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Abstract

Conventionally, AI models are thought to trade off ex-

plainability for lower accuracy. We develop a training strat-

egy that not only leads to a more explainable AI system for

object classification, but as a consequence, suffers no per-

ceptible accuracy degradation. Explanations are defined as

regions of visual evidence upon which a deep classification

network makes a decision. This is represented in the form of

a saliency map conveying how much each pixel contributed

to the network’s decision. Our training strategy enforces

a periodic saliency-based feedback to encourage the model

to focus on the image regions that directly correspond to

the ground-truth object. We quantify explainability using an

automated metric, and using human judgement. We propose

explainability as a means for bridging the visual-semantic

gap between different domains where model explanations

are used as a means of disentagling domain specific infor-

mation from otherwise relevant features. We demonstrate

that this leads to improved generalization to new domains

without hindering performance on the original domain.

1. Introduction

Increased explainability in machine learning is tradition-

ally associated with lower performance, e.g. a decision tree

is more explainable, but less accurate than a deep neural

network. In this paper we argue that, in fact, increasing

the explainability of a deep classifier can improve its gen-

eralization, especially to novel domains. End-to-end deep

models often exploit biases unique to their training dataset

which leads to poor generalization on novel datasets or en-
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Figure 1. In this figure we demonstrate how explainability (XAI)

can be used to achieve domain generalization from a single source.

Training a deep neural network model to enforce explainability,

e.g. focusing on the skateboard region (red is most salient, and blue

is least salient) for the ground-truth class skateboard in the central

training image, enables improved generalization to other domains

where the background is not necessarily class-informative.

vironments. We develop a training strategy for deep neural

network models that increases explainability, suffers no per-

ceptible accuracy degradation on the training domain, and

improves performance on unseen domains.

Domain adaptation and generalization are formulations

that mitigate the problem of dataset bias. In domain adapta-

tion one needs to know a priori the target distribution, which

limits applicability [12, 4, 25]. In standard domain gener-

alization techniques, one needs several source domains for

training, which may not be available in practice. A more

generic formulation is single-source domain generalization,



where one would like to avoid learning dataset bias for bet-

ter generalization, but only has access to a single source dis-

tribution. In this work, we address this challenging single-

source setting. Data augmentation approaches were shown

to be successful for improving generalization to unseen do-

mains by randomizing and perturbing the way training im-

ages are portrayed, and therefore learning invariance against

some inherent biases of the source dataset [33, 37, 36].

A limitation of such data augmentation techniques is that

some biases do not depend on color features, but are more

structured or context dependent. Consider the case where

every sample associated with a given class always has the

same background, e.g. an object recognition dataset where a

soccer ball is mostly seen on a soccer field. In this case, the

classifier might learn the background features instead of the

ball characteristics -if they are sufficient to obtain good ac-

curacy on training. While context and context-correlations

aid classification when the source and target domains come

from similar distributions [21, 34, 7], this becomes a limi-

tation when the correlation is corrupted in unseen target do-

mains. The drawback is evident: a model that learns to rec-

ognize soccer balls by evaluating whether grass is present

or not in a scene will poorly generalize to scenarios where

grass is not present or visible. This vulnerability, commonly

referred to as “domain bias”, significantly limits the appli-

cability of machine learning systems into the wild.

We posit that the design of algorithms that better mimic

the way humans reason, or “explain”, can help mitigating

the domain bias issue. Our approach utilizes explainabil-

ity as a means for bridging the visual-semantic gap between

different domains as presented in Figure 1. Specifically, our

training strategy is guided by model explanations and avail-

able human-labeled explanations. Explanations are defined

as regions of visual evidence upon which a network makes

a decision. This is represented in the form of a saliency

map conveying how much each pixel contributed to the net-

work’s decision.

