

iteratively running FGSM with smaller step size, result-

ing in a stronger attack at the cost of heavier computation.

Both FGSM and PGD yield a near 100% success rate with

sufficiently large perturbation budget. On the other hand,

optimization-based methods focus on optimizing an objec-

tive function, such as minimizing the perturbation and max-

imizing the confidence of adversarial example. Two well-

known examples are CW attack and DeepFool [29]. These

attacks usually introduce smaller perturbations to the image

x compared with gradient-based attacks.

In addition, adversary’s knowledge is also critical to at-

tack’s performance. There are three different threat models:

• Black-box adversary This type of adversary has no

knowledge of either the DNN to be safeguarded or the

defense strategy. As such, the choice of attack is limited

to a few approaches such as transfer attacks [21] or query-

based attacks [2, 6].

• Static white-box adversary A static white-box adversary

has the full knowledge of the DNN to be secured (includ-



Figure 1. Illustration of the watermarking-based adversarial de-

fense framework. Original images are first watermarked with a se-

cret key and then possibly attacked by adversaries. Watermarked

and possibly attacked images are accepted by the detector only if

the embedded watermark bits are recovered with high precision.

ing its architecture and parameters), but does not know

anything about the defense strategy. Adversarial exam-

ples for an image x are generated based on the DNN to be

secured, the image x, a targeted output, and the allowed

maximum perturbation distance from x.

• Adaptive white-box adversary An adaptive white-box

adversary is aware of both the DNN to be secured and the

defense strategy. Using this perfect knowledge, it could

generate the strongest adversarial examples to defeat the

defense strategy and cause the DNN to produce incorrect

outputs.

3. Framework Overview

As shown in Figure 1, our proposed watermarking-based

adversarial defense framework consists of a watermark en-

coder, a possible adversary, and a detector followed by the

DNN C to be secured. Consider an original image x. Instead

of directly exposing x to an adversarial environment, we use

the watermark encoder φ to convert x into xwm = φ(x, S),
a watermarked version of x, by embedding watermark bits

into x with a secret key, where S denotes both the secret

key and embedded watermark bits. Note that S is kept in

secret, i.e., the adversary does not have access to it. Con-

sequently, xwm may undergo adversarial attacks in the ad-

versarial environment or some allowed legal operation be-

fore being passed to the detector. Let ϕ denote an adver-

sarial attack algorithm and g denote the allowed legal oper-

ation. The image received by the detector would be either

xwm, ϕ(xwm), or g(xwm). With the help of S, the detector

will further distinguish the watermarked and attacked im-

age ϕ(xwm) from benign images xwm and g(xwm). The

received image will be fed into C only if it is accepted as a

benign image by the detector.

As one of the most commonly-used formats for images,

JPEG standard is also widely adopted in computer vision

datasets and pipelines, e.g., the ImageNet dataset [9]. Since

high quality JPEG compression is often acceptable or even

required in practical applications, we consider JPEG re-

compression with QF ≥ 50 as the legal operation g in our

framework hereafter.

There are two main objectives for our framework. First,

the embedded watermark should not visibly distort the orig-

inal image x, nor degrade C’s performance significantly.

Second, the images accepted by the detector should be

harmless to C. Formally, the performance metrics of the

proposed framework are listed below:

• Classification accuracy on xwm Watermarking should

not significantly degrade the classification accuracy of C .

We evaluate the performance degradation of C by compar-

ing the Top-1 and Top-5 accuracy on the original dataset

and watermarked dataset.

• Watermarking distortion The watermarking distor-

tion is evaluated using PSNR between x and xwm.

• False positive rate If the watermarked image xwm is

not attacked, it should be accepted by the detector as a

benign image with high probability. The false positive

rate is defined as the percentage of xwm that are rejected

by the detector as attacked images. As we shall see later,

for our proposed methods of watermarking and detection,

the false positive rate is guaranteed to be 0.

• Robustness to high quality JPEG re-compression

The embedded watermark should be robust to high qual-

ity JPEG re-compression with QF ≥ 50, i.e., the detector

should not reject g(xwm) so as to produce a false posi-

tive case. The robustness against high quality JPEG re-

compression is evaluated using the JPEG re-compression

false positive rate (JRFPR), defined as the percentage of

g(xwm) that are rejected by the detector as attacked im-

ages.