Our training strategy periodically guides the forward ac-

tivations of spatial layer(s) of a Convolutional Neural Net-

work (CNN) trained for object classification. The activa-

tions are guided to focus on regions in the image that di-

rectly correspond to the ground-truth (GT) class label, as

opposed to context that may more likely be domain depen-

dent. The proposed strategy aims to reinforce explanations

that are non-domain specific, and alleviate explanations that

are domain specific. Classification models are compact and

fast in comparison to more complex semantic segmentation

models. Our approach allows the compact classification

model to possess some properties of a segmentation model

without increasing model complexity or test-time overhead.

We show how the identification of evidence within a

visual input using top-down neural attention formulations

[26] can be a powerful tool for domain analysis. Inspired

by these findings, we demonstrate that more explainable

deep classification models could be trained without hinder-

ing their performance. We then conduct a human study

to confirm our intuitive quantification of an “explainable”

model. Finally, we demonstrate how the explainable model

better generalizes on six unseen target domains, although it

was trained only using a single-source domain.

In summary, our contributions are:

• We propose a training strategy that leads to more ex-

plainable deep classification models. We quantify ex-

plainability computationally and using human judge-

ment.

• We demonstrate benefits of having a more explainable

model for single-source domain generalization.

2. Related Work

Robustness to Domain Shift. Several problem formu-

lations have been proposed with the aim of learning models

which are more robust in out-of-distribution settings. One

formulation that received a large amount of interest form

the community is domain adaptation [12, 4, 25]. The as-

sumption here is to have access to a set of samples from a

“source” domain for which annotations are available, and

a set of samples from a “target” distribution on which we

desire to perform well, for which annotation is unavailable

or only partially available. There is a significant body of

works that propose effective solutions to this problem (e.g.,

[12, 4, 25, 9, 35, 32]); the limitation is that one needs to

know the target distribution a priori.

In domain generalization [20, 13, 19, 14, 28, 15, 46]

this assumption is relaxed; the goal here is to learn mod-

els that better generalize to unseen domains, without fix-

ing target distributions a priori. As it was originally con-

ceived, domain generalization requires access to several

source domains to learn models that better generalize. Re-

cently, different works have proposed ways to learn more

general representations by relying on a single-source dis-

tribution. Volpi et al. [37] propose to rely on adversarial

robustness [10], generating samples that are hard for the

model over iterations. A related method [36] proposes to

find new data augmentation rules over iterations by evaluat-

ing the image transformations that the current model is more

vulnerable to. Carlucci et al. [6] rely on self-supervised

learning to learn representations that are less biased towards

the source distribution. Domain randomization [33] allows

improving performance on unseen, real data when training

on rendered data. Hendricks et al. [11] enforce looking at a

person as opposed to looking at other background elements

in an image to make gender prediction less biased.

In this work, we show that our proposed training pro-

cedure improves domain generalization performance with-

out assumptions on the target distributions, and without the



need of multiple source distributions. With respect to mod-

els trained with data augmentation strategies [36, 37] for

domain generalization, the method proposed here allows

overcoming more complex dataset biases. We show that our

learning procedure is complementary to data augmentation,

and can be efficiently used in tandem.

Saliency for Explainability. The “black-box” nature of

end-to-end deep neural networks creates highly non-linear

and inexplicable feature representations that make it diffi-

cult to understand what causes the models to make certain

decisions -evidence of a model prediction. Various methods

have been introduced that investigate this major drawback

of such powerful models. For visual data, interpretabil-

ity/explainability has been addressed in the form of saliency

maps highlighting image regions that a model uses to make

a prediction, i.e. evidence. Explanation of visual models

has been addressed using white-box (black-box) methods

where the model parameters are known (unknown).

White-box methods include [40, 1, 39, 29, 31, 43, 26].

Zeiler et al. [39] use a variant of the standard backpropa-

gation error from neuron activations in higher layers down

to the image level. Selvaraju et al. [26] obtain activation

maps of a specific class using a weighted sum of deep con-

volutional features. In [40] top-down attention of a con-

volutional neural network (CNN) classifier is modelled for

generating task-specific attention maps. This work was then

extended in the temporal dimension in [1] for Recurrent

Neural Networks (RNNs) to provide visual explanations of

spatiotemporal models. Black-box methods include [8, 24]

where image regions are perturbed and network output is

monitored to determine regions of discriminative evidence.

Several works have employed explainability in develop-

ing training time and testing time frameworks to further im-

prove model predictions. Cao et al. [5] use explanation

maps to feed regions of highest importance into the same

model and use the predicted class-conditional probabilities

to improve the original ones corresponding to the whole im-

age. Zunino et al. [45] propose a guided dropout regular-

izer for deep networks based on the explanation of a net-

work prediction defined as the firing of neurons in specific

paths. The explanation at each neuron is utilized to deter-

mine the probability of dropout, rather than dropping out

neurons uniformly at random as in standard dropout. Bargal

et al. [2, 3] employ explainability by making sure the model

has “the right reasons” for a prediction, defined as reasons

that are coherent with those used to make similar correct

decisions at training time. Selvaraju et al. [27] optimize

the alignment between human attention maps and gradient-

based network importance for improving performance on

Visual Question Answering and Image Captioning tasks.

Explainability has also been used in spatial semantic seg-

mentation tasks [16, 44, 38], and object localization tasks

[42]. In contrast to previous works, our approach proposes a
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Figure 2. Domain Evidence. (Left) Graphics and Real images

from the classes motorcycle, car and horse. (Middle) Evidence the

domain discrimination network identifies for the Graphics domain.

(Right) Evidence the domain discrimination network identifies for

the Real domain. For Graphics images, the model selects the white

background as evidence for the Graphics domain and selects the

object as evidence for the Real domain. For the Real images, the

model selects the objects to be evidence for the Graphics domain

and selects the background as evidence for the Real domain.

training strategy to ensure that models periodically learn to

rely on object-related visual concepts for the task of object

classification in order to achieve more explainable models

that generalize better on unseen target domains.

3. Explainability for Domain Analysis

We start by motivating how saliency can be used to

highlight discriminative evidence found in each domain in a

domain transfer setting. We then demonstrate how saliency

can be used to highlight how different training strategies

shift the model focus within the image. In this section, we

use the Syn2Real dataset [23], which is constructed from

a graphics source domain rendered from 3D CAD models

and a real images target domain of the following classes:

Airplane, Bicycle, Bus, Car, Horse, Knife, Motorcycle,

Person, Plant, Skateboard, Train, and Truck.

Highlighting Domain Evidence. We set up an exper-

iment to visualize image regions that are domain specific.

We train a VGG16 [30] network to differentiate between the



graphics and real images domains of the Syn2Real dataset

in a binary classification problem setting. Having a classi-

fier trained to differentiate between domains, we can then

visualize why the model processes an unseen image as be-

longing to a specific domain and not the other. As saliency

methods can visualize evidence of classes that are not nec-

essarily GT, we visualize the evidence for each domain in

images of the source domain and images of the target do-

main in Figure 2. For graphics images, the model uses the

white background as evidence for the graphics domain, and

the object as evidence for the real images domain. For real

images, the model uses the object as evidence for the graph-

ics domain, and the busy background as evidence for the

real images domain. The evidence associated with the GT

domain of an image is observed to be context-dependent,

and the evidence associated with an alternative domain is

observed to be object-dependent. This capability of inter-

preting models and visually analyzing differences between

domains suggests the possibility of building models that

bridge exactly that highlighted domain gap.