• Detection rate The detection rate is defined as the per-

centage of attacked images ϕ(xwm) that are accepted by

the detector as benign images. It reflects the watermark’s

sensitivity to adversarial attacks.

• Effective false negative rate The effective false nega-

tive rate is defined as the percentage of attacked images

ϕ(xwm) that are simultaneously accepted by the detector

and also successfully cause the DNN C to produce outputs

different from those corresponding to xwm. The rationale

for introducing this metric is to report harmful adversar-

ial examples only: although the adversary may bypass

occasionally the detector by decreasing the perturbation

budget, the strength of the resulting adversarial example



Figure 2. Coefficient-wise perturbation analysis for FGSM with

ǫ = 8 from the values of additive adversarial perturbations in

64 DCT coefficients of 100,000 JPEG blocks: (a) the standard

derivation of perturbations per DCT coefficient; (b) distribution

of perturbations at DC coefficient (DCT coefficient on the top-left

corner). Note that the mean value of perturbations per DCT coef-

ficient is more or less zero, and the perturbation energy is largely

concentrated on low DCT frequencies.

will also decrease. Thus, if ϕ(xwm) and xwm share the

same prediction result with respect to C, ϕ(xwm) is in-

deed harmless and should not be considered as an effec-

tive false negative case.

4. Methods of Watermarking, Detection, and

Adversarial Attacks

We now describe how the watermark encoder, detector,

and adversaries are designed within our proposed frame-

work. We firstly explain our motivation of choosing water-

mark embedding positions (Section 4.1), and then describe

the specific methods of watermarking (Section 4.2) and de-

tection (Section 4.3). Lastly, we introduce the design of

adversaries that adapt to our framework (Section 4.4).

4.1. Watermark Embedding Positions

Adversarial attacks introduce different amounts of per-

turbation to different frequency components of an image.

As suggested in [24, 28], there are in general more per-

turbations in low frequency bands than in high frequency

bands, at least for ImageNet models. This motivates us to

embed watermark bits into DCT coefficients at low frequen-

cies since large perturbations at low frequencies will likely

destroy watermark bits embedded therein once the water-

marked image is attacked.

To determine possible DCT coefficients where wa-

termark bits can be embedded into, we performed an

coefficient-wise perturbation analysis for 100,000 JPEG

blocks in Luminance channel with respect to FGSM with

ǫ = 8. We collected the values of additive adversarial per-

turbation in 64 DCT coefficients of these JPEG blocks. The

standard derivation of perturbations per DCT coefficient is

shown in Figure 2 (a). As can be seen from Figure 2 (a), the

perturbation energy introduced by FGSM is largely concen-

trated on low frequencies, particularly the first 16 DCT co-

efficients in zigzag order. Also shown in Figure 2 (b) is the

distribution of perturbations at DC, which is more or less a

zero-centered Gaussian distribution. Based on this analysis,

we shall select the first 16 DCT coefficients in zigzag order

as possible embedding positions.

4.2. Watermarking Method

To embed watermark bits into selected DCT coefficients,

we invoke an invariant property of DCT coefficients from

[15][Theorem 1].

Lemma 1 (DCT Invariant Property) Let d be a DCT co-

efficient. If d is an integer multiple of q0, then for any quan-

tization step size q < q0, quantizing d with q is invertible.

That is, d can be fully reconstructed from its quantized value

⌊d
q
⌉q.

Proof Write d as d = kq0, where k is an integer. It can

be verified that
∣

∣

∣

∣

d− ⌊
d

q
⌉q

∣

∣

∣

∣

≤
q

2
. (2)

Dividing both sides of (2) by q0 yields
∣

∣

∣

∣

∣

k −
⌊d
q
⌉q

q0

∣

∣

∣

∣

∣

<
1

2
. (3)

Therefore, re-quantizing ⌊d
q
⌉q with q0 yields back k and

hence d.