Highlighting the Evidence Shift. We now set up an ex-

periment to visualize the shift of focus in input images when

different training strategies are used. The first training strat-

egy is vanilla CNN training with no domain adaptation for

object classification, i.e. training on graphics images only

and testing on real images only. The second training strat-

egy employs domain adaptation. We train our model on

the Syn2Real classification task without Domain Adapta-

tion. We then repeat training with the domain adaptation

approach of Long et al. [18]. This approach aligns distri-

butions of the source and target domains based on a joint

maximum mean discrepancy. We highlight the shift of the

object’s class evidence in test images of the target domain

that are misclassified by the model that does not perform do-

main adaptation, and are correctly classified by the domain

adaptation model. Examples are presented in Figure 3. The

saliency maps demonstrate the shift toward more discrimi-

native evidence when the domain adaptation model is used.

For example, before domain adaptation a metallic surface

of the airplane was the evidence the network used to in-

correctly classify the airplane as a motorcycle. However,

after domain adaptation the image is correctly classified as

an airplane and the evidence has shifted to the wings of the

airplane - a more discriminative feature of airplane.

Testing on data from domains not used in training poses

several challenges that are addressed in the fields of domain

adaptation and generalization. We find that different train-

ing strategies, e.g. with or without domain adaptation, make

models reason based on different evidence. This inspired

us to encourage models to focus on object-dependent evi-

dence, rendering models that (1) are more explainable, and

(2) improve generalization on unseen domains.
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Figure 3. Domain Shift. We train two models on the Graphics

source domain of Syn2Real, with and without Domain Adaptation

(DA), and then test on the Real target domain. (Left) Three sam-

ple images from the target domain of the Syn2Real dataset that

were misclassified before domain adaptation, then were correctly

classified after domain adaptation. (Middle) The saliency of a clas-

sification model that does not employ domain adaptation. (Right)

The saliency of a classification model that employs domain adap-

tation. It is clear how the evidence, after domain adaptation, is

more focused on discriminative evidence of the GT class.

4. Method

We propose to explicitly disentangle domain specific in-

formation from otherwise relevant features using model ex-

planations. We train models to produce saliency maps that

are more explainable, in the sense that they better local-

ize GT class objects. As we will show, this results in im-

proved performance on unseen domains. We will refer to

such explainable models as Explainable AI (XAI) models,

and other vanilla CNN models trained using the conven-

tional approaches without explicitly requiring any notion of

explainability as noXAI models. At training time, we pe-

riodically (with frequency freq) force the model to focus,

within an image xi, on the objects corresponding to the GT

label yi using the GT spatial annotation gi, rather than fo-

cus on the surrounding evidence which may be more do-

main specific. We assume that gi is 1) a 2D binary map

that has 1 in locations within the GT segmentation, and 0

otherwise; and 2) rescaled to the spatial dimension of the

layer XAI is applied to. During an epoch where explain-

ability is enforced, we compute saliency maps for the GT

class and examine whether their peak overlaps with the GT

spatial annotation. If overlapping occurs, we classify this

saliency map to be explainable, i.e. classified for the correct

reasons. Otherwise, we enforce explainability by utilizing

the GT spatial annotation as an improved explanation.



We enforce focusing on objects in an image by scaling

the forward activations of a particular spatial layer l in the

network at certain epochs. We generate a multiplicative bi-

nary mask for guiding the focus of the network in the layer

in which we are enforcing XAI. For an explainable image

xi, the binary mask is a binarization of the achieved saliency

map, i.e. maskij,k = 1(sij,k > 0) ∀j ∀k, j = 1, . . . ,W and

k = 1, . . . , H , where W and H are the spatial dimension of

a layers’ output neuron activations; The mask is active at lo-

cations of non-zero saliency. This re-inforces the activations

corresponding to the active saliency regions that have been

classified as being explainable. For images that need an

improved explanation, the binary mask is assigned to be the

GT spatial annotation maskij,k = gij,k ∀j ∀k, j = 1, . . . ,W
and k = 1, . . . , H; The mask is active at GT locations.

This increases the frequency at which the network rein-

forces activations at locations that are likely to be non-

domain specific and suppresses activations at locations that

are likely to be domain specific. We then perform element-

wise multiplication of our computed mask with the forward

activations of layer l; i.e. a
l,i
j,k = maskij,k ∗ a

l,i
j,k ∀j ∀k,

j = 1, . . . ,W and k = 1, . . . , H . Our XAI approach is

summarized in Algorithm 1.

5. Experiments

In this section, we present experimental setup and results

that quantify the explainability of XAI and noXAI classifi-

cation models. We then present how XAI models lead to

better single-source domain generalization.

Datasets. We use Microsoft Common Objects in Con-

text (MSCOCO) [17] for training models using the noXAI

and XAI strategies. MSCOCO provides GT spatial annota-

tions consisting of object segmentations of the correspond-

ing GT class. We use such annotations to guide the XAI

training strategy. We then test how both strategies gener-

alize from a single-source dataset to six unseen target do-

mains from DomainNet [22] and Syn2Real [23]: graph-

ics, clipart, infograph, painting, quickdraw, and sketch. To

do so, we train models for the single-label classification

task, once using MSCOCO as the single source, and an-

other using the PASCAL VOC having similar annotations.

We select the common subset of classes between source

and target domains for each scenario. For MSCOCO, this

leads to ∼25K training images belonging to the following

classes: Airplane, Bicycle, Bus, Car, Horse, Knife, Motor-

cycle, Skateboard, Train, Truck. For PASCAL VOC this

leads to ∼11K training images belonging to the following

classes: Airplane, Bicycle, Bird, Bus, Car, Cat, Chair, Cow,

Dog, Horse, Motorbike, Sheep, Television, Train.

Experimental Setup. For all experiments considering

noXAI, XAI we focus on a vanilla Resnet-50 architecture.

We resize input images to be 224x224, and train for 50

epochs using a learning rate of 0.00001. Saliency maps are

Algorithm 1: XAI Training Strategy

Input: xi, i ∈ 1, . . . ,m training images; yi, i ∈ 1, . . . ,m
corresponding class label; gi, i ∈ 1, . . . ,m
corresponding annotation; freq of training

feedback; initial model M ; n epochs; layer l

Output: Trained Model M ′

Procedure:

1 For every epoch e ∈ 1, . . . , n
2 if e mod freq == 0:

3 For every training example xi, i ∈ 1, . . . ,m

4 si = saliency(xi, yi)

5 w, h = argmax(si)

6 if giw,h == 1
7 // j = 1, . . . ,W ; k = 1, . . . , H

8 maski
j,k = 1(sij,k > 0) ∀j ∀k

9 else:

10 maski = gi

11 al,i = maski ∗ al,i

12 Compute gradients and update weights

13 else:

14 Compute gradients and update weights

computed using the GradCAM [26] algorithm after the last

block layer l of the ResNet-50. We choose the last spatial

layer since it performed best, as it models higher level spa-

tial patterns. In all experiments we set the frequency of XAI

training to be five epochs. We compare the performance

of our models against the data augmentation strategy by

Volpi and Murino [36], implemented following the recipe

proposed by the authors (random concatenation of five dif-

ferent transformations among sharpness, brightness, color,

contrast, RGB-to-grayscale conversion, RGB-channel per-

turbations applied to each batch during training).

5.1. More Explainable Classification Models

In this section, we compare the explainablity of noXAI

vs. XAI classification models using an intuitive automated

metric from the computer vision community, and then using

human judgment in a crowdsourcing setting.