Our methods of watermarking, adaptive attacks, and de-

tection will apply the above DCT Invariant Property several

rounds. Figure 3 (a) sketches the pipeline of our watermark-

ing method. In our method, the secret information S is di-

vided into three parts: the secret key, the watermark bits,

and a special reference switch bit. The secret key is used for

DCT coefficient selector to determine the embedding posi-

tions. The reference switch bit along with the key is used to

determine a reference bit. With reference to the reference

bit, the watermark bits are first differentially encoded and

then embedded into the Least Significant Bit (LSB) of the

selected DCT coefficients after the latter is further quantized

with the respective quantization step size from the quanti-

zation table corresponding to QF = 50. Formally, for each

8 × 8 JPEG block, the watermark embedding process con-

sists of the following 4 steps:

DCT coefficient selector The first step is to randomly

select 5 DCT coefficients from 16 possible embedding posi-

tions. This selector requires a key of length ⌈log2
(

16

5

)

⌉ for

each block. Among the 5 selected DCT coefficients, the first

one is used as a reference to determine, along with the spe-

cial reference switch bit, the reference bit. The other 4 se-

lected DCT coefficients are used for watermark embedding,

namely the embedding positions. There are 4 watermarking

bits per block, one for each embedding position. Therefore,

the length of S per 8× 8 JPEG block is ⌈log2
(

16

5

)

⌉+ 5.



Figure 3. Illustration of the pipelines of watermarking and detection methods. The blue part of the original block represents the 16 possible

embedding positions. The green part of the watermarked block represents the selected watermark embedding positions.

Quantization of selected DCT coefficients Denote

the DCT coefficient at the watermark embedding position

i as d(i). As the second step, we quantize d(i) with the

quantization step size Q50(i) from the quantization table

corresponding to QF = 50 as follows:

D50(i) = ⌊
d(i)

Q50(i)
⌉. (4)

Watermark embedding Given a watermark bit w to

be embedded into the embedding position i, we differen-

tially encode w with respect to the reference bit to derive

an embedding value E. The bit w is then embedded into

the position i by embedding E into the LSB of D50(i) as

follows:

Dwm
50 (i) = 2⌊D50(i)/2⌋+ E, (5)

where Dwm
50 (i) is the embedded DCT coefficient integer.

The calculation of E is another important operation in

our method. Let d(j) be the selected reference DCT coeffi-

cient. To determine the reference bit r for this block, we first

quantize d(j) with the quantization step size Q50(j) and

then select r to be the second or third last bit of the quan-

tized coefficient integer, depending on whether the special

reference switch bit s is 0 or 1. Formally,

r = ⌊⌊
d(j)

Q50(j)
⌉/2s+1⌋ mod 2. (6)

Finally, the embedding value E for the watermark bit w is

determined by

E = r ⊕ w. (7)

The underlying rationale for embedding E rather than w
directly is to prevent the adversary from directly accessing

the watermark bits through the LSB of Dwm
50 (i). Otherwise,

even though the selected watermark embedding positions

are not known to the adversary, the adversary can iterate

over all possible embedding positions and keep the corre-

sponding watermark bits consistent with the watermarked

image so as to bypass the detector without significantly de-

viating from desired adversarial examples (see Section 4.4

for more details).

Re-quantization of embedded DCT coefficient Fi-

nally, the embedded DCT coefficient needs to be re-

quantized using the quantization table of the original image

so as to keep the consistency of quantization. The water-

marked and re-quantized DCT coefficient with respect to

the original quantization step size Dwm
ori (i) can be obtained

from the following process:

Dwm
ori (i) = ⌊Dwm

50 (i) ∗Q50(i)/Qori(i)⌉, (8)

where Qori(i) is the quantization step size at position i
in the quantization table of original image. Here we assume

that the original quantization step size Qori(i) is strictly less

than Q50(i), which is the case in many applications.

Repeat this procedure for all JPEG blocks in the Lu-

minance channel. The resulting image will be the water-

marked image. It took a single 4.5 GHz CPU approximately

0.3 second to compute (in Python) an watermarked image

for ImageNet dataset.