5.1.1 Automated Metric

We explore how the noXAI and XAI models perform on the

unseen validation set of MSCOCO. We investigate how lo-

calized the evidence is with respect to the GT spatial annota-

tions of MSCOCO. Figure 4 presents examples of saliency

maps from the noXAI and XAI models after training is

complete with comparable classification accuracy. Saliency

is better localized over the object corresponding to the GT

class when the XAI strategy is adopted for training. We use

the pointing game of [41] to compute the number of hits;

the number of correctly classified images where the peak
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Figure 4. (Left) Four sample images from the unseen MSCOCO

validation set that are correctly classified by both the noXAI and

XAI models. (Middle) Saliency associated with the correctly pre-

dicted class using the noXAI model. (Right) saliency associated

with the correctly predicted class using the XAI model. The XAI

model, based on human spatial annotations, provides feedback that

enables saliency to be better localized over the objects correspond-

ing to the GT class compared to the noXAI vanilla training.

saliency overlaps with the GT spatial annotation. This is de-

picted in Figure 5 for the XAI and noXAI models over the

training epochs to quantify explainability. We also demon-

strate how data augmentation techniques of [36] do not sig-

nificantly affect localization of explanation maps. At epoch

50, the model accuracy for MSCOCO’s validation set is:

61.87% for the noXAI model and 62.04% for the XAI aver-

aged for three runs on the last four epochs. In essence, we

are improving the explanation the model is providing for

its classification result, assuming that a good explanation

focuses more on the object corresponding to the GT class,

without hindering classification accuracy. The XAI model

has learnt to rely less on context information, without hurt-

ing the performance. At epoch 50, the XAI model has 1321

images with better localization/explainability as per our au-

tomated metric.

5.1.2 Human Judgment

In Section 5.1.1 we assumed that a saliency map whose

peak overlaps with the GT spatial annotation of the object

is a better explanation. We now design an unbiased crowd-

sourcing user study which asks users what they think is a

better explanation for the presence of an object.

Annotation Tool Settings. We use the Amazon Me-

chanical Turk (AMT) crowdsourcing marketplace to recruit

crowd workers. We accept AMT workers who had previ-

ously completed at least 1000 tasks (a.k.a HITs), and main-

tained an approval rating of at least 98%. We compensate

Figure 5. In this plot we present the number of hits, i.e. the number

of unseen MSCOCO images, among the 16K validation set, where

the model is able to provide an accurate explanation for, among the

correctly classified ones during training. A model explanation is

defined as a saliency map over the image, and a better explanation

is defined to be one that has a higher number of pointing game

hits, i.e. a higher number of image explanations overlapping with

the annotation of the GT class label. We can see that the noXAI

model fits the dataset bias at training time, while the XAI model

improves its explainability over time for validation data. The stan-

dard deviation is depicted around the mean using a lighter shade.

the work of all crowd workers who participated in our tasks.

Crowdsourcing Task Details. We collect annotations

from crowd workers for a task (HIT) that contains ten sub-

tasks. Ten unique workers provide annotations for each task

(annotating the ten subtasks). Each subtask presents the

worker with one image and two evidence images, one is

a saliency map generated from the model trained using our

XAI strategy, and the second is a saliency map generated

from the conventional noXAI training strategy. The worker

is asked to select which of the evidence images (described to

the user as “highlights”) is a better explanation for the pres-

ence of the object of interest. Figure 6 presents the sample

interface presented to the worker for a particular subtask.

We do not bias the users’ definition of explainability by not

providing any specific example/instruction images. We post

all HITs simultaneously, for all 1321 images, while ran-

domizing the presentation order of XAI and noXAI saliency

maps in each subtask. We allot a maximum of ten minutes

to complete each HIT and paid $0.10 per HIT.

Crowdsourcing Task Results. We processed the 13,210

(1,321 images * 10 votes per image) crowdsourced results

to assign a winning label, “XAIwinner” or “noXAIwinner”,

for each image. 190 unique crowd workers contributed to

the 10 votes per HIT. It took each crowd worker an average

of 137 seconds to complete a HIT consisting of ten vot-

ing subtasks. We used majority voting to combine the ten

crowd-collected selections into a single vote for each image.