4.3. Detection Method

Figure 3 (b) illustrates the pipeline of our detection

method. Given a received block, which could be a wa-

termarked block, a watermarked and attacked block, or a

watermarked and JPEG re-compressed block, the detection

method has three main steps:

Quantization with Q50 Determine the 5 selected em-

bedding positions from the key. Quantize the DCT coeffi-

cients at those determined positions with Q50 to compute

the respective D̂50(i), in a way similar to Eq. (4). If the re-

ceived block is not attacked, nor re-compressed, it follows



from the DCT Invariant Property that D̂50(i) will be equal

to Dwm
50 (i).

Watermark bits extraction For each watermark em-

bedding position, take the LSB of D̂50(i) as the estimation

Ê of E. Also, compute the estimation r̂ of the reference

bit r from the reference position according to Eq. (6) with

d(j) replaced by d̂(j). The extracted watermark bit ŵ cor-

responding to the watermark bit w is then computed as

ŵ = Ê ⊕ r̂. (9)

Comparator For all the watermark embedding posi-

tions, we compare the extracted watermark bits with the

original watermark bits and compute the Bit Error Rate

(BER). The BER represents the percentage of embedded

DCT coefficients that are significantly distorted and a larger

BER means more distortion is added to the watermarked

image. We empirically set a BER threshold of 0.01 to

distinguish attacked images from benign images. The

received image will be accepted by the detector only if it

yields a BER ≤ 0.01.

Finally, after the received image is accepted, its quan-

tized version after the step 1 above is presented to the clas-

sification DNN.

4.4. Adversary Design

Regular adversaries usually work with valid RGB im-

ages with fixed image size. That is, input images to a regular

adversarial attack algorithm normally take integer-valued

pixel intensities and also have their size equal to the input

size of the classification DNN. In order for regular adver-

saries to be able to work within our proposed framework,

certain modifications are necessary. Below we first describe

how to modify regular adversaries to their advantage so that

they can work with JPEG images with various resolutions,

and then further extend them to attack our detection strategy

itself.

4.4.1 Modifications of Regular Adversaries

A regular adversary is modified via the following key steps:

No pixel rounding in JPEG decoding A regular ad-

versary is modified to take JPEG images directly as their

inputs. However, in the process of decoding a JPEG image

into its RGB pixel intensities, real-valued pixel values will

be kept without any rounding. This avoids possible dam-

ages caused by rounding on watermark bits.

Adaptation to various resolutions In our framework,

it is necessary for the adversary to provide adversarial ex-

amples with the same size as the image to be attacked. To

this end, we integrate the resizing process into the classi-

fication model as the front layer, which resizes the image

to the model’s input size. The adversary can then directly

Figure 4. Illustration of the last step in a Type 2 adaptive adversary,

which is a replacement of the JPEG encoding step in a modified

regular adversary.

add adversarial perturbations into the image through either

gradient-based attacks or optimization-based attacks for the

integrated model. The resulting attacked images are adver-

sarial examples for the integrated model, and after resizing,

are also adversarial examples for the original model.

JPEG encoding Finally, the attacked images, after be-

ing JPEG compressed using the same quantization table as

in the original image, are adversarial examples produced by

the modified regular adversary.

4.4.2 Adaptive Adversaries

We propose two adaptive adversaries to weaken our

watermarking-based defense.

Type 1 adaptive adversary The JPEG encoding step

in a modified regular adversary may weaken its attack

strength. To eliminate the negative impact of JPEG encod-

ing on attack strength, we apply JPEG-resistant method pro-

posed by Shin et al. [25] to strengthen modified regular ad-

versaries including PGD, FGSM, and CW-l2, resulting our

Type 1 adaptive adversaries.

Type 2 adaptive adversary Taking the advantage of

the complete knowledge of our watermarking and detection

methods, this type of adaptive adversary is designed to com-

pletely bypass the detector. It replaces the last JPEG en-

coding step in a modified regular adversary by the pipeline

shown in Figure 4. The DCT Invariant Property guarantees

that after both the watermarked image and the adaptive at-

tacked image are quantized with quantization table Q50, the

quantized DCT coefficient integer of the DCT coefficient in

the adaptive attacked image and its counterpart in the water-

marked image have the same last three bits at each possible

embedded position. As we shall see later, although this type

of adaptive adversary completely bypasses the detector, it



does not necessarily cause harm to the DNN to be secured.

5. Experiment setup

We evaluated our proposed defense against adversarial

examples on a subset of ImageNet ILSVRC 2012 valida-

tion dataset, which was formed by randomly choosing 1,000

images from the whole validation dataset. All selected im-

ages are classified correctly before and after watermarking

by ResNet50V2 [14]. (Otherwise, a new image would be se-

lected and tested until this condition was satisfied.) Our ad-

versarial images were produced by attacking ResNet50V2,

a pre-trained DNN obtained from TensorFlow [1].

Three representative targeted adversarial attack meth-

ods FGSM, PGD and CW-l2 were selected. They were

implemented with the reference implementations from the

CleverHans package [20], which were slightly modified to

accommodate the modifications mentioned in Section 4.4.

The targets for targeted attacks were randomly selected.

The parameters selected for these attacks are described be-

low:

• For FGSM and PGD, the adversarial perturbations are

computed subject to an L∞ constraint and the parame-

ter ǫ controls the magnitude of maximum perturbation per

pixel. To evaluate our framework under different pertur-

bation levels, we employed targeted FGSM attacks with

ǫ = 2, 4 and 8, as well as targeted PGD attacks with

ǫ = 8. The selected parameters are commonly used val-

ues in other studies [8].

• For CW-L2, the adversarial perturbations are optimized

under L2 constraint. Its hyper-parameter κ specifies the

confidence that the adversarial image is misclassified by

the target DNN, and also controls the amount of pertur-

bations. The smaller κ, the smaller perturbations. Since

small perturbations are difficult to be detected, we em-

ployed targeted CW-l2 attacks with κ = 0 to evaluate our

proposed defense strategy in the worst case scenario.

6. Results

In this section, we firstly show the effect of watermark-

ing on classification accuracy and image quality, followed

by its robustness to JPEG re-compression. Then, we evalu-

ate the effectiveness of our defense against a wide range of

adversaries. Note that in view of the DCT Invariant Prop-

erty, the false positive rate is guaranteed to be 0.

6.1. Classification accuracy and PSNR

Table 1 shows the top-1 and top-5 accuracy before and

after watermarking of ResNet50V2, MobileNetV2, Incep-

tionV3 over the entire ImageNet ILSVRC 2012 validation

dataset. The impact of watermarking on classification ac-

curacy is indeed insignificant with, on average, 0.63% and

0.49% degradation in top 1 and top 5 accuracy, respectively.

Figure 5. Illustration of watermarking and adversarial perturba-

tion: (a) the original image; (b) watermark distortion (amplified

10 times); (c) the watermarked image; (d) the adversarial pertur-

bation generated by FGSM with ǫ = 8; and (e)the FGSM attacked

image.

DNN Top1 Top1 wm Top5 Top5 wm

ResNet50V2 67.00% 66.51% 87.81% 87.43%

MobileNetV2 70.85% 69.63% 89.80% 89.01%

InceptionV3 76.85% 76.66% 93.30% 93.00%

Table 1. Top-1 and Top-5 accuracy before and after watermarking

for three pre-trained DNNs from TensorFlow [1]. Note that the

classification accuracy may be different from that reported by the

original work due to different pre-processing methods.

The PSNR between the original and watermarked images

is found to be 39.34 ± 1.13 dB. As shown in Figure 5, the

watermark distortion is imperceptible, and significantly less

than the adversarial perturbation.

6.2. Robustness to JPEG re­compression

To evaluate watermarking robustness to JPEG re-

compression, we conducted an experiment where water-

marked images are first compressed by multiple rounds of

JPEG re-compression with each QF randomly selected from

[50, 100), and then sent to the detector. Table 2 reports the

respective average BER of the detector in each case. It is

clear from Table 2 that our watermarking method is indeed

very robust to one or two rounds of high quality JPEG re-

compression. The results in Table 2 also justify empirically

our choice of BER threshold 0.01.



Rounds 1 2 3 5

Average BER 0.00067 0.0082 0.021 0.038

Table 2. Average BER for different rounds of JPEG re-

compression.