For 225 out of the 1,320 images, there was no clear winner

as there was a tie between XAI evidence and noXAI evi-

dence. For the remaining 1,096 images, XAI evidence won



Figure 6. A snapshot of the interface presented to Amazon Mechanical Turk users for a subtask. The interface asks the users to select the

evidence (“highlight”) they think is a better explanation for the presence of an object of a certain class, e.g. airplane, together with the

original image. The order in which the XAI and noXAI evidence maps are presented is randomized for every subtask image.
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Figure 7. We present results for domain generalization on six unseen target domains. The Graphics domain data is obtained from the

Syn2Real dataset, and the other five domains are obtained from the DomainNet dataset. We note that training has been conducted on a

single source: the MSCOCO dataset, and no data from any of the target domains is presented to the model at training time. Results are

demonstrated for the common classes between the three datasets. For each training strategy we report the average test accuracy of the last

four epochs for three trained models. The black bar demonstrates the minimum and maximum average over three trained models.

for 887 of the images (67% of the whole image population

and 80% of the images with a winner choice).

5.2. Improved Domain Generalization

In this section, we explore whether training a model to

be explainable helps generalization to unseen domains. We

consider the challenging problem of domain generalization

from a single-source. This means that the target domains

are unseen during training. We use MSCOCO as our single

source and utilize its GT spatial annotations at training time

to enforce a more explainable model. We test noXAI and

XAI models on domains that are unseen at training time:

graphics, clipart, infograph, painting, quickdraw, sketch.

Figure 7 presents the classification accuracy on unseen

domains of XAI and noXAI models, with and without data

augmentation [36]. Accuracy is the average of the last

four epochs of three trained models. The XAI model con-

sistently results in improved domain generalization over

the six target domains tested. The XAI training strategy

achieves a relative 2.56% accuracy improvement averaged

over all target domains. Figure 7 also demonstrates the

complementarity of our proposed XAI training strategy to

that of Volpi and Murino [36]. Figure 8 presents a similar

trend when the PASCAL VOC is used as the single-source

dataset for enforcing explainability, and unseen target do-

mains are used for testing from DomainNet and Syn2Real.

By guiding the network to periodically focus on regions

that contain the object of a ground truth class, we are able

to train models that are more explainable in the sense that

they classify based on the correct evidence, generalize bet-

ter to unseen target domains, and suffer no degradation in

performance on the original domain.
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Figure 8. We present results for domain generalization on six unseen target domains. The Graphics domain data is obtained from the

Syn2Real dataset, and the other five domains are obtained from the DomainNet dataset. We note that training has been conducted on a

single source: the PASCAL VOC dataset, and no data from any of the target domains is presented to the model at training time. Results

are demonstrated for the common classes between the datasets. For each training strategy we report the average test accuracy of the last

four epochs for three trained models. The black bar demonstrates the minimum and maximum average over three trained models.

Domain block 1 block 2 block 3 block 4

Graphics 58.67 58.02 57.09 58.56

Clipart 63.90 63.21 62.55 62.59

Infograph 32.74 32.68 32.91 35.16

Painting 85.30 85.31 85.10 84.98

Quickdraw 14.29 13.85 13.13 14.49

Sketch 51.74 51.40 51.32 51.76

Table 1. Test accuracies on the six unseen domains from Domain-

Net and Syn2Real, where XAI training was applied at different

locations (After block1, block2, etc.) of the ResNet-50.

5.3. Where and When to apply XAI training

In this section we perform two ablation studies on

MSCOCO to explore where and when XAI training could

be applied to maximize performance gains.

Where to apply XAI training? In this section we ex-

plore where in a network architecture is best for applying

the XAI training. This is where we would be computing

the saliency map for the images, computing a mask, and

applying the mask on forward activations. We apply XAI

training after every block of the ResNet-50 architecture and

present the results in Table 1. The majority of the domains

had highest accuracy when XAI training was applied after

the last block, however, we found that accuracies are com-

parable regardless to where XAI training was applied.

When to apply XAI training? We apply XAI train-

ing using freq = 5, 10, 15 epochs in Table 2. Frequencies

greater than 1 obtain a comparable performance, with best

performance achieved at freq = 5. Applying XAI every it-

Domain freq = 5 freq = 10 freq = 15
Graphics 58.56 58.06 58.08

Clipart 62.59 61.69 62.22

Infograph 35.16 33.91 34.07

Painting 84.98 84.86 84.96

Quickdraw 14.49 13.96 14.13

Sketch 51.76 51.04 51.42

Table 2. Test accuracies on the six unseen domains from Domain-

Net and Syn2Real, where XAI training was applied at freq =
5, 10, 15, i.e. every 5, 10, or 15 training epochs.

eration would involve a computational overhead and would

completely disregard context hindering performance on the

source and target domains.

Conclusions

In this work, we make object classification models pos-

sess the valuable property of explainability exposing their

internal decision process in a human-interpretable way. We

do so by periodically forcing the model at training time to

focus on object/class evidence. We demonstrate that this

training strategy encourages models to classify objects by

looking at the objects themselves rather than their surround-

ing context, leading to better generalization across domains.

While our approach leads to more explainable classification

models and better generalization to unseen domains, it has

no associated accuracy degradation on the original domain

and no added test-time complexity.



References

[1] Sarah Adel Bargal, Andrea Zunino, Donghyun Kim, Jian-

ming Zhang, Vittorio Murino, and Stan Sclaroff. Excitation

backprop for RNNs. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. 3

[2] Sarah Adel Bargal, Andrea Zunino, Vitali Petsiuk, Jianming

Zhang, Kate Saenko, Vittorio Murino, and Stan Sclaroff.

Guided zoom: Questioning network evidence for fine-

grained classification. In Proc. British Machine Vision Con-

ference (BMVC), 2019. 3

[3] Sarah Adel Bargal, Andrea Zunino, Vitali Petsiuk, Jianming

Zhang, Kate Saenko, Vittorio Murino, and Stan Sclaroff.

Guided zoom: Zooming into network evidence to refine

fine-grained model decisions. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 2021. 3

[4] John Blitzer, Ryan McDonald, and Fernando Pereira. Do-

main adaptation with structural correspondence learning. In

Proceedings of the 2006 Conference on Empirical Methods

in Natural Language Processing, 2006. 1, 2

[5] Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang

Wang, Zilei Wang, Yongzhen Huang, Liang Wang, Chang

Huang, Wei Xu, et al. Look and think twice: Capturing

top-down visual attention with feedback convolutional neu-

ral networks. In Proc. IEEE International Conference on

Computer Vision (ICCV), pages 2956–2964, 2015. 3

[6] Fabio M. Carlucci, Antonio D’Innocente, Silvia Bucci, Bar-

bara Caputo, and Tatiana Tommasi. Domain generalization

by solving jigsaw puzzles. In Proc. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2019. 2

[7] Myung Jin Choi, Joseph J Lim, Antonio Torralba, and Alan S

Willsky. Exploiting hierarchical context on a large database

of object categories. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2010. 2

[8] R. C. Fong and A. Vedaldi. Interpretable explanations of

black boxes by meaningful perturbation. In Proc. IEEE In-

ternational Conference on Computer Vision (ICCV), 2018.

3

[9] Yaroslav Ganin and Victor S. Lempitsky. Unsupervised do-

main adaptation by backpropagation. In Proc. International

Conference on Machine Learning (ICML), 2015. 2

[10] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In Proc. In-

ternational Conference on Learning Representations (ICLR),

2015. 2

[11] Lisa Anne Hendricks, Kaylee Burns, Kate Saenko, Trevor

Darrell, and Anna Rohrbach. Women also snowboard: Over-

coming bias in captioning models. In Proc. European Con-

ference on Computer Vision (ECCV), 2018. 2
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