Metric FGSM FGSM FGSM PGD

ǫ = 2 ǫ = 4 ǫ = 8 ǫ = 8

Detection rate 99.7% 100.0% 100.0% 100.0%

EFNR 0.2% 0.0% 0.0% 0.0%

Table 3. Detection rate and effective false negative rate in the case

of static white-box FGSM and PGD attacks.

Metric FGSM FGSM FGSM PGD

ǫ = 2 ǫ = 4 ǫ = 8 ǫ = 8

Detection rate 99.8% 100.0% 100.0% 100.0%

EFNR 0.1% 0.0% 0.0% 0.0%

Detection rate 0.0% 0.0% 0.0% 0.0%

EFNR 0.1% 0.0% 0.4% 1.5%

Table 4. Detection rate and effective false negative rate in the case

of adaptive white-box FGSM and PGD attacks: top for type 1

adaptive adversary; bottom for type 2 adaptive adversary.

6.3. Combating FGSM and PGD attacks

Table 3 and Table 4 show the detection rate and effec-

tive false negative rate in the case of static FGSM and PGD

attacks, and in the case of adaptive FGSM and PGD at-

tacks, respectively. Clearly, the detector can effectively de-

tect adversarial perturbations introduced by static and type

1 adaptive FGSM and PGD attacks. Although type 2 adap-

tive FGSM and PGD can bypass the detector completely

by design, they are nonetheless harmless to the subsequent

classification DNN with near zero EFNR. The quantization

process with Q50 along with forcing the last three bits at

each possible embedding position to be the same as those

of the counterpart in the watermarked image essentially un-

does the adversarial perturbation.

6.4. Combating CW­l2 attack

CW-l2 attack [5] provides strong adversarial examples

with high confidence under a tight perturbation budget. The

light perturbation increased the difficulty of detecting it.

However, as suggested in [13, 8], adversarial perturbation

generated by CW-l2 method is fragile to JPEG compression.

The results for both static and adaptive white-box CW-l2

attacks are shown in Table 5. The relatively-low detection

rate of static CW-l2 attack suggests that the watermarked

coefficients are barely distorted after quantization. On the

other hand, converting adversarial examples to JPEG format

also significantly decreases the effectiveness of the static at-

tack, resulting in a low effective false negative rate. With

Static Type 1 Type 2

Detection rate 34.1% 38.4% 0%

EFNR 4.7% 25.3% 0.0%

Table 5. Detection rate and EFNR in the case of static, type 1 adap-

tive, and type 2 adaptive CW-l2 attacks.

BER threshold 0.0025 0.005 0.0075 0.01

Detection rate 85.1% 67.5% 54.6% 38.4%

EFNR 5.8% 12.3% 16.7% 25.3%

Table 6. Detection rate and effective false negative rate in the case

of type 1 adaptive CW-l2 attacks for different BER thresholds.

the JPEG-resistant feature, type 1 adaptive CW-l2 yielded

a higher effective false negative rate at 25.3%. It also in-

creased the distortion required and resulted in a higher de-

tection rate.

To combat CW-l2 attack, an effective way is to decrease

the BER threshold of the detector. Table 6 shows the de-

tection rate and effective false negative rate in the case of

type 1 adaptive CW-l2 attacks for different BER thresh-

olds. When the BER threshold is set to 0.0025, the de-

tection rate increases significantly from 38.4% to 85.1%,

whereas the effective false negative rate decreases signifi-

cantly from 25.3% from 5.8%. The improved performance

is at the cost of watermarking robustness to multiple rounds

of high quality JPEG re-compression. With the BER thresh-

old at 0.0025, our watermarking method is very robust to

only one round of JPEG re-compression.

7. Conclusion

In this paper, we have proposed a novel and practical

watermarking-based framework for protecting image task

related DNNs against adversarial attacks. The framework

consists of a watermark encoder, a possible adversary, and

a detector. Specific methods of watermarking and detec-

tion have been presented. It has been shown by experiment

that the framework is effective against a wide range of ad-

vanced attacks (static and adaptive), achieving a near zero

(effective) false negative rate with the guaranteed zero false

positive rate. At the same time, the impact of watermarking

on classification accuracy of DNNs is insignificant.
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